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Abstract. The equations that govern elastostatic equilibrium between a pre-
scribed force field and an unknown displacement field for materials with periodic
skeletal micro-structures are studied. It is shown that as the size of the micro-
structure tends to zero, the displacement field will converge to the solution of a
constant coefficient partial differential equation. This equation is shown to be ei-
ther a classical or a micro-polar continuum elasticity equation, depending on the
micro-structural geometry and the nature of the external load field. Convergence
is proved for representative model problems in Sobolev energy norms and in the
maximum norm. In addition, it is shown that by considering pseudo-differential
homogenized equations, any order of convergence can be achieved.

1. Introduction

We study the mechanics of materials with periodic skeletal micro-structures called
“lattice materials”. Specifically, we study the problem of determining the displace-
ment field in an infinite piece of lattice material subjected to a prescribed external
load. Modelling the micro-structure as an assembly of discrete struts, we formulate
an equilibrium equation that is defined on the integer lattice Z

d. We will demon-
strate that when the size of the unit cell in the lattice is much smaller than the
length-scale over which the load changes, an approximate solution to the equilib-
rium equation can be determined by solving a partial differential equation with
constant coefficients, known as the homogenized equation.

Depending on the geometry of its skeletal micro-structure, a lattice material de-
rives its main strength from either the axial or the bending stiffness of the struts,
Gibson and Ashby [8]. Materials of the first kind are usually modelled as mechan-
ical trusses, whereas materials of the second kind are modelled as frames. As an
illustration, of the materials in Figure 1, B and C are treated as trusses, and A and
D as frames. Frame materials are generally less stiff than truss materials since the
axial stiffness of a slender bar is significantly higher than the bending stiffness. We
will consider both of these models, as well as a model for heat conduction. The low-
est order homogenized equation will be Poisson’s equation for conduction problem
and the classical equations of elasticity for truss materials. For frame materials, the
corresponding equation will be an equation of micro-polar (Cosserat) elasticity. We
will also consider higher order approximations that do not correspond to classical
continuum theories.

The homogenized equations are useful in that they provide valuable heuristic
information about the macro-scopic behavior of the material in terms of, e.g., the
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Figure 1. Examples of lattice geometries.

effective stiffness tensor. Moreover, knowledge about the asymptotic behavior of the
lattice equations is essential to the construction of fast numerical solution techniques.
We wish to emphasize that we do not advocate the common technique of dealing
with heterogeneous media by solving a homogenized equation using a standard PDE
solver. Such methods tend to perform poorly in any situation where non-trivial
boundaries, inclusions or non-smooth loads are present. Techniques that do not have
this short-coming include multigrid solvers for the lattice equations developed by
J. Xu and co-workers, e.g. [20], finite element techniques that embed the sub-scale
modelling in the construction of the approximation functions, Rüegg, Schneebali
and Lauper [19], techniques based on lattice Green’s functions, Liu, Karpov, and
Park, [10], and discrete boundary equation techniques coupled with fast matrix-
vector multiplication algorithms, [11, 18]. In order to optimize the performance of
such techniques, it is very useful to know the asymptotic behavior of solutions to
the lattice equation on infinite domains, which is the subject of this paper.

The technical analysis will rely heavily on a Korn-type inequality in the Fourier
domain that was proved in [12]. Our use of Fourier techniques to study heteroge-
neous media was inspired by Morgan and Babuška, [13, 14]. We were also inspired
by the work of Cioranescu and Saint Jean Paulin [5], who study similar problems
using continuum models rather than the structural mechanics approach used here,
and the work by Panasenko, e.g. [17]. The case of non-linear interaction mecha-
nisms has been studied by Blanc, LeBris and Lions [4]. For the case of non-periodic
network problems, see e.g. Babuška and Sauter [2], and Berlyand and Kolpakov [3].
The engineering literature on lattice problems is reviewed by Ostoja-Starzewski [16].

This paper is structured as follows: In Section 2 we describe our notation and
introduce a scaled Fourier transform. In Section 3.1 we describe how to determine
the asymptotic behavior of the solution to the equilibrium equation by computing a
power series in Fourier space; this technique is then applied to the problem of ther-
mostatics in Section 3.2 and elastostatics on truss and frame lattices in sections 3.3
and 3.4, respectively. For each model, we first present two examples that illustrate
the homogenization process and then give general results. In Section 4, we rigor-
ously prove that the solution of the lattice equation converges to the solution of the
homogenized equation as the lattice cell size tends to zero. The full proofs will be
given for the conduction problem only since the extension to mechanical problems
is straight-forward.

2



2. Preliminaries

In this section we introduce notation for describing lattice geometries and lattice
functions, and describe the general form of the equations under consideration. We
also introduce a discrete Fourier transform.

For periodic media, the term reference cell refers to a minimal cell that reproduces
the entire structure when repeated periodically. We restrict attention to infinite pe-
riodic lattice geometries in R

d whose reference cell is the cube [0, ε)d. The restriction
to cubic symmetry simplifies the notation but is strictly aesthetic (see [11] for the
general case). The cells in the lattice are labelled using an integer index m ∈ Z

d.
Letting q denote the number of nodes in a unit cell, we label the nodes inside cell m
with the composite indices (m, 1), . . . , (m, q). Thus (m,κ) ∈ Z

d×{1, . . . , q} uniquely
labels a node, see Fig. 2. With each node we associate a potential (a temperature,

or a displacement) u(ε)(m,κ) ∈ C
r and a load (a heat source, or an external force)

f (ε)(m,κ) ∈ C
r. Collecting the q vectors u(ε)(m, 1), . . . ,u(ε)(m, q) into a single

vector u(ε)(m) ∈ C
qr, we consider equilibrium equations of the form

(2.1) [A(ε)u(ε)](m) = f (ε)(m), ∀ m ∈ Z
d,

where the equilibrium operator A(ε) is a convolution operator of the form

[A(ε)u(ε)](m) =
∑

n∈B

A(n,ε)u(ε)(m− n),

for some qr×qr matrices A(n,ε) and a finite set B ⊂ Z
d. Equations of the form (2.1)

describe a wide range of equilibrium equations; including elastostatic equilibrium
on truss and frame lattices. Several examples are given in Section 3.

The asymptotic analysis in this paper is based on Fourier techniques. We define
a discrete Fourier transform as follows:

(2.2) ũ(ε)(ξ) = [F (ε)u(ε)](ξ) = εd
∑

m∈Zd

eiεm·ξu(ε)(m),∀ ξ ∈ Id
ε = (−π/ε, π/ε)d,

where i =
√
−1. The scaling in ε is set in such a way that when u(ε) is defined

by u(ε)(m) := u(εm) for some function u of a continuous variable, then ũ(ε)(ξ) is a
Riemann sum of the continuous Fourier transform

û(ξ) = [Fu](ξ) :=

∫

Rd

eix·ξu(x) dx.

The inverse of F (ε) is given by

(2.3) u(ε)(m) = [(F (ε))−1ũ(ε)](m) =
1

(2π)2

∫

Id
ε

e−im·ξũ(ε)(ξ) dξ.

Taking the Fourier transform of both sides of (2.1) we obtain the algebraic equation

(2.4) σ(ε)(ξ)ũ(ε)(ξ) = f̃
(ε)

(ξ), ∀ ξ ∈ Id
ε ,

where the symbol σ(ε) of A(ε) is defined by

σ(ε)(ξ) := F (ε)A(ε)
(

F (ε)
)−1

=
∑

n∈B

ei(εn)·ξA(n,ε).
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Figure 2. Lattice notation. To the left, an irreducible unit cell is
depicted. Each node is marked with its type, κ. To the right, the
cell m = [0, 0] is marked in grey. The node marked “a” is a node of
type κ = 1 in cell m = [0, 0]. Thus node “a” is labelled (1, [0, 0]).
Node “b” is of type κ = 2 and has the label (2, [0, 0]). Node “c” is
labelled (1, [0,−1]), and node “d” is labelled (2, [1, 1]).

3. Derivation of the homogenized equations

In this section, we determine the asymptotic behavior of the solution to the
equilibrium equation, as the cell-size ε tends to zero, by computing a power series
in ε in the Fourier domain. The general procedure is described in Section 3.1. In
Section 3.2 we apply the technique to derive the homogenized equations for the
equations of thermostatic equilibrium on a lattice and then in sections 3.3 and 3.4,
we study the equations that govern elastostatic equilibrium on truss and frame
lattices, respectively. The presentation is largely example-driven and convergence
proofs are postponed until Section 4.

3.1. The general case. In this section, we briefly describe how to formally derive
an asymptotic expansion of the solution u(ε) of the generic equation (2.1) (specific
examples are given in sections 3.2, 3.3, and 3.4). First we note that from equation

(2.4), we obtain ũ(ε)(ξ) = [σ(ε)(ξ)]−1f̃
(ε)

(ξ), whence the Fourier inversion formula
(2.3), yields

(3.1) u(ε)(m) =
1

(2π)d

∫

Id
ε

e−i(εm)·ξ
[

σ(ε)(ξ)
]−1

f̃
(ε)

(ξ) dξ.

For all equations under consideration in this paper, the inverse symbol σ(ε)(ξ)−1 has
an O(|ξ|−2) singularity at the origin and the integral (3.1) is absolutely integrable
when d ≥ 3 (the case d = 2 is discussed in [11, 12]). In order to derive the limiting

behavior of u(ε) as ε → 0, we assume that there exists a fixed function f of a
continuous variable such that

(3.2) f̃
(ε)

(ξ) = f̂(ξ) +O(εk)
4



for some integer k. This assumption is easily justified by observing that for any k,
it is possible to find a weight function µ such that the sequence of lattice function
{f (ε)}ε→0 defined by

f (ε)(m) :=
1

εd

∫

Rd

f(x)µ

(
x− εm

ε

)

dx,

satisfies (3.2) provided that f is sufficiently smooth, see Section 4.1. Now, letting
ε→ 0 and |m| → ∞ in such a fashion that x = εm stays constant, we find that

(3.3) u(ε)(m) → u(0)(x) :=
1

(2π)d

∫

Rd

e−ix·ξS(0)(ξ)f̂(ξ) dξ = F−1
[

S(0)(ξ)f̂(ξ)
]

,

where S(0)(ξ) is the limit of the inverse symbol,

(3.4) S(0)(ξ) := lim
ε→0

[σ(ε)(ξ)]−1.

We observe that u(0) is a vector of q functions, u(0)(x) = [u(0)(x, 1), . . . , u(0)(x, q)]t,

where each u(0)(x, κ) is a scalar or a vector valued function, depending on whether

we consider thermostatics or elastostatics. For either case, we will prove that S(0)(ξ)
is the inverse of a matrix whose entries are polynomials in ξ, and thus the function
u(0) will be the solution of a constant coefficient partial differential equation with
f as the right hand side. At this point we have not specified the mathematical
meaning of the limit (3.3), but in Section 4 we demonstrate that if f is sufficiently
smooth, convergence occurs both in pointwise and in Sobolev norms.

More generally, we let S(ε,p)(ξ) denote the p-term MacLaurin expansion of σ(ε)(ξ)−1

and set
u(ε,p) := F−1[S(ε,p)(ξ)f̂(ξ)].

Then, assuming that f is sufficiently smooth (this requirement gets more severe as
p increases),

u(ε)(m) = u(ε,p)(εm) +O(εp+1).

Each entry of the matrix S(ε,p)(ξ) is a rational function in ξ, and thus the function

u(ε,p) is the solution of a constant coefficient pseudo-differential equation in physical
space.

Remark 3.1. As a practical matter, we mention that even for quite simple struc-
tures, it would be prohibitively toilsome to compute σ(ε) and evaluate the inverse
and the limit in (3.4) by hand. Fortunately, these tasks can very easily be performed
by symbolic algebra software (the examples given in this paper were calculated using
the program “Maple”).

3.2. The thermostatic equilibrium equation. Consider a lattice subjected to
an applied field of nodal heat sources f (ε). When the lattice is in thermostatic
equilibrium, the nodal temperatures u(ε) satisfy an equation of the form (2.1) which
represents the condition that at each node, the sum of fluxes through the links that
connect to the node equals the pre-scribed heat source.

In order to determine how this model scales with the cell size ε, we first consider
a lattice with cell size 1, which we refer to as the “unscaled” lattice. Let A(us)
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denote the stiffness operator associated with this lattice and let σ(us)(ξ) denote the
corresponding symbol. If this lattice is shrunk by a factor of ε, the cross-section of
a strut will decrease by a factor εd−1 and its length by ε. The scaled load f (ε) is
defined so that the actual external heat flux is εdf (ε)(m). The equilibrium equation
at scale ε therefore reads

(3.5)
εd−1

ε
[A(us)u(ε)](m) = εdf (ε)(m), ∀ m ∈ Z

d,

which we convert into (2.1) by defining

A(ε) := ε−2A(us).

Likewise, we define

σ(ε)(ξ) := ε−2σ(us)(εξ).

Before giving the general results, we illustrate the limit process with two examples.

A mono-atomic lattice: We consider the lattice labelled A in Figure 1. Setting
the conductivity of each link to 1, the condition for thermo-static equilibrium at
node m = (m1, m2) reads

1

ε2
(
u(ε)(m1,m2) − u(ε)(m1 + 1,m2)

)
+

1

ε2
(
u(ε)(m1,m2) − u(ε)(m1 − 1,m2)

)
+

1

ε2
(
u(ε)(m1,m2)−u(ε)(m1,m2+1)

)
+

1

ε2
(
u(ε)(m1,m2)−u(ε)(m1,m2−1)

)
= f (ε)(m1,m2).

The lattice equilibrium operator is thus given by

[A(ε)u(ε)](m) =
1

ε2

[

4u(ε)(m) − u(ε)(m+ e1) − u(ε)(m− e1) − u(ε)(m+ e2) − u(ε)(m− e2)
]

,

where e1 = [1, 0] and e2 = [0, 1]. The Fourier representation of A(ε) is then

σ(ε)(ξ) =
1

ε2
(
4 − e−iεξ1 − eiεξ1 − e−iεξ2 − eiεξ2

)
=

1

ε2

(

4 sin2 εξ1
2

+ 4 sin2 εξ2
2

)

.

In order to determine S(ε,p) we series expand σ(ε)(ξ)−1 in ε and find that

[σ(ε)(ξ)]−1 = ε2
(

4 sin2 εξ

2
+ 4 sin2 εξ

2

)−1

=
1

|ξ|2 +O(ε2), as ε→ 0.

Letting ε → 0, we see that S(0)(ξ) = |ξ|−2, and so the limit function u(0) satisfies

|ξ|2û(0) = f̂ . The homogenized equation is then

(3.6) −∆u(0) = f.

For this case, S(ε,1)(ξ) = S(0)(ξ) so equation (3.6) is O(ε2)-accurate. �

A multi-atomic lattice: Consider the X-braced square lattice labelled C in Figure
1, again setting the conductivity of all links in the unscaled lattice to one. Here

σ(ε)(ξ) =
1

ε2

[
4 + 4 sin2 εξ1

2 + 4 sin2 εξ2
2 −1 − eiεξ1 − eiεξ2 − ei(εξ1+εξ2)

−1 − e−iεξ1 − e−iεξ2 − e−i(εξ1+εξ2) 4

]

.

We find that
detσ(ε)(ξ) = ε−2

(
8|ξ|2 +O(ε2)

)
,
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and so
(3.7)

[σ(ε)(ξ)]−1 =
1

8|ξ|2 +O(ε2)

[
4 1 + e−iεξ1 + e−iεξ2 + e−i(εξ1+εξ2)

1 + eiεξ1 + eiεξ2 + ei(εξ1+εξ2) 4 + 4 sin2 εξ1
2 + 4 sin2 εξ2

2

]

.

Taylor expanding the right hand side of (3.7) in ε, we find that
(3.8)

[σ(ε)(ξ)]−1 =
1

2|ξ|2
([

1 1
1 1

]

+

[
0 −iε(ξ1 + ξ2)/2

iε(ξ1 + ξ2)/2 0

]

+O(|εξ|2)
)

.

The lowest order homogenized equations read

(3.9)

{

−2∆u(0)(x, 1) = f(x, 1) + f(x, 2),

−2∆u(0)(x, 2) = f(x, 1) + f(x, 2).

Since u(0)(x, 1) and u(0)(x, 2) represent the limiting temperatures of the two nodal

temperatures fields u(ε)(m, 1) and u(ε)(m, 2), respectively, the fact that the two

equations in (3.9) are identical implies that u(ε)(m, 1) = u(ε)(m, 2) + O(ε). The
difference between the two temperature fields surfaces in the O(ε2)-accurate ho-
mogenized equations:

(3.10)

{

−2∆u(ε,1)(x, 1) =
(
f(x, 1) + f(x, 2)

)
+ ε1

2(∂1 + ∂2)f(x, 2),

−2∆u(ε,1)(x, 2) =
(
f(x, 1) + f(x, 2)

)
− ε1

2(∂1 + ∂2)f(x, 1),

where ∂j denotes the partial differentiation operator with respect to xj . We note
that the equations (3.10) require higher regularity in f to be well-posed than do
(3.9). �

In order to make a statement about general lattice geometries, we need the fol-
lowing result about the nature of the unscaled lattice (Theorem 4.9 of [12]): For any
connected lattice, there exists a positive definite matrix M (which can be calculated

from σ(us)(ξ) through a simple formula), such that, setting σ(0)(ξ) := ξ ·Mξ, we
have, as |ξ| → 0,

(3.11) σ(us)(ξ)−1 =









σ(0)(ξ)−1 σ(0)(ξ)−1 · · · σ(0)(ξ)−1

σ(0)(ξ)−1
...

...

σ(0)(ξ)−1 · · · σ(0)(ξ)−1









+O(|ξ|−1).

Inserting the scaling σ(ε)(ξ) = ε−2σ(us)(εξ) into (3.11) and letting ε→ 0, we obtain

S(0)(ξ) =









σ(0)(ξ)−1 σ(0)(ξ)−1 · · · σ(0)(ξ)−1

σ(0)(ξ)−1
...

...

σ(0)(ξ)−1 · · · σ(0)(ξ)−1









.

This shows that to lowest order, the homogenized equations are the same for all the
fields u(ε)(·, κ). To be precise, u(ε)(m,κ) = u(0)(εm) +O(ε), where u(0) is specified
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by the equation

−∇ ·M∇u(0)(x) =

q
∑

λ=1

f(x, λ).

We leave a discussion of higher order homogenizations to Section 4.

3.3. Elastostatic equilibrium of mechanical trusses. Lattice geometries such
as B and C in Figure 1 can accurately be modelled as systems of axial springs that
are pin-jointed at the nodes, i.e. as trusses. This simplistic model can be justified
by noting that the bending stiffness of the struts is so much smaller than the axial
stiffness that it can safely be neglected, see [8] and [12].

Since the axial stiffness of a strut scales in exactly the same was as its conductivity,
the analysis of the mechanical truss problem follows the conduction case closely. In
particular, it is still the case that σ(ε)(ξ) = ε−2σ(us)(εξ). However, the algebra gets
considerably more cumbersome since the potential is vector-valued, so we will con-
sider only the lowest order homogenized equations. If needed, higher order models
can be derived using the techniques demonstrated for the conduction problem.

A mono-atomic example: Consider the square lattice with a single diagonal
brace, labelled B in Figure 1. Letting the axial stiffness of all bars be unity, we find
that

σ(ε)(ξ) =
1

ε2

[
4 sin2 εξ1

2 + 2 sin2 εξ1+εξ2
2 2 sin2 εξ1+εξ2

2

2 sin2 εξ1+εξ2
2 4 sin2 εξ2

2 + 2 sin2 εξ1+εξ2
2

]

Since each term has a finite non-zero limit as ε → 0, it is possible interchange the
order of the limit and the matrix inversion in (3.4), in other words

S(0)(ξ) = lim
ε→0

[σ(ε)(ξ)]−1 =
[

lim
ε→0

σ(ε)(ξ)
]−1

=

[
ξ21 + 1

2(ξ1 + ξ2)
2 1

2(ξ1 + ξ2)
2

1
2(ξ1 + ξ2)

2 ξ22 + 1
2(ξ1 + ξ2)

2

]−1

.

The system of equations for the homogenized displacement field u(0) = [u
(0)
1 , u

(0)
2 ]t

is then

−
(
∂2

1 + 1
2(∂1 + ∂2)

2
)
u

(0)
1 − 1

2(∂1 + ∂2)
2u

(0)
2 =f1,

−1
2(∂1 + ∂2)

2u
(0)
1 −

(
∂2

2 + 1
2(∂1 + ∂2)

2
)
u

(0)
2 =f2.

(3.12)

By setting σ(0)(ξ) := S(0)(ξ)−1 we can write (3.12) compactly as σ(0)(i∂)u(0) = f (0)

where we used the vector of differential operators ∂ = [∂1, ∂2]
t. Not unexpectedly,

(3.12) are the equations of (plane strain) elasticity with a non-isotropic stiffness
tensor. �

A multi-atomic lattice We consider the X-braced square lattice labelled C in
Figure 1, again letting all struts have axial stiffness one. The symbol is given by

σ(ε)(ξ) =
1

ε2






4 sin2 εξ1
2

+ 2 0 1 + eiεξ1 + eiεξ2 + ei(εξ1+εξ2) 1 − eiεξ1 − eiεξ2 + ei(εξ1+εξ2)

⋆ 4 sin2 εξ2
2

+ 2 1 − eiεξ1 − eiεξ2 + ei(εξ1+εξ2) 1 + eiεξ1 + eiεξ2 + ei(εξ1+εξ2)

⋆ ⋆ 2 0
⋆ ⋆ ⋆ 2





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Computing the matrix inverse and sending ε to zero we find that

S(0)(ξ) =

[
σ(0)(ξ)−1 σ(0)(ξ)−1

σ(0)(ξ)−1 σ(0)(ξ)−1

]

, where σ(0)(ξ) =

[
3
2ξ

2
1 + 1

2ξ
2
2 ξ1ξ2

ξ1ξ2
1
2ξ

2
1 + 3

2ξ
2
2

]

.

This means that the lowest order homogenized equations are the same for the two
potential fields. To be precise, for κ = 1, 2, we have

(3.13)







−
(

3
2∂

2
1 + 1

2∂
2
2

)
u

(0)
1 (x, κ) − ∂1∂2u

(0)
2 (x, κ) = f1(x, 1) + f1(x, 2),

−∂1∂2u
(0)
1 (x, κ) −

(
1
2∂

2
1 + 3

2∂
2
2

)
u

(0)
2 (x, κ) = f2(x, 1) + f2(x, 2).

Using the compact vector notation introduced in the mono-atomic example, we
could write (3.13) as σ(0)(i∂)u(0)(x, κ) = f(x, 1) + f(x, 2). �

The extension to arbitrary lattice geometries is completely analogous to the con-
duction problem. For lattices that can be modelled as trusses there exists a d × d
matrix σ(0)(ξ) such that an identity analogous to (3.11) holds (Theorem 6.5 of

[12]). The matrix σ(0)(ξ) can be computed from σ(us)(ξ) through a simple for-
mula. All its entries are second order polynomials in ξ and moreover, all its
eigenvalues satisfy c|ξ|2 ≤ λi ≤ C|ξ|2 for some c > 0 and C < ∞, (Lemma 4.1

of [12]). Since σ(ε)(ξ) = ε−2σ(us)(εξ), we find that each one of the q2 blocks of

S(0)(ξ) equals σ(0)(ξ)−1. As a result, the lattice functions {u(ε)(m,κ)}q
κ=1, repre-

senting the displacements of the q different species of nodes, all satisfy the relation
u(ε)(m,κ) = u(0)(εm)+O(ε) where the homogenized displacement field u(0) satisfies
the equation

σ(0)(i∂)u(0)(x) =

q
∑

λ=1

f(x, λ).

3.4. Elastostatics of mechanical frames. When modelling lattices such as A and
D in Figure 1, we must include the bending stiffnesses of the struts. Each node now
locks the relative angles of the struts that connect to it, and the nodal displacement
must therefore include rotational as well as translational degrees of freedom. Thus

u(ε)(m,κ) = [u
(ε)
t (m,κ), u

(ε)
r (m,κ)] ∈ R

r, where r = 3 in two dimensions and r = 6

in three. In this model, different components of σ(ε)(ξ) scale differently with ε as
will be illustrated in the next two examples.

A mono-atomic lattice: Consider again the simple square lattice labelled A in
Figure 1. The nodal potential for the unscaled lattice is u(m) = [u1(m), u2(m), u3(m)],
where [u1(m), u2(m)] denotes the translational displacement and u3(m) the rota-
tional (counted anti-clockwise). Likewise, f(m) = [f1(m), f2(m), f3(m)] where
[f1(m), f2(m)] denotes an external force and f3(m) an external torque. Modelling
each strut as an Euler beam with length L, cross-sectional area A, moment of inertia
I and Young’s modulus E, the equilibrium equation for the unscaled lattice reads
[

EA
L

4 sin2 ξ1
2

+ 12EI

L3 4 sin2 ξ2
2

0 12EI

L2 i sin ξ2

0 EA
L

4 sin2 ξ2
2

+ 12EI

L3 4 sin2 ξ1
2

− 12EI

L2 i sin ξ1

− 12EI

L2 i sin ξ2
12EI

L2 i sin ξ1
4EI

L
(4 + cos ξ1 + cos ξ2)

] [
ũ1(ξ)
ũ2(ξ)
ũ3(ξ)

]

=

[
f̃ 1(ξ)

f̃ 2(ξ)

f̃ 3(ξ)

]

.
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Now, as the lattice is shrunk by a factor of ε we have L = εL0, A = εd−1A0 and
I = εd+1I0 (provided that the width-to-length ratio of all bars are kept constant).
In these formulas we kept the dimension d explicit in order to simplify generalization
to higher dimensions (although for now, d = 2). Recalling that f (ε) is defined so

that the actual load is εdf (ε)(m) we find that the scaled equilibrium equation reads,
cf. (3.5)





EA0εd−1

L0ε
4 sin2 εξ1

2
+ 12EI0εd+1

L3
0
ε3 4 sin2 εξ2

2
0 12EI0εd+1

L2
2
ε2 i sin εξ2

0 EA0εd−1

L0ε
4 sin2 εξ2

2
+ 12EI0εd+1

L3
0
ε3 4 sin2 εξ1

2
− 12EI0εd+1

L2
0
ε2 i sin εξ1

− 12EI0εd+1

L2
0
ε2 i sin εξ2

12EI0εd+1

L2
0
ε2 i sin εξ1

4EI0εd+1

L0ε
(4 + cos εξ1 + cos εξ2)






×






ũ
(ε)
1 (ξ)

ũ
(ε)
2 (ξ)

ũ
(ε)
3 (ξ)




 =






εdf̃
(ε)
1 (ξ)

εdf̃
(ε)
2 (ξ)

εdf̃
(ε)
3 (ξ)




 .

Dividing by εd we obtain the system

σ(ε)(ξ)ũ(ε)(ξ) = f̃
(ε)

(ξ),

where, with γ = 12I0/L
2
0A0,

σ(ε)(ξ) =
EA0

L0

[
1
ε2 4 sin2 εξ1

2
+ γ 1

ε2 4 sin2 εξ2
2

0 γ 1
ε
i sin(εξ2)

0 1
ε2 4 sin2 εξ2

2
+ γ 1

ε2 4 sin2 εξ1
2

−γ 1
ε
i sin(εξ1)

−γ 1
ε
i sin(εξ2) γ 1

ε
i sin(εξ1)

1
3
γ (4 + cos(εξ1) + cos(εξ2))

]

.

Since the lattice is mono-atomic, the limit can be carried out before the matrix
inversion,

S(0)(ξ) =
L0

EA0





ξ21 + γξ22 0 γiξ2
0 ξ22 + γξ21 −γiξ1

−γiξ2 γiξ1 2γ





−1

.

Henceforth, we assume that EA0/L0 = 1. The lowest order homogenized equation
is now a mixed-order elliptic system,

−(∂2
1 + γ∂2

2)u
(0)
1 − γ∂2u

(0)
3 =f1,

−(∂2
2 + γ∂2

1)u
(0)
2 + γ∂1u

(0)
3 =f2,

γ∂2u
(0)
1 − γ∂1u

(0)
2 + 2γu

(0)
3 =f3,

corresponding to micro-polar elasticity. We see that the displacements caused by
a pure torque load (f1 = f2 = 0) decay faster than those caused by a pure force
load (f3 = 0). In either case, the rotational degree of freedom u3 decays faster
than the translational, [u1, u2]. We also see that in the case of a pure force load,
we can eliminate the rotational variable u3, thus recovering a system of equations
representing classical elasto-static equilibrium:

(∂2
1 + γ 1

2∂
2
2)u

(0)
1 + γ 1

2∂1∂2u
(0)
2 =f1,

γ 1
2∂1∂2u

(0)
1 + (∂2

2 + γ 1
2∂

2
1)u

(0)
2 =f2.

(3.14)

�
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Remark 3.2. The quantity γ = 12I0/L
2
0A0 that we introduced represents the

quotient between the bending stiffness and the axial stiffness of a bar with the
properties I0, L0 and A0. Letting R0 denote the width of the bar, we know that
I0 ∼ R4

0 and that A0 ∼ R2
0. Thus γ ∼ (R0/L0)

2 which means that γ ≪ 1 for
a slender bar. This in turn means that the homogenized equations typically show
highly non-isotropic behavior. For instance, the equation (3.14) represent a material
that is compliant to shear loads but stiff with respect to hydrostatic pressure.

A multi-atomic lattice: We consider the square lattice augmented with a strut
that leads to an isolated node (lattice D in Figure 1). Due to the algebraic complexity
of this case, we will skip the intermediate steps and directly give the result of the
limit process. We find that

S(0)(ξ) =

[

σ
(0)
[11](ξ)

−1 σ
(0)
[12](ξ)

−1

σ
(0)
[21](ξ)

−1 σ
(0)
[22](ξ)

−1

]

,

where

σ
(0)
[11](ξ) =σ

(0)
[12](ξ) = σ

(0)
[21](ξ) =





ξ21 + γξ22 0 iγξ2
0 ξ22 + γξ21 −iγξ1

−iγξ2 iγξ1 2γ



 ,

σ
(0)
[22](ξ) =

1

1 + 12
√

2





(1 + 12
√

2)ξ21 + γ(1 + 6
√

2)ξ22 6
√

2γξ1ξ2 iγξ2
6
√

2γξ1ξ2 γ(1 + 6
√

2)ξ21 + (1 + 12
√

2)ξ22 −iγξ1
−iγξ2 iγξ1 2γ



 .

We note that in the frame model, the different blocks of S(0)(ξ) may be different.
However, some vestiges of the invariance we saw for the other models can be recov-
ered by eliminating the rotational degrees of freedom. To do this, split each of the

matrices σ
(0)
[κλ] into rotational and translational components,

σ
(0)
[κλ](ξ) =

[

σ
(0)
[κλ],tt(ξ) σ

(0)
[κλ],tr(ξ)

σ
(0)
[κλ],rt(ξ) σ

(0)
[κλ],rr(ξ)

]

.

If we then eliminate the rotational component by forming the Schur complements,
we find that, for κ, λ = 1, 2,

σ
(0)
[κλ],reduced(ξ) = σ

(0)
[κλ],tt(ξ)−σ

(0)
[κλ],tr(ξ)

[
σ

(0)
[κλ],rr(ξ)

]−1
σ

(0)
[κλ],rt(ξ) =

[
ξ21 + 1

2γξ
2
2

1
2γξ1ξ2

1
2γξ1ξ2 ξ22 + 1

2γξ
2
1

]

.

In words: the four blocks σ
(0)
[κλ](ξ) have identical Schur complements. �

When discussing the general case, we start by noting that the analysis of the
scaling in the first example remains valid in any dimension d ≥ 2. Thus, if we

split the κλ-block of the unscaled symbol, σ
(us)
[κλ](ξ), into rotational and translational

components,

σ
(us)
[κλ](ξ) =

[

σ
(us)
[κλ],tt(ξ) σ

(us)
[κλ],tr(ξ)

σ
(us)
[κλ],rt(ξ) σ

(us)
[κλ],rr(ξ)

]

,

11



then

σ
(ε)
[κλ](ξ) =

[

ε−2σ
(us)
[κλ],tt(εξ) ε−1σ

(us)
[κλ],tr(εξ)

ε−1σ
(us)
[κλ],rt(εξ) σ

(us)
[κλ],rr(εξ)

]

.

We made two observations in the second example: (i) the blocks of S(0)(ξ) need
not be identical and (ii) if each such block is inverted and the rotational degrees
of freedom are then eliminated, the result is the same for every block. That the
second observation is generally true follows from Theorem 7.5 of [12] which states

the following: Given a connected frame lattice, there exists a d × d matrix σ(0)(ξ)
with the same properties as the corresponding matrix for the truss lattices, such
that the κλ-block of σ(us)(ξ)−1 satisfies, as |ξ| → 0,

[
σ(us)(ξ)−1

]

[κλ]
=

[ ˆ

σ(us)(ξ)−1
˜

[κλ],tt

ˆ

σ(us)(ξ)−1
˜

[κλ],tr
ˆ

σ(us)(ξ)−1
˜

[κλ],rt

ˆ

σ(us)(ξ)−1
˜

[κλ],rr

]

=

[

σ(0)(ξ)−1 + O(|ξ|−1) O(|ξ|−1)
O(|ξ|−1) O(1)

]

.

The implication of this statement is that we find ourselves in radically different
situations depending on whether torque loads are prescribed: If they are, then we
will necessarily have to solve a potentially very large mixed order elliptic system that
involves all the qd(d+1)/2 variables. If on the other hand there are no torque loads,
then upon elimination of the rotational degrees of freedom the large system decouples

into q unrelated equations with d variables each. Thus u
(ε)
t (m,κ) = u

(0)
t (εm)+O(ε),

where

σ(0)(i∂)u
(0)
t (x) =

q
∑

λ=1

ft(x, λ).

Furthermore, σ(0)(ξ) is the Schur complement of any of the matrices σ
(0)
[κλ](ξ).

Remark 3.3. If we were to consider finite structures, then the presence of bound-
aries would have much the same effect as the presence of external torque loads in a
boundary layer. This explains why several researchers, see Lakes [9] and Noor [15],
have found that the use of Cosserat continuum models gives higher accuracy than
classical models for skeletal structures consisting of large cells (compared to their
macro-scopic dimension).

4. Convergence analysis

In this section, we provide rigorous mathematics proofs for the statements that
were heuristically derived in Section 3. We start in Section 4.1 by demonstrating
how to create a sequence of lattice load functions {f (ε)}ε→0 out of a function f in

such a fashion that for a given integer k, f̃
(ε)

(ξ) = f̂(ξ)+O(εk). In sections 4.2 and
4.3 we will then present the asymptotic analysis relevant to mono- and multi-atomic
conduction problems, respectively. Throughout, we will consider only problems in
dimensions three and higher since the one and two dimensional cases require certain
renormalizations of the integrals involved, see [11]. Moreover, we consider only the
conduction model, since the proofs for the elasto-static cases are analogous.
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4.1. Preliminaries. Given a function of a continuous variable v, we create a lattice
function Pεv by taking local averages

(4.1) [Pεv](m) =
1

εd

∫

Rd

v(x)µ(ε−1x−m) dx,

where µ is a compactly supported function such that
∫
µ = 1. We use the same

function µ to map a lattice function v(ε) to a function of a continuous variable P∗
ε v(ε)

as follows
[

P∗
ε v(ε)

]

(x) =
∑

m∈Zd

v(ε)(m)µ(ε−1x−m).

The compact support of µ is important because it guarantees the continuity of the
map Pε : Lp → lpε , where lpε is defined as the closure of the compactly supported
functions on Z

d under the norms

||v(ε)||lpε :=

[

εd
∑

m∈Zd

|v(ε)(m)|p
]1/p

, and ||v(ε)||l∞ε := sup
m∈Zd

|v(ε)(m)|.

Lemma 4.1. If µ is bounded and compactly supported, then for any p ∈ [1, ∞],
there exists a finite Cp (that does not depend on ε) such that ||Pεv||lpε ≤ Cp||v||Lp.

Proof: Consider first the case p <∞ and let ω denote the support of µ, then

||Pεv||plpε = εd
∑

m∈Zd

∣
∣
∣
∣

1

εd

∫

Rd

µ

(
x− εm

ε

)

v(x) dx

∣
∣
∣
∣

p

= εd
∑

m∈Zd

∣
∣
∣
∣

∫

ω+m
µ(y −m)v(εy) dy

∣
∣
∣
∣

p

.

Apply Hölder’s inequality, with q = p/(p− 1),

||Pεv||plpε ≤ εd
∑

m∈Zd

[∫

ω+m
|µ(y −m)|q dy

]p/q [∫

ω+m
|v(εy)|p dy

]

≤ ||µ||pLq

∑

m∈Zd

∫

ω+m
|v(x)|p dx ≤ C||µ||pLq ||f ||pLp ,

where in the last step, we used that ω is finite. The case p = ∞ is trivial. �

The next result describes how the Fourier transform of Pεv relates to v̂, and
conversely, how the Fourier transform of P∗

ε v(ε) relates to ṽ(ε).

Lemma 4.2. (a) If v is a function such that the right hand side below is well-defined,
then

[F (ε)Pεv](ξ) = v̂(ξ)µ̂(εξ) +
∑

m∈Zd, m6=0

v̂(ξ +
2π

ε
m)µ̂(εξ + 2πm).

(b) If v(ε) ∈ l1ε , then

[FP∗
ε v(ε)](ξ) = ṽ(ε)(ξ)µ̂(εξ).

13



Proof: For part (a), set µε,m(x) = µ(ε−1x−m) and apply Plancherel’s theorem to
(4.1),
(4.2)

[Pεv](m) =
1

εd(2π)d

∫

Rd

v̂(ζ)µ̂ε,m(−ζ) dζ =
1

εd(2π)d

∫

Rd

v̂(ζ)εde−iεm·ζ µ̂(εζ) dζ.

Inserting (4.2) into the definition of F (ε), (2.2), we obtain the expression

(4.3) [F (ε)Pεv](ξ) =

∫

Rd

v̂(ζ)µ̂(εζ)




εd

(2π)d

∑

m∈Zd

eiε(ξ−ζ)·m



 dζ.

Applying Poisson’s summation formula to the function m 7→ eiε(ξ−ζ)·m we find that

εd

(2π)d

∑

m∈Zd

eiε(ξ−ζ)·m =
∑

m∈Zd

δ(ξ − ζ +
2π

ε
m).

This identity in combination with (4.3) proves the claim.
Part (b) is straightforward;

[FP∗
ε v(ε)](ξ) =

∑

n∈Zd

v(ε)(n)

∫

Rd

eix·ξµ(
x

ε
−n) dx =

∑

n∈Zd

v(ε)(n)

∫

Rd

eiε(y+n)·ξµ(y) εddy = ṽ(ε)(ξ)µ̂(εξ).

�

For our purposes, it is desirable that [F (ε)Pεf ](ξ) = f̂(ξ) +O(εk), for some large
integer k. In view of Lemma 4.2, this question appears to be related to whether
µ̂(ξ)− 1 has a high order zero at the origin. In fact, for O(ε2p+2) approximation we
need to ask that

(4.4) |µ̂(ξ) − 1| ≤ C|ξ|2+l, for − 2 ≤ l ≤ 2p.

We also ask that µ̂(ξ) decays fast for large ξ (which correspondes to a regularity
requirement in physical space) and that µ̂(ξ) has a high order zero around all points
2πn, for n ∈ Z

d\{0}, i.e.
(4.5)

|µ̂(ξ − 2πn)| ≤ C|ξ|2+l
d∏

j=1

1

1 + n
2(p+1)
j

, for − 2 ≤ l ≤ 2p and n ∈ Z
d\{0}.

These conditions were first formulated by Babuška [1] and later by Fix and Strang
[6, 7]. They correspond to a requirement that µ and its translates should be able to
reproduce polynomials of degree 2p+2. The following result is a direct consequence
of Lemma 4.2.

Lemma 4.3. Suppose that µ satisfies (4.4) and (4.5), that Pε is the corresponding

map and that f (ε) = Pεf . Then |f̃ (ε)
(ξ) − f̂(ξ)| ≤ C|εξ|2p+2||f ||L1 .

We will next demonstrate that it is possible to construct a compactly supported
function µ that satisfies (4.4) and (4.5) from basic spline functions. Start by

defining the lowest order spline, ψ(1), as the characteristic function for the cube
14



[−1/2, 1/2]d, in other words ψ(1)(x) =
∏d

j=1 χ[−1/2, 1/2](xj). Then define the higher

splines through succesive convolutions ψ(k) = ψ(1) ∗ ψ(k−1) so that

ψ̂(k)(ξ) =
d∏

j=1

(
sin(ξj/2)

ξj/2

)k

.

Now, ψ(2) satisfies both (4.4) and (4.5) for p = 0 so picking µ = ψ(2) is sufficient for

O(ε2) approximation. As k increases, the functions ψ̂(k) attain higher order zeros

at the points 2πn but the zero of ψ̂(k)(ξ) − 1 remains of order 2. We can increase
this order by forming linear combinations of high order splines. For instance

µ(x) := 3ψ(4)(x) − 2ψ(6)(x)

gives O(ε4) approximation order and

µ(x) := 10ψ(6)(x) − 15ψ(8)(x) + 6ψ(10)(x)

gives O(ε6). We have verified that such constructions exist at least up to O(ε10).
Henceforth, we will suppose that the maps Pε and P∗

ε are defined using these spline
based weight-functions but in principle, any compactly supported and bounded µ
that satisfies (4.4) and (4.5) could be used.

Before proceeding to the main results of this section we define Sobolev semi-norms
by

|u|Hk :=

[∫

Rd

|ξ|2k|û(ξ)|2 dξ
]1/2

.

4.2. Homogenization of mono-atomic lattices. Studying heat conduction on
connected mono-atomic lattices in dimension d ≥ 3, we will in this section: (i) state

an equation for the scaled lattice potential u(ε) and prove that it is well-posed, (ii)

give a rigorous definition of the homogenized solution u(ε,2p), and (iii) prove that in

a certain sense u(ε)(m) = u(ε,2p)(εm) +O(ε2p+2). Before we do any of this, we need

to describe how σ(ε)(ξ)−1 behaves for small ξ.

The symbol of the unscaled lattice σ(us)(ξ) is a trigonometric polynomial and as
such has an absolutely convergent power series. It follows from Lemma 4.1 in [12]
that for any connected mono-atomic lattice there exists a positive definite matrix
M such that this series takes the form

σ(us)(ξ) = ξ ·Mξ +
∞∑

j=2

bj(ξ),

where the bj(ξ)’s are homogeneous polynomials of order 2j. Letting Π2j denote the
set of all such polynomials, we write bj ∈ Π2j . Using induction, it is not difficult to
prove that (see [11]) there exist a2j ∈ Π4j such that

1

σ(us)(ξ)
=

1

ξ ·Mξ
+

p
∑

j=1

a2j(ξ)

(ξ ·Mξ)j+1
+ R̂p(ξ), where |∂αR̂p(ξ)| ≤ C|ξ|2p−|α|.
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The relation σ(ε)(ξ) = ε−2σ(us)(εξ) then implies that

(4.6)
1

σ(ε)(ξ)
=

1

ξ ·Mξ
+

p
∑

j=1

ε2j a2j(ξ)

(ξ ·Mξ)j+1
+ R̂(ε)

p (ξ),

where |∂αR̂
(ε)
p (ξ)| ≤ Cε2p+2|ξ|2p−|α|. The series expansion of σ(ε)(ξ)−1 is thus

(4.7) S(ε,2p)(ξ) :=
1

ξ ·Mξ
+

p
∑

j=1

ε2j a2j(ξ)

(ξ ·Mξ)j+1
.

The only other information we need about σ(us)(ξ) is that it is strictly positive in
Id\{0}. This fact follows from Lemma 4.1 of [12].

In order to strictly define the lattice equilibrium equation, we suppose that f ∈
L1(Rd)∩L2(Rd) is a fixed load function. Then given ε, set f (ε) := Pεf and consider
the lattice equation

(4.8)

{

A(ε)u(ε) = f (ε),

||u(ε)||
A

(ε) < ∞,

where the energy norm || · ||
A

(ε) is defined by

(4.9) ||u(ε)||2
A

(ε) :=
1

(2π)d

∫

Id
ε

ũ(ε)(ξ)σ(ε)(ξ)ũ(ε)(ξ) dξ.

For u(ε) such that ||u(ε)||
A

(ε) <∞ the familiar definition ||u(ε)||2
A

(ε) =
〈

u(ε),A(ε)u(ε)
〉

l2ε

holds but note that there exist functions u(ε) such that ||u(ε)||
A

(ε) = ∞ even though

Au = 0. We will prove that an explicit solution of (4.8) is given by

(4.10) u(ε)(m) :=
1

(2π)d

∫

Id
ε

e−i(εm)·ξσ(ε)(ξ)−1f̃
(ε)

(ξ) dξ.

Proposition 4.4. If f ∈ L1 ∩ L2 and f (ε) = Pεf , then the integral in (4.10) is
absolutely convergent and defines a solution of equation (4.8). This solution is

unique up to a constant and satisfies ||u(ε)||
A

(ε) ≤ C (||f ||L1 + ||f ||L2).

Proof: To see that the integral is absolutely convergent, note that f ∈ L1 which

implies that f (ε) ∈ l1ε which in turn implies that f̃
(ε)

is continuous. As a result of
(4.6), the integrand thus have anO(|ξ|−2) singularity at the origin which is integrable
in dimensions three and higher. To see that the proposed solution indeed solves the
equation, simply apply A(ε) to the integral, use the absolute convergence to move
it inside the integral and note that when it hits e−i(εm)·ξ it produces a factor σ(ε)(ξ)

that cancels the factor σ(ε)(ξ)−1.
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Next we prove the bound on the energy. Letting B denote the unit ball in R
d we

obtain

||u(ε)||2
A

(ε) =
1

(2π)d

∫

Id
ε

σ(ε)(ξ)|ũ(ε)(ξ)|2 dξ =
1

(2π)d

∫

Id
ε

σ(ε)(ξ)−1|f̃ (ε)
(ξ)|2 dξ

=
1

(2π)d

∫

B
σ(ε)(ξ)−1|f̃ (ε)

(ξ)|2 dξ +
1

(2π)d

∫

Id
ε \B

σ(ε)(ξ)−1|f̃ (ε)
(ξ)|2 dξ

≤
∫

B

C

|ξ|2 ||f̃
(ε)||2l∞ε dξ+

∫

Id
ε \B

C|f̃ (ε)
(ξ)|2 dξ ≤ C

(

||f (ε)||2l1ε + ||f (ε)||2l2ε
)

≤ C
(
||f ||2L1 + ||f ||2L2

)
.

To prove uniqueness suppose that v(ε) is another solution and set w(ε) := u(ε) −
v(ε). Then A(ε)w(ε) = 0 and ||w(ε)||

A
(ε) < ∞. This implies that ||w(ε)||2

A
(ε) =

〈

w(ε),A(ε)w(ε)
〉

= 0, so w(ε) must be constant. �

We next define the homogenized solution. With S(ε,2p)(ξ) defined by (4.7) we set

(4.11) u(ε,2p) := F−1
[

S(ε,2p)f̂
]

,

where the inverse Fourier transform is to be understood in the sense of tempered
distributions. Since f ∈ L1 and S(ε,2p) is a locally integrable rational function, the
function u(ε,2p) is well-defined. In many cases, the equation (4.11) can be rewritten
as a (quasi-) partial differential equation but for such an equation to have a unique
solution, it must be coupled with finite energy conditions that depend on the order
of the equation, we do not give details.

Even though the abstract definition of u(ε,2p) as a tempered distribution is oc-
casionally necessary, the Fourier integral in (4.11) is typically absolutely integrable

and u(ε,2p) is a continuous function.

Proposition 4.5. The function u(ε,2p) defined by (4.11) is continuous if f ∈ L1 ∩
H2p+k for some k > d/2 − 2.

Proof: We prove the claim by proving that û(ε,2p) ∈ L1. With B the unit ball, we
find that

||û(ε,2p)||L1 =

∫

Rd

|S(ε,2p)(ξ)f̂(ξ)| dξ ≤ C

∫

B

|f̂(ξ)|
|ξ|2 dξ + C

∫

Bc

|ξ|2p−2|f̂(ξ)| dξ

≤C

∫

B

||f ||2L1

|ξ|2 dξ + C

[∫

Bc

|ξ|−2k−4 dξ

∫

Bc

|ξ|4p+2k |f̂(ξ)|2 dξ
]1/2

,

which is finite precisely when f ∈ L1 ∩H2p+k and 2k + 4 > d. �

The next two theorems assert that P∗
ε u(ε)−u(ε,2p) → 0 in some Sobolev Hk norm

and that u(ε)(m) − u(ε,2p)(εm) → 0 point-wise.

Theorem 4.6. Suppose that d ≥ 3, let u(ε) be the solution of the lattice equation
(4.8), where f (ε) = Pεf , and let u(ε,2p) be the approximation defined by (4.11). For

17



ε small and k and l positive integers such that 2p − 2 ≤ l ≤ 2p and k ≤ 2 + l − 2p
we have, for f ∈ H l,

(4.12) |P∗
ε u(ε) − u(ε,2p)|Hk ≤ Cε2+l−k||f ||Hl .

Proof: For notational convenience, we set σ(ε,2p)(ξ) := S(ε,2p)(ξ)−1. Then, since
|εξ| is bounded when ξ ∈ Id

ε , equation (4.6) implies that:

(4.13)

∣
∣
∣
∣

1

σ(ε)(ξ)
− 1

σ(ε,2p)(ξ)

∣
∣
∣
∣
≤ Cε2|εξ|l, for ξ ∈ Id

ε and 0 ≤ l ≤ 2p.

By invoking Plancherel’s equality, the inequality (4.12) can be proved on the
Fourier side;

|P∗
ε u(ε) − u(ε,2p)|2Hk =

1

(2π)d

∫

Rd

|ξ|2k
∣
∣
∣ũ

(ε)(ξ)µ̂(εξ) − û(ε,2p)(ξ)
∣
∣
∣

2
dξ

=
1

(2π)d

∫

Id
ε

|ξ|2k|ũ(ε)(ξ)µ̂(εξ) − û(ε,2p)(ξ)|2 dξ +
1

(2π)d

∫

Rd\Id
ε

|ξ|2k|ũ(ε)(ξ)µ̂(εξ)|2 dξ

+
1

(2π)d

∫

Rd\Id
ε

|ξ|2k|û(ε,2p)(ξ)|2 dξ =: K1 +K2 +K3.

Applying Lemma 4.2 we find that

K1 =
1

(2π)d

∫

Id
ε

|ξ|2k
∣
∣
∣
f̃

(ε)
(ξ)µ̂(εξ)

σ(ε)(ξ)
− f̂(ξ)

σ(ε,2p)(ξ)

∣
∣
∣

2
dξ

≤Cε−2k

∫

Id
ε

∣
∣
∣
f̂(ξ)µ̂(εξ)2

σ(ε)(ξ)
− f̂(ξ)

σ(ε,2p)(ξ)

∣
∣
∣

2
dξ

︸ ︷︷ ︸

=:K11

+Cε−2k

∫

Id
ε

∣
∣
∣
µ̂(εξ)

σ(ε)(ξ)

∑

n6=0

f̂(ξ +
2π

ε
n)µ̂(εξ + 2πn)

∣
∣
∣

2
dξ

︸ ︷︷ ︸

=:K12

.

When bounding K11 we use that, by (4.13) and (4.4),
∣
∣
∣
∣

µ̂2(εξ)

σ(ε)(ξ)
− 1

σ(ε,2p)(ξ)

∣
∣
∣
∣

2

≤
∣
∣
∣
∣

µ̂2(εξ) − 1

σ(ε)(ξ)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

1

σ(ε)(ξ)
− 1

σ(ε,2p)(ξ)

∣
∣
∣
∣

2

≤ Cε4|εξ|2l.

Then, since |ξ| ≤ Cε−1 for ξ ∈ Id
ε ,

K11 ≤ Cε−2k

∫

Id
ε

∣
∣
∣
∣

µ̂2(εξ)

σ(ε)(ξ)
− 1

σ(ε,2p)(ξ)

∣
∣
∣
∣

2

|f̂(ξ)|2, dξ ≤ Cε4+2l−2k

∫

Id
ε

|ξ|2l|f̂(ξ)|2 dξ ≤ Cε4+2l−2k||f ||2Hl .

When bounding K12 use first that |µ̂(εξ)| is bounded,

K12 ≤
∑

n6=0

∑

m6=0

Cε−2k

∫

Id
ε

1

σ(ε)(ξ)2
f̂(ξ +

2π

ε
n)µ̂(εξ + 2πn)f̂(ξ +

2π

ε
m)µ̂(εξ + 2πm) dξ

≤
∑

n6=0

∑

m6=0

Cε−2k

∫

Id
ε

(

|f̂(ξ +
2π

ε
n)|2 + |f̂(ξ +

2π

ε
m)|2

)
µ̂(εξ + 2πn)

σ(ε)(ξ)

µ̂(εξ + 2πm)

σ(ε)(ξ)
dξ

Noting that the two terms have the same sum we find that

K12 ≤
∑

n6=0

∑

m6=0

Cε−2k

∫

Id
ε

|f̂(ξ +
2π

ε
n)|2 µ̂(εξ + 2πn)

σ(ε)(ξ)

µ̂(εξ + 2πm)

σ(ε)(ξ)
dξ.

18



Then we use (4.5),

K12 ≤
∑

n6=0

∑

m6=0

Cε−2k

∫

Id
ε

|f̂(ξ +
2π

ε
n)|2 |εξ|

2+l

|ξ|2
|εξ|2+l

|ξ|2
∏d

j=1(1 +m
2(p+1)
j )

dξ

≤
∑

n6=0

Cε4+2l−2k

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2 dξ ≤ Cε4+2l−2k||f ||2Hl .

We next turn to bounding K2. By definition

K2 =
1

(2π)d

∫

Rd\Id
ε

|ξ|2k

∣
∣
∣
∣
∣

f̃
(ε)

(ξ)µ̂(εξ)

σ(ε)(ξ)

∣
∣
∣
∣
∣

2

dξ =
1

(2π)d

∑

n6=0

∫

Id
ε

|ξ +
2π

ε
n|2k

∣
∣
∣
∣
∣

f̃
(ε)

(ξ)µ̂(εξ + 2πn)

σ(ε)(ξ)

∣
∣
∣
∣
∣

2

dξ

Now we invoke the inequality (4.5),

K2 ≤
∑

n6=0

∫

Id
ε

∣
∣
∣
n

ε

∣
∣
∣

2k
|f̃ (ε)

(ξ)|2 |εξ|4+2l

|ξ|4∏d
j=1(1 + n

2(p+1)
j )

dξ ≤ Cε4+2l−2k

∫

Id
ε

|ξ|2l|f̃ (ε)
(ξ)|2 dξ.

We need to prove that the integral in the last expression is bounded by ||f ||2
Hl ; by

Lemma 4.2,
∫

Id
ε

|ξ|2l|f̃ (ε)
(ξ)|2 dξ ≤

∫

Id
ε

|ξ|2l|f̂(ξ)µ̂(εξ)|2 dξ +

∫

Id
ε

|ξ|2l|
∑

n6=0

f̂(ξ +
2π

ε
n)µ̂(εξ + 2πn)|2 dξ

Expanding the sum as in the bound for K12 we find that
∫

Id
ε

|ξ|2l|f̃ (ε)
(ξ)|2 dξ ≤C||f ||2Hl + C

∑

n6=0

∑

m6=0

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2µ̂(εξ + 2πn)µ̂(εξ + 2πm) dξ.

By (4.5) the sum over m produces nothing more than a constant. Then use that
µ̂(εξ + 2πn) is bounded to obtain
∫

Id
ε

|ξ|2l|f̃ (ε)
(ξ)|2 dξ ≤C||f ||2Hl + C

∑

n6=0

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2 dξ

≤C||f ||2Hl + C
∑

n6=0

∫

Id
ε

|ξ +
2π

ε
n|2l|f̂(ξ +

2π

ε
n)|2 dξ ≤ C||f ||2Hl ,

which shows that K2 is bounded as required.
Finally we bound K3. By definition

K3 =
1

(2π)d

∫

Rd\Id
ε

|ξ|2k

∣
∣
∣
∣
∣

f̂(ξ)

σ(ε,2p)(ξ)

∣
∣
∣
∣
∣

2

dξ ≤ C

∫

Rd\Id
ε

( |ξ|k
σ(ε,2p)(ξ)

)2

|f̂(ξ)|2 dξ.

Now use that for ξ ∈ R
d\Id

ε ,

|ξ|k
σ(ε,2p)(ξ)

≤ |ξ|kCε2p|ξ|2p−2 = Cε2p |ξ|l
|ξ|2+l−k−2p

≤ Cε2+l−k|ξ|l,

since 2+l−k−2p ≥ 0. This immediately yieldsK3 ≤ Cε4+2l−2k||f ||2
Hl and completes

the proof. �
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Theorem 4.7. With the same assumptions as in Theorem 4.6 we have, for small
ε, and k > d/2 − 2,

sup
m∈Zd

|u(ε)(m) − u(ε,2p)(εm)| ≤ C||f ||H2p+k







ε2p+2 if k > d/2,
ε2p+2| log ε| if k = d/2,

ε2p+2+k−d/2 if k < d/2.

Proof: Due to translation invariance it is sufficient to prove that |u(ε)(0)−u(ε,2p)(0)|
is bounded as claimed. Defining σ(ε,2p) as in the proof of Theorem 4.6, we have

u(ε)(0) − u(ε,2p)(0) =
1

(2π)d

∫

Id
ε

f̃
(ε)

(ξ)

σ(ε)(ξ)
dξ − 1

(2π)d

∫

Rd

f̂(ξ)

σ(ε,2p)(ξ)
dξ

=
1

(2π)d

∫

Id
ε

(

f̃
(ε)

(ξ)

σ(ε)(ξ)
− f̂(ξ)

σ(ε,2p)(ξ)

)

dξ +
1

(2π)d

∫

Rd\Id
ε

f̂(ξ)

σ(ε,2p)(ξ)
dξ =: J1 + J2.

By Lemma 4.2 we find that

J1 =
1

(2π)d

∫

I2
ε

(

f̂(ξ)µ̂(εξ)

σ(ε)(ξ)
− f̂(ξ)

σ(ε,2p)(ξ)

)

dξ+
∑

n6=0

1

(2π)d

∫

Id
ε

f̂(ξ + 2π
ε n)µ̂(εξ + 2πn)

σ(ε)(ξ)
dξ =: J11+J12.

When bounding J11 use that (4.13) and (4.4) combined provide the inequality
∣
∣
∣
∣

µ̂(εξ)

σ(ε)(ξ)
− 1

σ(ε,2p)(ξ)

∣
∣
∣
∣
≤ Cε2|εξ|2p,

and hence

|J11| ≤ Cε2+2p

∫

Id
ε

|ξ|2p|f̂(ξ)| dξ.

Applying Cauchy’s inequality we obtain that

|J11| ≤ Cε2+2p

[
∫

Id
ε

1

(1 + |ξ|2)k
dξ

∫

Id
ε

(1 + |ξ|2)k|ξ|4p|f̂(ξ)|2 dξ
]1/2

≤ C(ε, k, d)ε2+2p||f ||H2p+k ,

where

C(ε, k, d) =







C for k > d/2,
C| log ε| for k = d/2,

Cεk−d/2 for k < d/2.

When bounding J12 we need that

(4.14)
µ̂(εξ + 2πn)

σ(ε)(ξ)
≤ Cε2p|ξ +

2π

ε
n|2p−2, for ξ ∈ Id

ε .

When p ≥ 1 the inequality (4.14) is proved from (4.4) as follows

µ̂(εξ + 2πn)

σ(ε)(ξ)
≤ C

|εξ|2p

|ξ|2 ≤ Cε2p|ξ|2p−2 ≤ Cε2p|ξ +
2π

ε
n|2p−2,

since 2p− 2 ≥ 0 and |ξ| ≤ |ξ + 2π
ε n|. When p = 0 we use instead

µ̂(εξ + 2πn)

σ(ε)(ξ)
≤ C

|εξ|2

|ξ|2∏d
j=1(1 + n2

j )
≤ C

1
∏d

j=1(1 + (nj/ε)2)
≤ C|ξ +

2π

ε
n|−2.

20



Now that we have proved (4.14) we use it to bound J12 as follows

|J12| ≤C
∑

n6=0

∫

Id
ε

|f̂(ξ +
2π

ε
n)|ε2p|ξ +

2π

ε
n|2p−2 dξ = Cε2p

∫

Rd\Id
ε

|ξ|2p−2|f̂(ξ)| dξ

≤Cε2p

[
∫

Rd\Id
ε

1

|ξ|4(1 + |ξ|2)k
dξ

]1/2 [∫

Rd\Id
ε

|ξ|4p(1 + |ξ|2)k|f̂(ξ)|2 dξ
]1/2

.

Since 2k > d− 4 the first factor is bounded by ε2+k−d/2, thus

J12 ≤ Cε2p+2+k−d/2||f ||H2p+k .

Finally we note that J2 satisfies

|J2| ≤ C

∫

R\Id
ε

|f̂(ξ)|ε2|εξ|2p−2 dξ ≤ Cε2p

∫

R\Id
ε

|ξ|2p−2|f̂(ξ)| dξ,

and thus can be bounded like J12. �

4.3. Homogenization of multi-atomic lattices. The analysis of multi-atomic
lattices will closely follow the pattern of the previous section. We first investigate
the nature of the inverse symbol, then we formulate the discrete lattice problem
and define an approximate solution. Finally, we present a convergence proof. For
brevity, we consider only O(ε2)-accurate approximations.

Since the symbol σ(us)(ξ) is a q × q matrix, its inverse is given by the formula

(4.15) σ(us)(ξ) =
(
detσ(us)(ξ)

)−1
L(ξ),

where L(ξ) is the matrix of codeterminants of σ(us)(ξ). Corollary 4.4 of [12] asserts
that

(4.16) detσ(us)(ξ) = ξ ·Mξ +
∞∑

j=2

aj(ξ),

whereM is a positive definite matrix and the sum consists of high order polynomials,
aj ∈ Π2j . Moreover, Theorem 4.9 of [12] asserts that the lowest order terms of all

the codeterminants of σ(us)(ξ) are identical; this means that the Taylor expansion
of the κλ entry of L(ξ) has the form

(4.17) [L(ξ)]κλ = c0 + iv(κλ) · ξ +O(|ξ|2),
where c0 > 0 is a constant, and v(κλ) ∈ R

d are vectors. Combining (4.15), (4.16)

and (4.17) with the the relation σ(ε)(ξ) = ε−2σ(us)(εξ), we find that

(4.18)
[

σ(ε)(ξ)−1
]

κλ
= ε2

(
ε2ξ ·Mξ +

∞∑

j=2

ε2jaj(ξ)
)−1(

c0 + iv(κλ) · εξ +O(|εξ|2)
)
.

The O(ε2) accurate Taylor expansion of
[
σ(ε)(ξ)−1

]

κλ
is then

[S(ε,1)(ξ)]κλ = (ξ ·Mξ)−1
(

c0 + εiv(κλ) · ξ
)

.
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We will next state conditions on the load function f(x) = [f(x, 1), . . . , f(x, q)]
under which the lattice equilibrium equation is well-posed. To this end, we split f
into a cell-wise average fa and a vector of differences fd by setting

fa(x) :=
1

q

q
∑

κ=1

f(x, κ), fd(x, κ) := f(x, κ) − fa(x).

We require that fa ∈ L1 ∩ L2 and that fd ∈ L2. Then we form the projection of f
onto a lattice function, f (ε) = Pεf , and formulate the lattice equilibrium equation
by

(4.19)

{

A(ε)u(ε) = f (ε),

||u(ε)||
A

(ε) < ∞.

An explicit solution is again given by

(4.20) u(ε)(m) :=
1

(2π)d

∫

Id
ε

e−i(εm)·ξσ(ε)(ξ)−1f̃
(ε)

(ξ) dξ.

Proposition 4.8. The function u(ε) defined by (4.20) is a solution of (4.19). This

solution is unique up to a constant and satisfies ||u(ε)||
A

(ε) ≤ C(||fa||L1 + ||fa||L2 +

ε||fd||L2).

Proof: Combining (4.9), with the relation u(ε) = [σ(ε)]−1f (ε), we find that

||u(ε)||2
A

(ε) =
1

(2π)d

∫

Id
ε

f̃
(ε)

(ξ) · [σ(ε)(ξ)]−1f̃
(ε)

(ξ) dξ.

From (4.18), it follows that

f̃
(ε)

(ξ) · [σ(ε)(ξ)]−1f̃
(ε)

(ξ) ≤ C
(

max{|ξ|−2, 1} |f̃ (ε)
a (ξ)|2 + ε2|f̃ (ε)

d (ξ)|2
)

.

The remainder of the proof is analogous to the proof of Proposition 4.4. �

Next we define the homogenized solution by

(4.21) u(1,ε) := F−1
[

S(1,ε)f̂
]

.

As long as f ∈ L2 and fa ∈ L1, this is well-defined as a tempered distribution.
In order for this function to be continuous, somewhat sharper conditions on f are
required than what was the case for mono-atomic lattices. The reason is that for
large ξ, S(1,ε)(ξ) decays as ε|ξ|−1 rather than |ξ|−2.

Proposition 4.9. The function u(ε,1) defined by (4.21) is continuous if f ∈ L1 ∩
H2+k for some k > d/2 − 1.

We can now state and prove the core convergence result for multi-atomic lattices:
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Theorem 4.10. Suppose that d ≥ 3, let u(ε) be the solution of (4.20) with f (ε) =

Pεf , and let u(ε,1) be the solution of (4.21). Then if ε is small and k > d/2 − 1,

sup
m∈Zd

|u(ε)(m) − u(ε,1)(εm)| ≤ C||f ||H2p+k







ε2 if k > d/2,
ε2| log ε| if k = d/2,

ε2+k−d/2 if k < d/2.

Proof: The proof follows the proof of Theorem 4.7 closely. Simply replace [σ(ε,2p)(ξ)]−1

by the matrix S(ε,1)(ξ) and then split the error into J11, J12 and J2 as before. Bound
J11 using that

∣
∣
∣µ̂(εξ)[σ(ε)(ξ)−1]κλ − [S(ε,1)(ξ)]κλ

∣
∣
∣ ≤ Cε2, ∀ ξ ∈ Id

ε .

The bound for J12 is also entirely analogous since |[σ(ε)(ξ)−1]κλ| ≤ C|ξ|−2 in Id
ε .

The only real difference occurs in the bound for J2. Since [S(ε,1)(ξ)]κλ decays
somewhat more slowly than |ξ|−2 we get

|J2| ≤max
κ

q
∑

λ=1

1

(2π)d

∫

Rd\Id
ε

|[S(ε,1)(ξ)]κλ| |f̂λ(ξ)| dξ ≤ C

q
∑

λ=1

∫

Rd\Id
ε

(
1

|ξ|2 +
ε

|ξ|

)

|f̂λ(ξ)| dξ

≤Cε
q
∑

λ=1

∫

Rd\Id
ε

1

|ξ| |f̂λ(ξ)| dξ ≤ Cε

q
∑

λ=1

[
∫

Rd\Id
ε

1

|ξ|2(1 + |ξ|2)k
dξ

∫

Rd\Id
ε

(1 + |ξ|2)k|f̂(ξ)|2 dξ
]1/2

.

We see that the bound evaluates to the same quantity, Cε2+k−d/2||f ||Hk , as in the
mono-atomic case, but that a necessary condition for convergence of the first integral
is now that k > d/2 − 1. �
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