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Abstract

The thesis concerns multi-scale analysis of equations defined on very large lattices. A new method
for model reduction that allows the resolution scale to vary with spatial position is presented. It
leads to fast numerical implementations and comes with strict error bounds. This is obtained by
incorporating the averaging of the micro-structure directly into a solver that is based on hierarchi-
cal data structures, such as the Fast Multipole Method. For boundary value problems, a lattice
analogue of the boundary element method is used.

Homogenized equations of arbitrary order are derived and strict error bounds are proved. For me-
chanical lattice structures, special attention is paid to the question of non-degeneracy and whether
rotational degrees of freedom should be incorporated. A computer program that automatically
derives the homogenized equations was developed. For any lattice geometry, the lattice Green’s
function is determined and its asymptotic expansion in rational poly-harmonic functions is derived.

The presented results have applications in many areas of physics and engineering but particular
attention is paid to how they can be used to design composite materials with high stiffness-to-weight
ratios and prescribed wave-propagation modes. In particular, it is shown how to design materials
that have phononic bandgaps, in other words, they block mechanical waves of certain frequencies.
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CHAPTER 1

Introduction

1. Lattice equations

A lattice equation relates an unknown function defined on an integer lattice (either Zd or a
subset thereof) to some given data function. Such equations occur naturally in the study of atomic
crystals and materials with periodic micro-structures. They also appear when continuum problems
are discretized using regular meshes. In this thesis, we present new mathematical results regarding
the asymptotic behavior of such lattice equations as the lattice cell size tends to zero. Using these
results, we construct a numerical method for solving lattice equations that has a much better
asymptotic work estimate than previously known methods. The existence of such a method will
dramatically increase the range of lattice problems that can be solved using brute force. Finally,
we discuss how problems outside this range can be handled using model reduction techniques based
on local averaging.

In this introductory chapter, we describe in Section 2 some applications where lattice models
arise. In Section 3 we describe the new mathematical results regarding stability and asymptotic
behavior of lattice equations and put them in context. In Section 4 we do the same thing for
the new numerical methods. Finally, in Section 5 we summarize the results of each subsequent
chapter individually. Before proceeding to the more detailed descriptions of the new results and
their relation to the existing literature, we will introduce some main concepts in an informal manner
by discussing a concrete example.

Consider the mechanical structure in Figure 1.1. It is loaded by a known external load and
we are given the task of determining the deflections and stresses in the structure. Using classical
techniques of structural mechanics, we can form a system of linear equations that relate the nodal
deflections, u, to the applied load f. Upon labeling the nodes using integer coordinates so that
u = u(m) and f = f(m) for m ∈ Z2, this system takes the form

(1.1)





[Au](m) = f(m), ∀ m ∈ Ω,

[∂νu](m) = 0, ∀ m ∈ ΓN,

u(m) = 0, ∀ m ∈ ΓD,

where Ω ⊂ Z2 is the set of interior nodes and ΓN, ΓD ⊂ Z2 are sets containing the boundary
nodes at which Neumann and Dirichlet data are pre-scribed. The operator A is a finite difference
operator that qualitatively behaves very much like a good discretization of the partial differential
operator that governs linear (continuum) elasticity. Known solution techniques for such problems
can roughly be organized into three distinct categories, depending on the number of nodes, N .

Brute force solution: If N is not too large, then fast numerical methods such as FFT or multigrid
can be used to solve equation (1.1) in O(N) operations.

1



2 1. INTRODUCTION

Figure 1.1. A loaded mechanical structure.

Homogenization: If N is very large (or equivalently, if the size of the micro-structure is much
smaller than the macro-structure) then it is possible to average out the contributions of the mi-
crostructure and replace equation (1.1) by an analogous partial differential equation with constant
coefficients. This continuum equation can then be solved using, e.g., a finite element method.
Unless the domain is very regular and the load is smooth, a large modelling error may be incurred.

Multiscale methods: These methods were developed for situations where N is so large that brute
force calculations are impossible and local irregularities prohibit the use of homogenization. By
representing u and f in some wavelet basis the resolution scale can change with spatial position.
In such a basis, A can be approximated by a sparse matrix and then an iterative solver is used to
solve (1.1) in O(n) operations, where n is the number of coefficients needed to represent u and f.

In this thesis, we present a brute force method that can solve (1.1) using roughly O(NB + NF)
operations, where NB is the number of nodes at which boundary conditions are specified and NF

is the number of nodes that are externally loaded (note that NF is typically very small and that
NB ∼ N1/2 in two dimensions and NB ∼ N2/3 in three dimensions). In order to achieve this,
(1.1) is reformulated as a discrete boundary equation which can then be solved with iterative
methods using a fast summation technique for lattice sums that is based on the Fast Multipole
Method by Rokhlin and Greengard. Furthermore, we argue that the new method can be extended
to a multiscale method that solves (1.1) using O(nF + nB) operations, where nF and nB are the
number of coefficients required to capture the body load and a (fictitious) boundary potential in a
hierarchical data representation.

2. Applications of lattice models

Of the many areas where lattice models appear naturally, we will focus on two.

Mechanics of structures and composites: The connection between lattice models and the
mechanics of solids dates back at least to Navier, who derived continuum governing equations
by considering a solid as an aggregate of a vast number of atoms connected by linear springs,
see Timoshenko [63]. Later, Hrennikoff [36] and McHenry [44] turned the tables and showed
how to obtain an approximate solution of the equations of elasticity by replacing the continuum
structure by an artificial spring-mass system (with cell-sizes several orders of magnitudes larger
than the atomic scale). These investigations later led to the development of the finite difference
and finite element methods. The lattice method of discretizing continuum media is still used to
investigate crack propagation since it provides a clean way of avoiding the problem of singular stress
concentrations present in continuum models, Grah et al [30].



2. APPLICATIONS OF LATTICE MODELS 3

Lattice models are particularly useful for modeling structures that can in a natural fashion be
viewed as periodic arrays of structural elements with some simple interaction mechanism. Examples
include large truss systems, Noor [50], honeycombs and materials with periodically distributed
inclusions, Gibson and Ashby [27], as illustrated in Figure 1.2. For a recent survey on the use of
lattice models in mechanics, see Ostoja-Starzewski [52].

Much of the literature in this field concerns methods for deriving equivalent continuum models
for lattice structures. This is usually done by first postulating that the continuum model should
be a PDE of a given form, then a periodic boundary value problem is solved on the unit cell,
the energy is computed and coefficients are identified to ensure that the energy is the same in
the lattice structure as for the continuum model (this Ansatz is sometimes referred to as the
Cauchy-Born postulate). In this thesis, we present an analytical framework that obviates the need
to postulate a continuum model in advance. Given any lattice geometry and any node-to-node
interaction mechanism (e.g. axial springs, Euler beams, Timoschenko beams), a continuum model
can automatically be determined through a limit process that is systematic enough that it can be
carried out by symbolic algebra software (Maple subroutines are provided). The user can specify
the desired level of accuracy/complexity so that, e.g., a square frame structure such as the one
illustrated in Figure 1.1, can yield either a classical elasticity model (simple, less accurate) or a
full micro-polar model (complicated, more accurate). This is discussed in Chapter 3 and specific
examples are given in Appendix B.

Very recently, lattice models have received substantial attention as the primary modeling tool
in the study of a new class of ultra light weight materials with a truss-like micro-structure called
lattice materials, illustrated to the left in Figure 1.2, see Evans, Hutchinson and Ashby [22], Wallace
and Gibson [67], Deshpande, Fleck and Ashby [16], Wicks and Hutchinson [69] and Thompson
and Renauld [62]. These materials are attractive alternatives to fiber composites since they offer
more design flexibility and may be cheaper to manufacture. An important engineering problem is
to determine the local stresses and displacements in a piece of lattice material that is subjected to
an external load. The challenge lies in that the piece of material may contain a very large number
of structural members, easily in the billions, so that the micro-structure cannot be fully resolved
numerically; but due to the presence of boundaries, inclusions and concentrated loads, classical
averaging methods do not work. We present new numerical algorithms that are ideally suited for
such problems since they can selectively resolve exactly those length-scales needed.

Using emerging manufacturing methods (e.g. sand casting, injection moulding, solid free-
form fabrication), lattice materials can be manufactured out of several base materials (metals,
plastic, rubber) and a wide spectrum of micro-structural geometries can be realized. This opens
up the possibility of tailoring materials that fit very specific design criteria. As an example, we
will demonstrate how materials can be designed that block mechanical waves in certain frequency
intervals, see Chapter 7. The methods presented there can equally well be used to design materials
with high resistance to micro-buckling.

Physics of atomic crystals: Lattice models very naturally appear in the study of atomic crystals
and much effort has been spent determining properties of the lattice Green’s function (defined as
the solution of (1.1) when f is a point load) with the purpose of gaining understanding about,
among other things, imperfections and inclusions in the lattice, see Maradudin [42], Economou
[21], Glasser [29] and Joyce [39].
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In this thesis, we construct the asymptotic expansion of the lattice Green’s function for an
arbitrary lattice. The construction is again fully automated so that once a lattice geometry has
been specified, symbolic algebra software can be used to compute the expansions. We have verified
the process by checking that the results are in agreement with expansions that have been computed
for specific lattice geometries by Duffin [19, 20] and Cserti [15]. We found in this investigation that
the (matrix-valued) Green’s function for any multi-atomic lattice can be determined by computing
the asymptotic expansion of the Green’s function for an associated (fictitious) mono-atomic lattice.
For instance, the Green’s function for the honeycomb lattice labeled D in Figure 1.3 has essentially
the same expansion as its associated lattice, which is lattice C rotated 30◦.

Lattice models have recently been used to quantitively study dynamic magnetization of very
small ferro-magnets, an application with immediate relevance to the design of magnetic storage
devices such as hard-drives, Fidler and Schrefl [23]. Here the nodes in the lattice model represent
clusters of roundabouts 10×10×10 atoms in a ferro-magnetic crystal (by clustering, quantum me-
chanical effects can be neglected). The governing equation, the Landau-Lifshitz-Gilbert equation,
involves a term representing interactions between the magnetization vector of a node and the field
generated by all the other nodes. Evaluation of this term typically constitutes the most expensive
part of a numerical calculation. We believe that the fast summation methods presented here can
very advantageously be used to speed up these calculations. Some results using early incarnations
of the Fast Multipole Method are given by Brown et al [12].

Figure 1.2. Structures naturally modeled as periodic lattices.

A B C D

Figure 1.3. Examples of lattices. An irreducible unit cell is shaded.
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3. Mathematical analysis of multiscale problems and lattice equations

A strict mathematical theory for how to derive averaged, or homogenized, equations for a media
with micro-structure was developed in the sixties and seventies by Bensoussan, Lions, Papanico-
laou [6] and others. Among the rich literature on the subject, we will mention only work that
more or less directly relates to our investigation. For a general reference to homogenization in
relation to composite media, see Sánchez and Palencia, [57]. More specifically, Cioranescu and
Vanninathan treat the case of homogenization of low-porosity, periodic structures similar to ours
in [13]. Homogenization of networks was considered by Vogelius [66] and Bonnetier [9].

In this thesis we derive the homogenized equations for lattice problems associated with any
lattice geometry and several local models (conduction problems, mechanical truss and frame struc-
tures). As described in section 2, this derivation can be fully automated. First we consider con-
duction problems and prove convergence of the lattice equations to the homogenized equation as
the lattice cell size tends to zero. The results cover homogenizations of arbitrary order on infinite
domains. Usually, high-order models do not recieve much attention due to the severe regularity
requirements they come with but we study them here for the specific purpose that they help under-
standing the fast numerical methods that we present. Our analysis is based on Fourier transforms
and was inspired by earlier work by Babuška and Morgan [5, 46, 47, 48].

The homogenization results are then extended to cover two mechanical models, a “truss” model
where the bars are considered as axial springs that are pin-jointed at the nodes and a “frame”
model where the bars are considered to be general elastic objects that are rigidly connected at the
nodes. Truss problems are more difficult than conduction problems in that the lattice equation
loses coercivity for many lattice geometries (such as geometries A and D in Figure 1.3). We resolve
this question by giving a computable condition that can be used to prove that a given lattice
structure is non-degenerate. This condition is considerably weaker than other conditions given in
the literature, cf. [52]. For the frame model, such degeneracy is not an issue (connectivity is a
sufficient requirement on the lattice geometry), but in this case, both translational and rotational
degrees of freedom must be incorporated in the model. These variables enter the homogenized
equations in fundamentally different ways and we demonstrate that the influence of a torque load
decays faster than a linear force load. The results presented can be used to quantitatively determine
whether a micro-polar or a classical elasticity model is better suited for a particular application.

We also provide some new mathematical results regarding asymptotic expansions of Green’s
functions. These results extend earlier work on the cubic lattices by Duffin [19, 20] to general
lattices in two and three dimensions. Casting the analysis in a modern frame-work of tempered
distributions, we obtain formulas that are systematic enough that any asymptotic expansion can
be computed using symbolic algebra software.

For multi-atomic lattices, we demonstrate that by a simple algebraic procedure, it is possible to
construct an associated (fictitious) mono-atomic lattice with the property that to lowest order, it
has the same homogenized equation as the original lattice (for mechanical frame structures, this is
true only in the absence of torque loads). Moreover, the asymptotic expansion of the lattice Green’s
function for a multi-atomic lattice is given as a small perturbation of the asymptotic expansion of
the Green’s function for the associated mono-atomic lattice.
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4. Computational techniques for multiscale problems

For many problems, the micro-structure can be fully resolved in a brute force computation
using fast algorithms such as FFT or multigrid for which the computational cost scales linearly
with the problem size. As an example, Jinchao Xu and co-workers at Penn State have recently
developed a multigrid algorithm capable of solving problems on mechanical structures with up to
ten million structural elements. For problems where there is a clear separation of length-scales
and the geometry is benign, the averaging methods described earlier can be used to remove the
micro-scale entirely. This reduces the problem to that of solving a partial differential equation with
constant (or slowly varying) coefficients. Hybrid methods that use averaging in certain parts of the
domain, resolve the micro-structure in problem regions (such as corners and crack-tips) and then
paste the models together are commonly used. Recent work combining this idea with adaptivity
and à posteriori error estimation is described by Oden and Vemaganti [51]. Another approach
based on combining local and global computations with error estimation is given by Hou et al [35].

The investigation underlying this thesis was strongly influenced by the recent development of
numerical methods based on multiresolution (wavelet) techniques by Beylkin, Coifman, Rokhlin
and others [3, 7, 10], Engquist and co-workers [1, 17] and Gilbert [28]. The advantage of using
multiresolution bases to represent the relevant data is that functions can be represented with
different frequency resolution in different parts of the spatial domain. In other words, the micro-
structure can be fully resolved in certain regions, very coarsely averaged in others, and resolved at
a number of intermediate resolution depths in between. A fundamental observation underlying the
work mentioned above is that if the bases are selected appropriately, then in the new coordinate
system, the operator A is numerically very close to a sparse operator, which means that iterative
methods may be employed to solve the equilibrium equation. The remaining difficulty is that
A is typically very poorly conditioned, but the authors show that in many situations, good pre-
conditioners are available.

The methods presented here share with the wavelet methods the basic goal of allowing the
resolution depth to change with spatial position, dependent upon the local regularity of the solutions
that should be represented. The main difference is that our methods represent functions using
multipole moments rather than wavelets. It is then possible to use a variation of the Fast Multipole
Method by Rokhlin and Greengard [31, 32] to very quickly compute convolutions of the form G ∗ f
where G is the lattice Green’s function and f is a load vector. This straight-forwardly provides a
solution method for equation (1.1) for the case that Ω = Zd since in this case u = G ∗ f. When
boundary conditions are present, the convolution is used to determine a particular solution to take
care of the body load, then a boundary equation with G as the kernel is used to account for the
finite domain. The boundary equations that we present are well-conditioned and since we know
how to compute G ∗ f fast, an iterative solver can be used to determine the solution. The relative
merit of this multipole algorithm as compared with the multiresolution algorithms described above
has not yet been assessed but we believe that it will be competitive due to increased stability gained
by approximating A−1 rather than A, and better ability to handle complicated domains.

Note that even without the use of local averaging, the new numerical method represents an
improvement upon earlier solvers in that unloaded internal loads are completely eliminated from
the computation. This reduces the computational cost from O(N), where N is the total number of
nodes, to O(NF + NB), where NF is the number of loaded internal nodes and NB is the number of
nodes at which boundary conditions are prescribed.
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We present the following technical results that are needed to realize the new method:
• We show how to determine a rational poly-harmonic function GP that approximates G at

long distances. Specifically, G(m) = GP (m) + O(|m|−2P−d), see Chapter 4.
• We extend the FMM to cover poly-harmonic kernels to obtain a fast method for computing

the convolution GP ∗ f, see Chapter 5.
• We derive well-conditioned discrete equivalents of boundary integral equations with single

and double layer potentials, see Chapter 6.
The function GP is actually the fundamental solution of the O(ε2P+2) homogenized equation.

Thus, one can view the fast algorithm that we present as a stable method to use high order
homogenized equations without enforcing global regularity requirements.

5. A chapter by chapter description of the presented results

The findings of the thesis could be presented in different styles, and with different emphases,
depending on the targeted audience. For the most part, we have chosen a presentation that is
aimed at applied mathematicians interested in continuum and multiscale problems. Chapters 2, 3
and 4 in particular, rely on advanced tools of mathematical analysis. Chapters 5 and 6 are aimed at
numerical analysts and assume familiarity with the fast multipole and boundary element methods.
Chapter 7 is aimed at researchers in applied areas and does not contain advanced mathematics.

Chapter 2 — Basic properties of static lattice equations: In this chapter we set up a
mathematical framework for analysis of general lattice problems. We prove that under (very weak)
regularity requirements on the lattice geometry, the operator A satisfies certain coercivity proper-
ties. The analysis gets somewhat involved since the operator frequently has a non-trivial nullset.
For instance, for mechanical problems, the rigid body motions should not cause any internal stresses
in a structure. Once the coercivity results have been established, we apply them to prove well-
posedness and stability for the equation (1.1).

We will illustrate some of the analysis presented in Chapter 2 by showing how it applies to
heat conduction on the cubic lattice Z3, a model that has been studied extensively in the literature
[14, 15, 19, 29, 39, 42, 53]. Each node is connected to its six closest neighbors by links of
conductivity 1. Let u(m) denote the temperature of node m ∈ Z3 and let f(m) denote an external
heat source. In equilibrium, these are related by

(1.2) [Au](m) = f(m), ∀ m ∈ Z3,

where
[Au](m) =

[− u(m1 − 1, m2,m3) + 2u(m1, m2,m3)− u(m1 + 1, m2,m3)

− u(m1,m2 − 1,m3) + 2u(m1, m2,m3)− u(m1,m2 + 1,m3)

− u(m1,m2,m3 − 1) + 2u(m1, m2,m3)− u(m1,m2,m3 + 1)
]
.

(1.3)

Since (1.2) is a convolution equation it can be diagonalized by the discrete Fourier transform,

(1.4) ũ(ξ) = [Fu](ξ) :=
∑

m∈Z3

eim·ξu(m), for ξ ∈ (−π, π)3 =: I3.

Applying this transform to both sides of (1.2) we obtain

σ(ξ)ũ(ξ) = f̃(ξ), ∀ ξ ∈ I3
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where σ(ξ) is the Fourier representation, or symbol, of A,

σ(ξ) = FAF−1 =
3∑

j=1

(−eiξj + 2− e−iξj ) =
3∑

j=1

4 sin2 ξj

2
.

Applying the Fourier inversion formula we easily obtain a representation for the solution of (1.2),

(1.5) u(m) = F−1
[
[σ]−1 f̃

]
(m) =

1
(2π)3

∫

I3

e−im·ξ [σ(ξ)]−1 f̃(ξ) dξ.

The Fourier transform F is an isometric isomorphism from l2(Z3) to L2(I3) that maps the
convolution operator A to the multiplicative operator σ. This means that when we seek to prove
that A satisfies some property, it is sufficient (and usually easier) to prove that σ satisfies that
property. For instance, we trivially see that A is self-adjoint since σ is real and that ||A||l2 =
(2π)−3 supξ |σ(ξ)| = 3/(2π3). Coercivity is a more delicate question; since a constant temperature
field does not cause internal flows, it follows that σ(0) = 0 and that σ−1 is unbounded near the
origin. Therefore, the stability results that we give rely only on the bounds σ(ξ) ≥ c|ξ|2 and
|σ(ξ)−1| ≤ C|ξ|−2. The real difficulty enters the picture when we consider multi-atomic lattices
since then σ is a matrix. A central result of Chapter 2 is a proof that detσ(ξ) ≥ c|ξ|2 if and only
if a lattice is connected. This fact leads to the remarkable result that all entries of σ−1(ξ) have
the same singularity at the origin, in other words, there exist a constant c0 and a positive definite
matrix M such that [σ(ξ)−1]ij = c0(ξ · Mξ)−1 + O(|ξ|−1). These results concerning the singular
structure of σ(ξ)−1 at the origin underlie most subsequent results presented in Chapers 3 and 4.

We will also consider two different models for mechanical lattices. Any mechanical lattice can
be modeled as a system of beams with both bending and axial stiffnesses that are rigidly connected
at the nodes, a so called “frame” model. However, this is quite a complicated model that involves
keeping track of both translational and rotational degrees of freedom. It is therefore useful to
consider a simplified model, the “truss” model, in which the bending stiffness is neglected (for a
slender element, it is much lower than the axial stiffness) and the links are treated as axial springs
that are pin-jointed at the nodes, a model that requires us to handle translational variables only.
Such a model works well for lattice geometries like B and C in Figure 1.3 but does not work at all
for the geometries A and D. Mathematically, we will prove that for the frame model, connectivity
implies that detσ(ξ) ≥ c|ξ|2d, where d is the dimension, that |σ(ξ)−1| ≤ C|ξ|−2 and that all blocks of
σ(ξ)−1 have the same leading order singularity at the origin. For the truss model, we will show that
the same results hold true for geometries that satisfy a certain non-degeneracy condition (deviced
to rule out geometries such as A and D).

Chapter 3 — Homogenization: In this chapter, we will show that when the lattice cell size
tends to zero, then the solution to the lattice equation (1.1) approaches the solution of a constant
coefficient differential equation. We illustrate the concept by using the simple cubic lattice con-
sidered in the previous subsection. When the lattice cell size is ε, we let u(ε) and f(ε) denote the
temperature and the load, and introduce a scaled Fourier transform,

ũ(ε)(ξ) = [Fεu
(ε)](ξ) = ε3

∑

m∈Z3

ei(εm)·ξu(ε)(m), and u(ε)(m) =
1

(2π)3

∫

I3
ε

e−i(εm)·ξũ(ε)(ξ) dξ.
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The scaled symbol, σ(ε), takes the form

σ(ε)(ξ) =
1
ε2

(
4 sin2 εξ

2
+ 4 sin2 εξ

2
+ 4 sin2 εξ

2

)
.

As ε → 0 we see that σ(ε)(ξ) → |ξ|2. Thus, if the sequence of loads {f(ε)}ε has the property that

(1.6) f̃(ε)(ξ) → f̂(ξ) :=
∫

R3

eix·ξf(x) dx,

then we find that formally, as ε → 0 and m →∞ in such a way that εm ≡ x,

u(ε)(m) =
1

(2π)3

∫

I3
ε

e−i(εm)·ξ f̃(ε)(ξ)
σ(ε)(ξ)

dξ → 1
(2π)3

∫

R3

e−ix·ξ f̂(ξ)
|ξ|2 dξ =: u(0)(x),

where u(0) solves Poisson’s equation

(1.7) −∆u(0) = f, on R3.

The operator A is in fact a well-known discretization of the Laplace operator and in the numerical
analysis literature, it is well-established that if f is sufficiently regular, then u = u(0) + O(ε2). It is
also known how to construct difference operators that approximate (1.7) to an arbitrary degree of
accuracy. Here, we are interested in going in the opposite direction: Given a difference operator,
how can a series of continuum equations with increasing order of approximation be constructed?
The answer is given by the series expansion of the singularity of σ(ε)(ξ)−1. Thus, using that

(1.8)
[
σ(ε)(ξ)

]−1
=

1
|ξ|2 + ε2 1

12
ξ4
1 + ξ4

2 + ξ4
3

|ξ|4 + ε2O(|εξ|2),

we can write down a high order averaged, or ”homogenized”, equation

(1.9) (−∆)2u(ε,1) = (−∆)f + ε2 1
12

(
∂4f

∂ξ4
1

+
∂4f

∂ξ4
2

+
∂4f

∂ξ4
3

)
.

If f is (very) regular, then u(ε,1) will be an O(ε4) approximation of u(ε).
In Chapter 3 we construct homogenized equations of arbitrary order of accuracy for conduction

problems on any lattice geometry, either mono- or multi-atomic. We prove convergence in both
pointwise and Sobolev norms and consider scalar conduction problems as well as mechanical lattices
of both frame and truss type. A technical difficulty in this analysis is how, given a load f , to
construct a sequence f(ε) such that f̃(ε)(ξ) = f̂(ξ) + O(|εξ|p) for some integer p. In this, we were
much guided by prior work by Babuška [4] and Fix and Strang [24, 25].

Chapter 4 — Lattice Green’s functions: Recall that the solution of the basic lattice equation
(1.2) is given by u = F−1[σ−1f̃]. Since multiplication in Fourier space corresponds to convolution
in physical space, we can rewrite the representation as u = F−1[σ−1] ∗ f. Thus, setting

(1.10) G(m) :=
[
F−1σ−1

]
(m) =

1
(2π)3

∫

I3

e−im·ξσ(ξ)−1 dξ,

we obtain a representation for the solution in physical space as follows

u(ε)(m) = [G ∗ f](m) =
∑

n∈Z3

G(m− n)f(n).
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In Chapter 4 we derive Green’s functions of this form for a wide category of lattice problems
and study the asymptotic behavior of G(m) as |m| → ∞. It turns out that the long-range character
of G is entirely determined by the O(|ξ|−2) singularity of σ(ξ)−1 at the origin (to see this, note
that the integrand in the Fourier integral (1.10) is analytic away from the origin, which means that
those parts of the integral decay faster than any inverse polynomial). Using again the cubic lattice
as an illustration, our analysis will show that, cf. (1.8)

G(m) = F−1

[
1
|ξ|2

]
(m) + F−1

[
1
12

ξ4
1 + ξ4

2 + ξ4
3

|ξ|4
]

(m) + O(|m|−5).

Here, the inverse continuous Fourier transform is defined by

[F−1ϕ](x) =
1

(2π)3

∫

R3

e−ix·ξϕ(ξ) dξ,

for ϕ ∈ L1, and then extended to tempered distributions in the standard fashion (see Chapter 4
for details). Evaluating the Fourier transforms, we find that

(1.11) G(m) =
1

4π|m| +
1

48π
m4

1 + m4
2 + m4

3 − 3m2
1m

2
2 − 3m2

2m
2
3 − 3m2

3m
2
1

|m|7 + O(|m|−5).

Note that to lowest order, G(m) behaves like the fundamental solution of −∆, and, not unex-
pectedly, the two rational terms together form the fundamental solution of (1.9) for ε = 1. More
generally, we will for conduction problems on any lattice with a lattice Green’s function G and any
positive integer P , derive a rational function GP such that |G(m)−GP (m)| ≤ C|m|−(2P+d), where
C = C(P ). These functions will be poly-harmonic, (−∆)P+1GP (x) = 0, for x 6= 0. Some explicit
examples are given in Appendix B.

Early work on lattice Green’s functions using Fourier methods was performed by McCrea and
Whipple [43] and Watson [68]. Much work has been spent determining exact values of the integral
(1.10). Some results that are useful for small m are given for simple lattice models by Joyce and
co-workers [37, 38, 39], Glasser and Boersma [29] and others. The asymptotic behavior was
touched upon by McCrea and Whipple [43], and later elaborated by Duffin [19] and Duffin and
Shelly [20] who derived the expansion (1.11) and the corresponding expansion for two-dimensional
cubic lattices. Since then, the first few terms of the asymptotic expansions of the lattice Green’s
functions for a number of common lattices have been derived, see Cserti [15] and references therein.

Chapter 5 — Fast summation methods: In this chapter we present fast methods for evaluation
of convolution sums of the form

(1.12) u(m) :=
∑

n∈Ω

G(m− n)qn,

where G is the lattice Green’s function. If the kernel in the sum had been the standard harmonic
kernel Φ(m) = −(4π|m|)−1 (in two dimensions, Φ(m) = −(2π)−1 log |m|), then a fast method would
have been provided by the Fast Multipole Method (FMM) by Rokhlin and Greengard, [31, 32]. For
the present case, we first replace G by the poly-harmonic approximation GP when evaluating the
long-range interactions. Then an extended version of the FMM is used to compute a convolution
with GP as the kernel. To obtain this extension, we have determined:

(1) How to expand a poly-harmonic function in a multipole expansions.
(2) How to shift the origin in the new expansions.
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(3) How to bound the truncation error.
The first of these items has previously been solved by Vekua [64, 65], Sobolev, [61], and Kounchev
[41]. We derive the representation in a different fashion, essentially by “culling” a Taylor expansion
of the kernel. We doubt that this idea is new, but we have not found it in the literature. It leads to
general statements about a wide class of kernels (in particular, non-isotropic problems are treateed
as easily as isotropic) and it greatly simplifies the derivation of the shift formalæ in item (2).

Chapter 6 — Boundary equation methods for problems on finite domains: In this
chapter we demonstrate that the summation methods derived in Chapter 5 can be used to obtain
fast solvers for lattice equations on finite domains. The results presented extend to lattice problems
a set of techniques for continuous boundary value problems that have been derived by Rokhlin [56],
Hackbusch [33], McLean [45]and others. In order to illustrate the main concepts we will show how
they apply to a homogeneous Dirichlet problem,

(1.13)
{−∆u =0, on Ω,

u = g, on Γ = ∂Ω.

The idea is to look for a solution in the form of a double layer potential

(1.14) u(x) =
∫

Γ

∂G(x− y)
∂νy

φ(y) dy,

where νy is the outward normal of Γ at y, and φ is some unknown potential. By investigating the
limit of (1.14) as x → Γ, it can be shown that φ satisfies a second kind Fredholm equation,

(1.15) −1
2
φ(x)−

∫

Γ

∂G

∂ny
(x− y)φ(y) dy = g(x). ∀ x ∈ Γ.

For many boundaries Γ, the integral operator is compact. It is then possible to discretise (1.15)
in such a way that the resulting matrix is well conditioned and therefore, an iterative solver will
converge very fast. The difficulty of this approach is that each step of the iteration requires a
matrix-vector multiplication which could potentially be very expensive since the matrix is in this
case dense. This problem has been overcome by the development of fast solvers by Rokhlin [8, 56],
Hackbusch [33] and others. The method that results by combining a good boundary integral
formulation with a fast summation method is very fast indeed, see Helsing and Peters [34] and Fu,
Rodin and Overfelt [26].

In order to solve discrete boundary value problems with the methods described, we derived
discrete analogues of both single and double layer boundary integral equations valid for general
lattices. The derivation is an analogue of what is known as a “direct” method in the classical
theory but we also show for a special case how a discrete Green’s identity can be derived and used
for an “indirect” derivation of the boundary equations. We demonstrate how to handle cases where
inclusions and voids in the lattice destroy the periodicity of the equilibrium operator. We prove that
the new boundary equations are non-singular, and demonstrate through several numerical examples
that the condition numbers are typically small, especially for the double layer formulation.

When an iterative method is used to solve the new boundary equations, the matrix-vector
multiplication that occurs is very similar to the convolution (1.12) discussed in Chapter 5. The fast
summation methods that we derived can therefore be used to obtain very fast solvers for discrete
lattice equations. This formulation is also primed for the use of multi-scale homogenization methods
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Figure 1.4. A triangular lattice without (left) and with (right) an oscillator.

that can speed up the computation further in cases where only averaged properties of the solution
are sought in smooth regions of the domain. This is discussed further in Chapter 8.

Chapter 7 — Lattice vibrations and phononic bandgaps: In this chapter we study harmonic
vibrations of lattices, with an emphasis on mechanical lattices. The governing equation is then the
Helmholtz equation

(1.16) (A− ω2I)u = 0,

where ω is the frequency of the vibration. Upon Fourier transformation, (1.16) takes the form(
σ(ξ)− ω2I

)
ũ(ξ) = 0,

which is now an algebraic equation. What makes this exciting is that with the lattice models,
we can capture much of the qualitative behavior of vibrations in continuous media with a periodic
micro-structure, but without having to solve the (sometimes quite complicated) local problems that
arise in the latter case, see Movchan and Zalipaev [49].

One particularly interesting feature of materials with micro-structure is that oftentimes, there
will be intervals of frequencies for which there are no propagating modes. Such an interval is called a
photonic bandgap if the underlying equation is a conduction equation and a phononic bandgap if the
underlying equation is a mechanical equation. It is possible to take advantage of such phenomena
in order to create highly efficient bandpass filters and virtually loss-free wave-guides.

For lattices, a bandgap is easily characterised as an interval in which there is no solution to the
“dispersion” equation

det(σ(ξ)− ω2I) = 0,

which is in this case a trigonometric equation. Taking advantage of the simplicity of this formula-
tion, we could determine a simple mechanism for designing lattice structures that have prescribed
bandgaps. Very roughly speaking, the idea is that given a lattice structure such as the one illus-
trated to the left in Figure 1.4, that does not have any bandgaps, a bandgap can be created by
introducing an oscillator, as shown to the right in the figure. The location of the bandgap can be
tuned by adjusting the properties of the introduced oscillator.

Since the material of Chapter 7 stands somewhat apart from the rest of the thesis (in that
it deals with dynamic rather than static properties) we present the material in that section as a
self-contained exposition, with a minimum amount of references to the rest of the thesis.



CHAPTER 2

Basic properties of static lattice equations

1. Introduction

In this chapter we set up a mathematical framework for analysis of the equations associated
with linear and static problems on periodic lattices. Letting u denote the unknown “potential” (a
temperature, a displacement) and f the “load” (a heat sourse, a force), we write the basic lattice
equation in the form

(2.1) [Au](m) = f(m), ∀ m ∈ Zd,

where the lattice operator A is a constant coefficient convolution operator

[Au](m) =
∑

n∈B
A(n)u(m− n),

for a finite index set B and some local matrices A(n). This general framework can be used to model
a wide range of problems but we will focus on conduction problems, mechanical truss problems
and mechanical frame problems. We treat both mono-atomic and multi-atomic lattices, in fact, the
only restrictions on lattice geometries are the minimal requirements needed to avoid degeneracy of
the equations (for instance, that the lattice must be connected).

The core mathematical results of this chapter are a number of coercivity results concerning A.
Once these are established, it is a simple matter to prove existence, uniqueness and stability results
for the basic lattice equation (2.1). Additionally, the coercivity results form the foundation of the
asymptotic analysis in subsequent chapters.

The coercivity question is somewhat delicate because for each of the models that we study,
there will be a non-trivial set N of potentials that do not cause any internal loads in the lattice.
For instance, when studying heat conduction, we expect that a potential that is constant from
node to node should not cause any internal flows. Likewise, in the study of mechanical problems,
we do not expect rigid body motions to cause any internal forces. For conduction problems and
mechanical frames, we will prove that for any connected lattice, the operator A is coercive “modulo
N”, which is the best that could be hoped for. For the mechanical truss model (axial springs
that are connected by pin-joints at the nodes), additional assumptions on the lattice geometry are
needed. We will provide a condition that is simple to verify and that is sufficient to ascertain
“coercivity modulo rigid body motions”. We do not know whether it is necessary.

The chapter is structured as follows: In section 2 we construct a notational framework, specify
function spaces, derive the mathematical models for the three problems that we consider (conduc-
tion, trusses and frames) and specify non-degeneracy conditions on the lattice geometry that imply
a certain coercivity property of the lattice operator. In section 3 we introduce the Fourier transform
and prove various properties of the symbol σ(ξ), which is the Fourier representation of the lattice

13
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operator A. These results about the symbol provide quantitative coercivity results on the operator
A that are used in section 4 to prove that the lattice equation is well-posed.

2. Preliminaries

2.1. Notation: For a d-dimensional lattice with q nodes in the unit cell, we use m ∈ Zd

to label the different cells and κ ∈ {1, . . . , q} = Nq to label the different nodes in a cell. Thus,
(m,κ) ∈ Zd × Nq =: Ω uniquely labels a node. Let X(m,κ) ∈ Rd denote the coordinates of node
(m,κ). Since the lattice is periodic, there exists a matrix T such that X(m,κ) = X(0, κ) + Tm.
Finally, define for non-negative integers J , the sub-lattices ΩJ := {(m,κ) ∈ Ω : |m| ≤ J}.

Since the lattice is periodic, we can describe all links by describing only those originating in the
zero-cell, Ω0. A link from the node (0, κ) to the node (n, λ) is represented by the triple (κ, n, λ).
All such triples are collected in the set B+.

Example: For the lattice in Figure 2.1; q = 2, T = I, X(0, 1) = (0, 0)t, X(0, 2) = (1/2, 1/2)t, and
B+ = { (1, [1, 0], 1), (1, [0, 1], 1), (1, [0, 0], 2), (2, [1, 0], 1), (2, [1, 1], 1) }. ¤

For the most part, we will suppose that the reference cell is a hypercube (rather than a paral-
lelepiped), so that the lattice matrix T equals the identity matrix I. This considerably simplifies
notation and entails no loss of generality since any lattice can be affinely mapped to one for which
T = I, as illustrated in Figure 2.2. On occasion, the use of such a map has non-obvious practical
implications, but we try to clarify such points when they arise.

2.2. Lattice equations and function spaces. With each node (m,κ) ∈ Ω we associate a
potential u(m, κ) ∈ Cp. Depending on the application, this “potential” will represent a quantity
such as a temperature or a displacement. We let V represent the set of all functions u : Ω → Cp,
and let V := l2(Ω,Cp), denote the subset of square summable functions. This is a Hilbert space
with inner product

〈u, v〉V = 〈u, v〉 :=
∑

(m,κ)∈Ω

u(m,κ) · v(m, κ).

Similarly, we let VJ := l2(ΩJ ,Cp) denote the functions in V that are supported in ΩJ , and define
PJ as the canonical projection V → VJ .

Node ((0,0),1)

Node ((2,1),2)

Cell (2,1)

Cell (0,0)

Node 1 Link (1,(1,0),1)

Link (2,(1,0),1)

Link (2,(1,1),1)

Node 2

Link(1,(0,0),2)

Link(1,(0,1),1)

Figure 2.1. Lattice notation. Circles denote nodes of type 1 and diamonds nodes
of type 2. The unit cell is depicted on the right.
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Next, we will derive the equilibrium equation that relates the potential u to an applied load
f ∈ V. Consider the link (κ, n, λ) that links the node (0, κ) to the node (m, λ). If the two ends are
given potentials u, v ∈ Cp, then the loads f, g ∈ Cp that need to be applied to the two ends to keep
the link in equilibrium are specified by the Hermitian matrix A(κ,n,λ) ∈ Cp×p,

(2.2) A(κ,n,λ)

[
u
v

]
=

[
f
g

]
, where A(κ,n,λ) =

[
B(κ,n,λ) C(κ,n,λ)

(C(κ,n,λ))t D(κ,n,λ)

]
.

We then define an operator A(κ,n,λ) acting on the global potential u by

[A(κ,n,λ)u](0, κ) =B(κ,n,λ)u(0, κ) + C(κ,n,λ)u(n, λ)

[A(κ,n,λ)u](n, λ) =(C(κ,n,λ))tu(0, κ) + D(κ,n,λ)u(n, λ),
(2.3)

and [A(κ,n,λ)u](l, µ) = 0, for all other nodes (l, µ). The operator that represents the connection
between the nodes (m,κ) and (m + n, λ) is then given by τ−mA(κ,n,λ)τm, where for m ∈ Zd the
translation operator τm : V → V is defined by

(2.4) [τmu](l) := u(l −m).

Thus, the operator A : V → V that accounts for all links is given by

(2.5) A :=
∑

m∈Zd

∑

(κ,n,λ)∈B+

τ−mA(κ,n,λ)τm,

whence we obtain the global equilibrium equation

[Au](m,κ) = f(m,κ), ∀ (m, κ) ∈ Ω.

Lemma 2.1: The operator A : V → V is bounded, self-adjoint and positive semi-definite.
Proof: The fact that A is bounded is a direct consequence of the facts that every term in (2.5)
is bounded and that B+ is finite. Similarly, the self-adjointness and semi-definiteness of A are
inherited from the corresponding properties of each A(κ,m,λ). ¤

Figure 2.2. Using an affine transformation, the honeycomb lattice to the left can
be transformed to one that has a square irreducible cell, shown to the right.
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Given a potential field u, we say that the quantity
〈
τmu, A(κ,n,λ)τmu

〉
is the “energy” stored in

the link connecting the node (m,κ) to the node (m + n, λ). We then define

(2.6) W [u](m) :=
∑

(κ,n,λ)∈B+

〈
τmu, A(κ,n,λ)τmu

〉

as the energy of the bars originating in the node m and let

||u||2A := lim
J→∞

∑

|m|≤J

W [u](m) =
∑

m∈Zd

∑

(κ,n,λ)∈B+

[
u(m,κ)

u(m + n, λ)

]
A(κ,n,λ)

[
u(m,κ)

u(m + n, λ)

]

define the global energy semi-norm. When ||u||A < ∞, we have

||u||2A = 〈u, Au〉 =: 〈u, A, u〉 .
Note that for many potentials u ∈ V such that Au = 0, we have ||u||A = ∞.

The conduction problem: Suppose that we wish to model heat conduction on a lattice. Then
the “potential” of a node represents its temperature, and a “load” is a heat flow. If two nodes of
potentials u and v are connected by a link of conductivity α, then in equilibrium, the flows at the
two ends are given by f = α(u− v) and g = α(v − u). Thus, for some α(κ,n,λ) > 0,

A(κ,n,λ) = α(κ,n,λ)

[
1 −1

−1 1

]
.

Mechanical trusses: A common model for a mechanical structure with a geometry such as the
lattices B or C in Figure 1.3 is to consider the links as axial springs that are pin-jointed at the
nodes. In this case, the “potential” of a node is its physical displacement, so p = d, and a “load”
is a physical force. Thus, if two ends of a bar with an axial stiffness α that is directed along the
unit vector e ∈ Rd are displaced by u and v, then the forces needed to keep the bar in equilibrium
are f = α e (e · (u− v)) and g = α e (e · (v − u)). Thus, the local stiffness matrix takes the form

A(κ,n,λ) = α(κ,n,λ)

[
e(κ,n,λ)[e(κ,n,λ)]t −e(κ,n,λ)[e(κ,n,λ)]t

−e(κ,n,λ)[e(κ,n,λ)]t e(κ,n,λ)[e(κ,n,λ)]t

]
.

where e(κ,n,λ) is the orientation vector of the link,

e(κ,n,λ) :=
X(n, λ)−X(0, κ)
|X(n, λ)−X(0, κ)| ∈ Sd−1.

Mechanical frames: When modeling structures with a geometry such as lattices A or D in Figure
1.3 we include the bending stiffness of the links in the model. One must then include rotational
degrees of freedom in the nodal potential so that p = d(d + 1)/2. The “load” will in this case
represent both forces and torques. The local matrices are rank p matrices of the general form

A(κ,n,λ) =
[

B(κ,n,λ) C(κ,n,λ)

(C(κ,n,λ))t D(κ,n,λ)

]
.

By Castigliano’s theorem, the matrix A(κ,n,λ) must be symmetric, but it is in general not the case
that C(κ,n,λ) = −B(κ,n,λ) or that D(κ,n,λ) = A(κ,n,λ). See Appendix A for details.
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A comparison of the different models is given in Table 2.1. For concrete illustrations of how to
derive the lattice equations given a lattice model and a geometry, see Appendix B.

Remark: It is worth commenting on how the truss and frame models relate to one another. Given
a mechanical lattice of arbitrary geometry (as long as it is connected), it is always possible to
model it as a frame. As we shall see, such a model is always coercive “modulo rigid body motions”.
However, we know that for a slender bar, the bending stiffness is lower than the axial stiffness by
roughly a factor of β2, where β is the slenderness ratio. This means that when β ¿ 1, the lattice
operator decouples into two parts of different magnitudes (see Appendix A),

(2.7) A = Aaxial + β2Abending.

Moreover, if we split the potential and the load into translational and rotational components u =
ut⊕ur, and f = ft⊕ fr (note that ft represents forces acting at the nodes and fr represents torques),
then A splits further into

(2.8)

([
Aaxial

tt 0
0 0

]
+ β2

[
A

bending
tt A

bending
tr

A
bending
rt A

bending
rr

])[
ut

ur

]
=

[
ft
fr

]
.

Now, for lattice geometries such as B or C in Figure 1.3, the operator Aaxial
tt is coercive (modulo

rigid body motions). Thus, if there is no torque loading, fr = 0, which is usually the case, we are
justified in making the following approximation,

ut =
[
Aaxial

tt + β2A
bending
tt − β2A

bending
tr (Abending

rr )−1A
bending
rt

]−1
ft ≈

[
Aaxial

tt

]−1
ft.

since β2 ¿ 1. However, if Aaxial
tt is not coercive, then the full equations must be used. In the

next section considerable effort is spent constructing an easily verified criteria that picks out those
geometries for which the truss approximation is valid. ¤

2.3. Coercivity. We mentioned in the introduction that some combinations of lattice geome-
tries and node-to-node interaction mechanisms produce degenerate models. An extreme example
occurs when not all nodes of a lattice are connected; a more subtle type of degeneracy occurs when a
mechanical truss turns into a “mechanism”, meaning that the lattice can deform without incurring
any internal forces, like lattices A and D in Figure 1.3. In this section we seek to formulate some
readily verifiable “coercivity” requirement that disqualifies such degenerate lattices.

First we specify a subspace N ⊂ V of potentials that we expect to cause no internal energy, in
the sense that ||v||A = 0 for v ∈ N . We ask that such a subspace satisfy:

(1) N is translation invariant, τmN = N , for any m ∈ Zd.
(2) There exists an integer k such that any v ∈ N is uniquely determined by Pkv.

Examples: For conduction problems, N is the set of constants and k = 0. For mechanical
problems, N is the space of rigid body motions. For truss problems, k = 1, meaning that a
rigid body motion is uniquely determined by the displacements of the nodes in Ω1. For frames,
information about rotational displacements are included in the nodal potential and thus any rigid
body motion is uniquely determined by its value at any node, and k = 0. ¤

The space N must clearly satisfy N ⊂ Null(A(κ,n,λ)) for all links (κ, n, λ), so that automatically
N ⊆ Null(|| · ||A). Our goal is to formulate conditions that guarantee that N = Null(|| · ||A). We
remark at this point that it would be very practical if we could perform a split “N = N ⊕ N⊥”,
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where N = Null(A) and ask that A be coercive when restricted to “N⊥”. Unfortunately, V is not
a Hilbert space, and such an approach does not seem to be feasible.

Definition: Say that A is N -coercive if Null(|| · ||A) = N .

It is not easy to verify whether A is N -coercive for a given lattice. We will therefore give a
stronger, local condition that is simple to verify and that implies N -coercivity. The idea is to look
at the finite sub-lattices created by removing all links that do not originate in the finite set ΩJ .
Such a sub-lattice is governed by the operator

AJ :=
∑

|m|≤J

∑

(κ,n,λ)∈B+

τ−mA(κ,n,λ)τm.

Clearly N ⊂ Null(AJ). Now, if we can find a finite J such that for the nodes at the center of the
sub-lattice, the only displacement fields that are energy free are those in N , then we may be able
to use the translation invariance to prove global N -coercivity. It turns out that if we can “lock”
the nodes (modulo N ) in the set Ωk+1, then N -coercivity follows.

Definition: A is locally N -coercive if there exists a finite J such that PΩk+1
Null(AJ) = PΩk+1

N .
Lemma 2.2: If A is locally N -coercive, then it is N -coercive.
Proof: Fixing a v ∈ Null(|| · ||A) we will prove that v ∈ N .

A simple calculation shows that

(2.9) PΩk+1
v ∈ PΩk+1

Null(|| · ||A) ⊂ PΩk+1
Null(|| · ||AJ

) = PΩk+1
Null(AJ) = PΩk+1

N .

Thus there exists a unique v′ ∈ N such that PΩk+1
v = PΩk+1

v′.
Next we will show that v′ = v on all of Ω. Let m ∈ Zd be any vector such that |m|∞ = 1.

Since τmv ∈ Null(A), the calculation (2.9) can be used to find a unique v′′ ∈ N that equals v in
τmΩk+1. Now use that PΩk

v′′ = PΩk
v′ to deduce that v′′ = v′. Since m was arbitrary, this shows

that v(n) = v′(n) for |n|∞ ≤ k + 2. This process can be continued to cover all of Ω. ¤
We provide a condition that can often be used to assert local N -coercivity.

Definition: We say that a link (κ, n, λ) is N -coercive if for any ϕ ∈ Cp, there exists a unique
v ∈ N such that v(0, κ) = ϕ and A(κ,n,λ)v = 0.

Of the models that we have discussed, the conduction model and the mechanical frame model
have N -coercive links but the mechanical truss model does not.
Lemma 2.3: Suppose that all links are N -coercive. Then if a lattice is connected, it is locally
N -coercive (and hence N -coercive).
Proof: Let J be large enough that every node in Ωk+1 is connected to the node (0, 1) through
a path entirely contained within ΩJ . Fixing a v ∈ Null(AJ) we need to show that there exists a
v′ ∈ N such that PΩk+1

v = PΩk+1
v′.

Due to the symmetry and the positive semi-definiteness of all the local bars we know that
τ−mA(κ,n,λ)τmv = 0 for all |m| ≤ J . Thus, given any link (1, n, λ), there exists a unique v′ ∈ N
such that v(0, 1) = v′(0, 1) and v(n, λ) = v′(n, λ).

Given any node (l, µ) ∈ Ωk+1 choose a path that connects (0, 1) to (l, µ). Since AJv′ = 0 and
v′(0, 1) = v(0, 1) it then follows from the N -coercivity of all the links in the path that v′(l, µ) =
v(l, µ). Thus PΩk+1

v = PΩk+1
v′, which concludes the proof. ¤
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Model Potential Load p Rank(A(κ,n,λ)) N
Conduction Temperature Heat source/sink 1 1 Constants
Mech. truss Displacement Force d 1 Rigid body mot.
Mech. frame Displ. + rot. Force + torque d(d + 1)/2 d(d + 1)/2 Rigid body mot.

Table 2.1. Table comparing the conduction problem to two mechanical problems.
The truss model is the only one that does not have N -coercive links.

3. Fourier analysis

3.1. Introduction. The operator A is a constant coefficient convolution operator that can be
diagonalized by a Fourier transform. Noting that we can identify V = l2(Zd×Nq,Cp) by l2(Zd,Cpq),
we use the well-known isometric isomorphism

F : l2(Zd,Cpq) → L2(Id,Cpq) : u 7→ ũ(ξ) =
∑

m∈Zd

eim·ξu(m), where Id := (−π, π)d,

to obtain the diagonalization

[F [Au]
]
(ξ) =


 ∑

(κ,n,λ)∈B+

Υ(κ,n,λ)(ξ)


 ũ(ξ),

where each matrix Υ(κ,n,λ)(ξ) consists of q × q blocks, each of size p× p. The four non-zero blocks
are located at the intersections of the κ, λ-rows and columns,

(2.10) Υ(κ,n,λ)(ξ) :=




...
...

· · · B(κ,n,λ) · · · eim·ξC(κ,n,λ) · · ·
...

...
· · · e−im·ξ(C(κ,n,λ))t · · · D(κ,n,λ) · · ·

...
...




.

We introduce the symbol σ(ξ) ∈ Cpq×pq as the Fourier representation of A,

(2.11) σ(ξ) :=
∑

(κ,n,λ)∈B+

Υ(κ,n,λ)(ξ).

Lemma 2.4: The symbol σ(ξ) is a uniformly bounded Hermitian positive semi-definite matrix.
The claims of the lemma follow from Lemma 2.1 since σ = FAF−1, and F is an isometric

operator. Another consequence of this is that one can easily determine the spectrum of A by
determining the eigenvalues of σ(ξ) for ξ ∈ Id. In particular, this gives a simple method for
computing ||A||L(V,V ) accurately.

We will next show that the quadratic form on Cpq induced by σ(ξ), namely

ϕ 7→ 〈ϕ, σ(ξ), ϕ〉 := ϕ · [σ(ξ)ϕ],

is related to the energy of the periodic potential field u(m,κ) = ϕ(κ)e−im·ξ. To this end, recall that
W [u](m) denotes the energy of the links originating in the cell m under the potential u, cf. (2.6).
Lemma 2.5: Set u(m,κ) = ϕ(κ)e−im·ξ. Then W [u](m) = 〈ϕ, σ(ξ), ϕ〉.
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Proof: Inserting the expression for u in the definition of W , we get

W [u](m) =
∑

(κ,n,λ)∈B+

eim·ξ
[

ϕ(κ)
ein·ξϕ(λ)

]
·A(κ,n,λ)e−im·ξ

[
ϕ(κ)

e−in·ξϕ(λ)

]
=

∑

(κ,n,λ)∈B+

ϕ · [Υ(κ,n,λ)(ξ)ϕ],

which equals ϕ · [σ(ξ)ϕ] by the definitions (2.10) and (2.11). ¤
Lemma (2.5) can be combined with knowledge of the null-spaces N , discussed in section 2.3,

to obtain upper and, more importantly, lower bounds for ϕ 7→ 〈ϕ, σ(ξ), ϕ〉.
Lemma 2.6: Let M be the length of the longest link, M := max{|n|∞ : (κ, n, λ) ∈ B+}. Then
there exists a constant C such that, with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≤ C inf
v∈N

||u− v||2VM
.

Proof: Fix any v ∈ N and invoke Lemma 2.5 to obtain that 〈ϕ, σ(ξ), ϕ〉 = W [u](0) = W [u− v](0).
Since all links originating in Ω0 are wholly contained in ΩM , we know that W [u−v](0) ≤ ||A||V ||u−
v||2VM

, and the claim follows from the boundedness of A. ¤
Lemma 2.7: If a lattice is locally N -coercive, then there exists a positive constant c such that,
with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

||u− v||2Vk+1
.

Proof: We use Lemma 2.5 to ascertain that 〈ϕ, σ(ξ), ϕ〉 = (2J +1)−d 〈u,AJ , u〉. Next we will show
that there exists a c > 0 such that 〈u,AJ , u〉 ≥ c||Qu||2, where Q denotes the projection onto the
orthogonal complement of N in Vk+1 (so that infv∈N ||u− v||Vk+1

= ||Qu||). Set

c := inf
u∈V

〈u,AJ , u〉
||Qu||2 .

Now note that the infimum can be restricted to the compact set {u ∈ VJ+M : ||u|| = 1}, with the
M defined in Lemma 2.6. Since the infimum is taken over a compact set, we know that if c = 0,
then there must exist a minimizer u′ such that ||Qu′|| 6= 0 and 〈u′, AJ , u′〉 = 0, but this contradicts
the assumption of local N -coercivity. Thus c > 0 which proves the claim. ¤

In sections 3.2 – 3.4, we will study each of the lattice models in Table 2.1 and prove coercivity
results for the symbol σ(ξ) but first we review some general results for Hermitian positive matrices.

Definition: If X and Y are Hermitian positive definite (HPD) matrices, such that 〈ϕ,X,ϕ〉 ≤
〈ϕ, Y, ϕ〉 for every ϕ, then we say that X ≤ Y . If there are positive constants a and b, such that
aX ≤ Y ≤ bX, then we say that X ∼ Y . ¤
Lemma 2.8: If X and Y are HPD and X ≤ Y , then detX ≤ detY and Y −1 ≤ X−1.
Proof: Note that since X is HPD, it has a well-defined non-singular square root. To prove the first
statement, set ψ = X1/2ϕ and write the condition as |ψ|2 ≤ ψ · (X−1/2Y X−1/2ψ). This implies
that 1 ≤ det(X−1/2Y X−1/2) = detY/ detX.

The second inequality is similarly obtained by setting ϕ = Y −1/2[Y −1/2XY −1/2]−1/2Y −1/2ψ.
¤
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3.2. The conduction problem. The results we are about to present are technical in nature
but are absolutely central in that (1) they form a pattern for how to study other lattice models and
(2) they will be invoked in almost every subsequent result presented in this chapter (well-posedness
of the lattice equations, homogenization, lattice Green’s functions). The core result is that if a
vector ϕ ∈ Cq is split into a local average and a deviation from the average, ϕ = ϕA ⊕ ϕD, then

(2.12) c
(|ξ|2|ϕA|2 + |ϕD|2

) ≤ 〈ϕ, σ(ξ), ϕ〉 ≤ C
(|ξ|2|ϕA|2 + |ϕD|2

)
,

for some positive constants c and C that do not depend on ξ. The significance of this result is that
it leads to a fairly complete description of the action of A in physical space; if a potential u is split
into a cell-wise average uA, and a local deviation uD, so that u = uA ⊕ uD, then

c
(〈uA, A◦, uA〉+ ||uD||2

) ≤ 〈u, A, u〉 ≤ C
(〈uA, A◦, uA〉+ ||uD||2

)
,

where A◦ is the discrete Laplace operator, cf. (2.25). The result (2.12) can also be used to show
that to lowest order, all elements of σ(ξ)−1 are identical, meaning that there exists a constant c0

and a symmetric positive definite matrix M ∈ Rd×d such that

(2.13) [σ(ξ)−1]κλ =
c0

ξ · (Mξ)
+ O(|ξ|−1),

for all κ, λ ∈ Nq. This result has important ramifications to the nature of the homogenized equations
and the lattice Green’s functions.

In order to define the projection operators, we set ψ1 := q−1/2[1, . . . , 1]t ∈ Rq and define for
j = 2, . . . , q, vectors ψj ∈ Rq such that Ψ = [ψ1, ψ2, . . . , ψq] is a unitary matrix. We split Ψ into
two sub-matrices Ψ = [ψ1, 0, . . . , 0] + [0, ψ2, . . . , ψq] =: ΨA + ΨD so that any vector ϕ ∈ Cq can be
split into orthogonal components Ψtϕ = Ψt

Aϕ⊕Ψt
Dϕ =: ϕA ⊕ ϕD. For v ∈ V, we set v = vA ⊕ vD,

where vA(m) = Ψt
Av(m), and vD(m) = Ψt

Dv(m). Finally, we set L(ξ) = diag(|ξ|2, 1, . . . , 1), and
formulate the result (2.12) as follows.
Theorem 2.9: For the conduction problem on a connected lattice, σ(ξ) ∼ ΨL(ξ)Ψt.
Proof: First note that since the links are N -coercive, the connectivity assumption implies local
N -coercivity for the lattice. Thus Lemmas 2.6 and 2.7 apply, with u(m,κ) := ϕ(κ)e−im·ξ.

To prove the upper bound in (2.12), use Lemma 2.6 with the choice v(m,κ) := ϕA to get

〈ϕ, σ(ξ), ϕ〉 ≤ C
(||uA − v||2VM

+ ||uD||2VM

)

= C
∑

|m|≤M

(
|ϕAe−im·ξ − ϕA|2 + |ϕDe−im·ξ|2

)
≤ C

(|ξ|2|ϕA|2 + |ϕD|2
)
.

Next we prove the lower bound in (2.12) using Lemma 2.7. Set

(2.14) lA(ξ) := inf
ϕ∈Cq

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕA|2 , and lD(ξ) := inf

ϕ∈Cq

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕD|2 ,

so that
〈ϕ, σ(ξ), ϕ〉 ≥ lA(ξ)|ϕA|2 + lD(ξ)|ϕD|2.

First note that the infimum can be restricted to the unit ball in Cq, which is a compact set. Then,
since u /∈ N for ξ 6= 0, Lemma 2.7 immediately tells us that both lA(ξ) and lD(ξ) are positive for
ξ 6= 0. It remains to investigate their behavior near the origin.
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To prove that lD(0) > 0, we note that for ξ = 0, the minimizer in Lemma 2.7 is uA, so that

〈ϕ, σ(0), ϕ〉 ≥ c||u− uA||2V1
= c||uD||2V1

= c3d|ϕD|2.
In order to prove that lA(ξ) ≥ c|ξ|2, we first use that

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

||u− v||2V1
≥ c inf

v∈N
||uA − vA||2V1

= c inf
z∈C

∑

|m|≤1

|ϕAe−im·ξ − z|2.

The minimizer is

z(min) =
1
3d

∑

|m|≤1

ϕAe−im·ξ = ϕA

d∏

j=1

1∑

mj=−1

e−imjξj

3
= ϕA

d∏

j=1

(
1− 4

3
sin2 ξj

2

)
=: ϕA

(
1 + rd(ξ)

)
,

where rd(ξ) satisfies |rd(ξ)| ≤ C|ξ|2. Thus, using that |a + b|2 ≥ |a|2 − |b|2 we find that

〈ϕ, σ(ξ), ϕ〉 ≥ c
∑

|m|≤1

|ϕAe−im·ξ − ϕA − ϕArd(ξ)|2

≥ c|ϕA|2
∑

|m|≤1

(
|e−im·ξ − 1|2 − |rd(ξ)|2

)
≥ c|ϕA|2

(|ξ|2 − |ξ|4) ≥ c|ϕA|2|ξ|2,

which proves that lA(ξ) ≥ c|ξ|2. ¤
Corollary 2.10: For the conduction problem on a connected lattice there exists a positive definite
matrix M such that det σ(ξ) = ξ · (Mξ) + O(|ξ|4).
Proof: First note that detσ(ξ) is a trigonometric polynomial, and hence an entire function with an
everywhere convergent power series. Next note that detσ(0) = 0, and that by combining Theorem
2.9 and Lemma 2.8 we know that detσ(ξ) ≥ cdet L(ξ) = c|ξ|2. Together, these statements prove
the corollary. ¤
Corollary 2.11: For the conduction problem on a connected lattice, σ(ξ)−1 ∼ ΨL(ξ)−1Ψt.
Proof: Combine Theorem 2.9 and Lemma 2.8. ¤

The last corollary can be used to prove the identity (2.13). For α, β ∈ {A, D}, set σαβ(ξ) :=
Ψt

ασ(ξ)Ψβ and Sαβ(ξ) := Ψt
ασ(ξ)−1Ψβ so that

Ψtσ(ξ)Ψ =
[

σAA(ξ) σAD(ξ)
σDA(ξ) σDD(ξ)

]
, and Ψtσ(ξ)−1Ψ =

[
SAA(ξ) SAD(ξ)
SDA(ξ) SDD(ξ)

]
.

where the Sαβ can be computed from the σαβ through the relations

SAA(ξ) =
[
σAA(ξ)− σAD(ξ)σ−1

DD(ξ)σDA(ξ)
]−1

,

SAD(ξ) = [SDA(ξ)]? = − [
σAA(ξ)− σAD(ξ)σ−1

DD(ξ)σDA(ξ)
]−1

σAD(ξ)σ−1
DD(ξ)

SDD(ξ) =
[
σDD(ξ)− σDA(ξ)σ−1

AA(ξ)σAD(ξ)
]−1

.

By Theorem 2.9 and Corollary 2.11 we know that

σAA(ξ) ∼ |ξ|2, σDD(ξ) ∼ I, SAA(ξ) ∼ |ξ|−2, and SDD(ξ) ∼ I,

from which it follows that |SAD(ξ)| ≤ C|ξ|−1. Thus, to lowest order, we have

σ(ξ)−1 = ΨASAA(ξ)Ψt
A + O(|ξ|−1), as |ξ| → 0.
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from which (2.13) follows. We can extract the dominant term in SAA(ξ) by defining

(2.15) σ0(ξ) :=
[
lim
ε→0

ε2SAA(εξ)
]−1

= lim
ε→0

1
ε2

[
σAA(εξ)− σAD(εξ)σDD(0)−1σDA(εξ)

]
,

since then SAA(ξ) = σ0(ξ)−1 + O(|ξ|−1). Note that with M the matrix specified by Corollary 2.10
we have σ0(ξ) = ξ · ((tM)ξ) for some constant t and that tM is easily computed since the only
matrix inversion that appears in (2.15) concerns a matrix with constant coefficients. To sum up:
Lemma 2.12: Consider the conduction problem on a connected lattice. To lowest order, all terms
of σ(ξ)−1 are identical. In particular, with σ0 defined by (2.15), we have, as |ξ| → 0,

σ(ξ)−1 = ΨAσ0(ξ)−1Ψt
A + O(|ξ|−1).

3.3. Mechanical trusses. The analysis of mechanical truss systems follows the analysis of
the conduction problem closely. The main difference is that the space of rigid body motions (which
forms the null-space N for mechanical problems) is considerably richer than the set of constants,
which makes the use of Lemmas 2.6 and 2.7 somewhat less straight-forward. Another difference is
that we need to think of σ(ξ) as a matrix consisting of q×q blocks, each of size d×d. In particular,
the result for trusses that corresponds to (2.13) says that all blocks of σ(ξ)−1 are equal to lowest
order. To be precise, there exists a matrix σ0(ξ) ∈ Rd×d, such that

(2.16) [σ(ξ)−1]κλ = σ0(ξ)−1 + O(|ξ|−1).

All entries of the matrix σ0(ξ) are second order polynomials and σ0 is the Fourier representation
of an elasticity operator (which is a second order elliptic differential operator).

In order to define the projection operators ΨA and ΨD that are pertinent to the truss problem,
we first define Ip as the identity matrix in Cp, set ΨA := q−1/2[Id, . . . , Id]t and define ΨD so that
Ψ = [ΨA, ΨD] forms a unitary matrix. Then define splittings ϕ = ϕA ⊕ ϕD, and u = uA ⊕ uD as
before. Finally set L(ξ) = diag(|ξ|2Id, Id(q−1)).

Theorem 2.13: For a locally N -coercive truss lattice, σ(ξ) ∼ ΨL(ξ)Ψt.
Proof: The proof follows the proof of Theorem 2.9 closely. We use Lemma 2.6, choosing v = ϕA,
to prove the upper bound. For the lower bound, define lA(ξ) and lD(ξ) according to the formulae
(2.14). These functions are still positive for ξ 6= 0, by virtue of the fact that u(m) = ϕe−iξ·m /∈ N
and we only need to investigate their behavior for small ξ. Since u(0) is orthogonal (in V2) to the
set of rotations, one proves that lD(0) > 0 in a fashion fully analogous to the conduction problem.
However, since the nullspace is larger for the present problem than for the conduction problem, we
need to put more effort into proving that lA(ξ) ≥ c|ξ|2.

First note that

〈ϕ, σ(ξ), ϕ〉 = inf
v∈N

(||uA − vA||2V2
+ ||uD − vD||2V2

) ≥ c inf
v∈N

||uA − vA||2V2
.

It will be sufficient to keep the linear part of u(m) so we write

uA(m) = ϕAe−im·ξ = ϕA − ϕAim · ξ − ϕA(1− im · ξ − e−im·ξ),

and use the inequality |a + b|2 ≥ |a|2 − |b|2 to obtain that

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

(
||ϕA − ϕAi(m · ξ)− vA||2V2

− ||ϕA(1− im · ξ − e−im·ξ)||2V2

)

≥ c inf
v∈N

||ϕA − ϕAi(m · ξ)− vA||2V2
− |ϕA|2|ξ|4.

(2.17)
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Let v
(min)
A denote the minimizer in the last term. Since v(min) is a rigid body motion, v

(min)
A can

be written as a sum of a constant and a rotational component, v
(min)
A = v

(min)
const + v

(min)
rot . Clearly

v
(min)
const = ϕA. In order to determine v

(min)
rot , we introduce a basis for the rotations on Rd: For i, j ∈

{1, . . . , d} such that j − i > 0, define the basis-vectors w(ij) ∈ N by [w(ij)(m)]k = δikmj − δjkmi.
The minimizing problem can now be written

(2.18) inf
v∈N

||ϕA(m · ξ)− vA||2V2
= inf

α(ij)
||ϕA(m · ξ)−

d−1∑

i=1

d∑

j=i+1

α(ij)w(ij)(m)||2V2
.

The vectors w(ij) are orthogonal in V2, so the minimizers are given by

α(ij),min =

〈
ϕA(m · ξ), w(ij)(m)

〉
V2

||w(ij)(m)||2V2

= · · · = 1
2
(ϕA,iξj − ϕA,jξi).

We insert these values into (2.18) to obtain

inf
α(ij)

||ϕA(m · ξ)−
d∑

i=1

d∑

j=i+1

α(ij)w(ij)(m)||2V2
= · · · = 5d

(|ϕA|2|ξ|2 + |ϕA · ξ|2
) ≥ |ϕA|2|ξ|2.

Combining this expression with (2.17) we find that

〈ϕ, σ(ξ), ϕ〉 ≥ c
(|ϕA|2|ξ|2 − |ϕA|2|ξ|4

) ≥ c|ξ|2|ϕA|2,
in some neighbourhood of the origin. This completes the proof. ¤
Corollary 2.14: For a locally N -coercive truss lattice, det σ(ξ) ≥ c|ξ|2d.
Corollary 2.15: For a locally N -coercive truss lattice, σ(ξ)−1 ∼ ΨL(ξ)−1Ψt.

Defining σαβ and Sαβ as for the conduction problem, and performing the corresponding analysis,
we find that the matrix σ0 heralded in (2.16) is given by

(2.19) σ0(ξ) := lim
ε→0

1
ε2

[
σAA(εξ)− σAD(εξ)σDD(0)−1σDA(εξ)

]
.

Lemma 2.16: Suppose that σ(ξ) is the symbol of a locally N -coercive truss lattice. To lowest order,
all blocks of σ(ξ)−1 are identical. In particular, with σ0 defined by (2.19), we have, as |ξ| → 0,

σ(ξ)−1 = ΨAσ0(ξ)−1Ψt
A + O(|ξ|−1).

3.4. Mechanical frames. For mechanical frames, the links are N -coercive, so we can again
use connectivity as the only regularity requirement on the lattice. The significant additional diffi-
culty about the frame case is that the operator treats the rotational and translational degrees of
freedom in distinctly different manners. Splitting the cell-wise average of a function ϕ ∈ Cpq into
an average of the translational components ϕat, an average of the rotational components ϕar and
“the rest”, ϕd, we will prove that

(2.20) c
(|ξ|2|ϕat|2 + |ϕar|2 + |ϕd|2

) ≤ 〈ϕ, σ(ξ), ϕ〉 ≤ C
(|ξ|2|ϕat|2 + |ϕar|2 + |ϕd|2

)
.
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The projection operators Ψat and Ψar are defined by

[Ψatϕ]i =
1√
q

q∑

j=1

ϕi+(j−1)p, for i = 1, . . . , d,

[Ψarϕ]i =
1√
q

q∑

j=1

ϕi+(j−1)p, for i = d + 1, . . . , p,

and then Ψd is defined so that Ψ = [Ψat,Ψar,Ψd] forms a unitary matrix. The splittings ϕ =
ϕat ⊕ ϕar ⊕ ϕd and u = uat ⊕ uar ⊕ ud follow. Finally set L(ξ) = diag(|ξ|2Id, Ipq−d).
Theorem 2.17: For a connected frame lattice, σ(ξ) ∼ ΨL(ξ)Ψt.
Proof: Set u(m,κ) = ϕ(κ)e−im·ξ, as usual. In order to prove the upper bound in (2.20), simply
use Lemma 2.6 with v(m,κ) = [ϕt

at, 0]t. For the lower bound, define

lat(ξ) = inf
|ϕ|=1

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕat|2 , and lX(ξ) = inf

|ϕ|=1

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕar|2 + |ϕd|2 .

Since the infimums are taken over compact sets and since u /∈ N when ξ 6= 0, it is clear that both lat

and lX are strictly positive for ξ 6= 0. Likewise, if lX(0) = 0, then by compactness there must exist a
minimizer ϕ′ such that 〈ϕ′, σ(0), ϕ′〉 = 0. By lemma 2.5, this means that the function u′ generated
by ϕ′ must belong to N . Now, since u′ is constant from cell to cell, it cannot have a rotational
component, and must therefore be a pure translation. But this implies that ϕ′ar = ϕ′d = 0, which
shows that such a minimizer cannot exist.

Finally we need to prove that lat(ξ) ≥ c|ξ|2. Starting with the simple inequality

〈ϕ, σ(0), ϕ〉 ≥ c inf
v∈N

||u− v||2V1
≥ c inf

v∈N
||uat − vat||2V1

,

this part of the proof then proceeds exactly like the corresponding part of the proof for trusses. ¤
Corollary 2.18: For a locally N -coercive frame lattice, det σ(ξ) ≥ c|ξ|2d.
Corollary 2.19: For a locally N -coercive frame lattice, σ(ξ)−1 ∼ ΨL(ξ)−1Ψt.

In order to prove a result about the dominant terms of σ(ξ)−1, we set ΨA := Ψat, ΨD := [Ψar, Ψd]
and define σαβ for α, β = A,D accordingly.
Lemma 2.20: Suppose that σ(ξ) is the symbol of a connected frame lattice. Then, with σ0 defined
by (2.19), we have, as |ξ| → 0,

σ(ξ)−1 = ΨAσ−1
0 (ξ)Ψt

A + O(|ξ|−1).

Note in particular that according to the lemma, several entries of the inverse symbol have
singularities that are weaker than the O(|ξ|−2)-singularity of the dominant terms. The consequences
of this imbalance will be discussed further in Section 6 of Ch. 3.

4. Well-posedness of the lattice equations

4.1. Introduction. In this section we will study the well-posedness of the equation

(2.21)
{

Au = f,

||u||A <∞.
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Guided by the findings in the previous section, we will suppose that there exists a unitary matrix
Ψ = [ΨA, ΨD] ∈ Rqp×qp such that

(2.22) σ(ξ) ∼ |ξ|2ΨAΨt
A + ΨDΨt

D.

Note that this inequality implies that the point {0} forms part of the spectrum of A, and thus A−1

cannot be a bounded operator on V . However, the zero is not an eigenvalue, which means that A
is injective, and we expect to be able to define A−1 on a dense subset of V .

In this section, we will first derive an explicit representation for A−1 in terms of Fourier integrals,
and then study a variational formulation of (2.21). The second approach will give somewhat sharper
results, but in the remainder of the thesis, we will work extensively with the Fourier inverse, and
it is therefore necessary to study this formulation as well.

4.2. A Fourier inverse. A solution u of equation (2.21) is given by ũ = σ−1f̃. Using the
Fourier inversion formula, we therefore expect that the solution should be

(2.23) u(m) = [A−1f](m) =
[
F−1[σ−1f̃]

]
(m) =

1
(2π)d

∫

Id

e−im·ξσ(ξ)−1f̃(ξ) dξ.

Note however that the function σ(ξ)−1 is unbounded which necessitates an investigation of when
the integral is well-defined. Setting Sαβ(ξ) = Ψt

ασ(ξ)−1Ψβ, the condition (2.22) implies that

|SAA(ξ)| = |Ψt
Aσ(ξ)−1ΨA| ≤ C|ξ|−2,

|SAD(ξ)| = |Ψt
Aσ(ξ)−1ΨD| ≤ C|ξ|−1,

|SDA(ξ)| = |Ψt
Dσ(ξ)−1ΨA| ≤ C|ξ|−1,

|SDD(ξ)| = |Ψt
Dσ(ξ)−1ΨD| ≤ C.

(2.24)

Defining the function spaces

Ξr
k := {v ∈ V : ||v||Ξr

k
< ∞}, where ||v||Ξr

k
=

[∫

Id

(
|ξ|−k|ṽ(ξ)|

)r
dξ

]1/r

,

we can then state the following result. (Note that Ξ2
0 = l2.)

Theorem 2.21: Suppose that f is a function such that fA ∈ Ξ1
2 ∩ Ξ2

1 and fD ∈ Ξ1
1 ∩ Ξ2

0. Then
equation (2.21) has a solution given by (2.23), such that 〈u, A, u〉 ≤ C

(
||fA||2Ξ2

1
+ ||fD||2Ξ2

0

)
.

Proof: The Fourier integral in (2.23) is well-defined since

|σ(ξ)−1f̃(ξ)| ≤ (|SAA(ξ)|+ |SDA(ξ)|)|̃fA(ξ)|+ (|SAD(ξ)|+ |SDD(ξ)|)|̃fD(ξ)|
≤ C

(
|ξ|−2 |̃fA(ξ)|+ |ξ|−1 |̃fD(ξ)|

)
∈ L1(Id).

In order to demonstrate that u solves (2.21), simply apply A to the integral, use the absolute
convergence to move the operator inside the integral, and note that A (ϕe−in·ξ) = σ(ξ)ϕe−in·ξ.

When proving the bound for ||u||A =
√
〈u, A, u〉 we use that ũ = σ−1f̃ to obtain

||u||2A =
1

(2π)d

∫

Id

ũ(ξ)[σ(ξ)ũ(ξ)] dξ =
1

(2π)d

∫

Id

f̃(ξ)[σ(ξ)−1f̃(ξ)] dξ ≤
∫

Id

(
|̃fA(ξ)|2
|ξ|2 + |̃fD(ξ)|2

)
dξ.

¤
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In order to illuminate the nature of the spaces Ξr
k, we provide the following lemmas.

Lemma 2.22: If kr < d, then || · ||Ξr
k
≤ C|| · ||l1 and thus l1(Ω) ⊆ Ξr

k.

Proof: If v ∈ l1, then |ṽ(ξ)| ≤ C||v||l1 , and thus

||v||rΞr
k

=
∫

Id

(|ξ|−k|ṽ(ξ)|)r dξ ≤ C

∫ √
dπ

0
(ρ−k||v||l1)rρd−1 dρ = C||v||rl1

∫ √
dπ

0
ρd−kr−1 dρ,

which is finite if d− kr > 0. ¤
Lemma 2.23: A sufficient condition for v ∈ Ξr

k is that for some integer l > k − d/r the following
conditions hold:

A:
∑

(1 + |m|l)|v(m)| < ∞.
B:

∑
mαv(m) = 0, for every α ∈ Nd such that |α| < l.

Proof: Condition A implies that ṽ has l continuous derivatives, and then condition B implies that
ṽ has l vanishing moments. Thus, |ṽ(ξ)| ≤ C|ξ|l, whence

||v||rΞr
k

=
∫

Id

(|ξ|−k|ṽ(ξ)|)r dξ ≤ C

∫

Id

(|ξ|−k|ξ|l)r dξ ≤ C

∫ √
dπ

0
ρr(l−k)ρd−1 dρ,

which is finite if r(l − k) + d > 0. ¤
Combining Theorem 2.21 with either Lemma 2.22 or Lemma 2.23, we obtain the next two

results, which give more familiar conditions on f than does Theorem 2.21.
Corollary 2.24: Suppose that d = 3 and that f ∈ l1(Ω). Then one solution of equation (2.21) is
provided by (2.23). This solution satisfies ||u||A ≤ C||f||l1.
Corollary 2.25: Suppose that d = 2, that mf(m) ∈ l1(Ω) and that

∑
f = 0. Then one solution of

equation (2.21) is provided by (2.23). This solution satisfies ||u||A ≤ C||mf(m)||l1.
Note that for an N -coercive operator, any two solutions u and v of (2.21) satisfy u− v ∈ N .

4.3. Variational analysis. It is unsatisfactory that the existence results in the previous sec-
tion require conditions on f that do not appear in the stability bounds. This is a consequence
of the unnecessarily stringent requirement that the integral (2.23) be absolutely convergent. We
will provide results that require only that fA ∈ Ξ2

1 and fD ∈ Ξ2
0 = l2 by studying the variational

formulation
〈v, A, u〉 = 〈v, f〉

easily obtained from equation (2.21). We must find a Hilbert space in which the sesqui-linear form
〈·, A, ·〉 is coercive, and the semi-linear form Λf(·) = 〈·, f〉 is bounded.

First we define an inner product that is equivalent to 〈·, ·〉A. Introduce the discrete Laplace
operator A◦ and its Fourier transform σ◦(ξ) by

(2.25) A◦ :=
d∑

j=1

(−τej + 2− τ−ej

)
, σ◦(ξ) :=

d∑

j=1

(
−e−iξj + 2− eiξj

)
=

d∑

j=1

4 sin2 ξj

2
,

and set

〈v, u〉W := 〈vA, A◦, uA〉+ 〈vD, uD〉 =
1

(2π)d

∫

Id

[
σ◦(ξ)

(
ṽA(ξ) · ũA(ξ)

)
+ ṽD(ξ) · ũD(ξ)

]
dξ.
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Then the corresponding semi-norm || · ||W =
√〈·, ·〉W is equivalent to || · ||A, by virtue of (2.22). We

next define the space W as the closure of the set of compactly supported functions in V under the
norm || · ||W (identifying functions for which ||u||W = 0 with zero). We now find that Λf is bounded
precisely when fA ∈ Ξ2

1 and fD ∈ Ξ2
0;

|Λf(v)| ≤ C

∫

Id

(
|ṽA(ξ)| |̃fA(ξ)|+ |ṽD(ξ)| |̃fD(ξ)|

)
dξ

≤ C

[∫

Id

|̃fA(ξ)|2
σ◦(ξ)

dξ

]1/2 [∫

Id

σ◦(ξ)|ṽA(ξ)|2 dξ

]1/2

+ ||vD|| ||fD|| ≤ C||v||W
(
||fA||2Ξ2

1
+ ||fD||2Ξ2

0

)
.

Thus, a well-posed formulation of (2.21) is:

(2.26) Find u ∈ W such that 〈v, A, u〉 = Λf(v) for every v ∈ W.

A straight-forward application of the Riesz’ representation theorem now gives:
Theorem 2.26: Suppose that fA ∈ Ξ2

1 and fD ∈ Ξ2
0. Then equation (2.26) has a unique solution.

This solution satisfies ||u||W ≤ C
(||fA||Ξ2

1
+ ||fD||Ξ2

0

)
.

We close by remarking that the requirement that the solution belong to W gives a stronger
uniqueness-result than N -coercivity by itself. First note that

||u||2W =
∑

m∈Zd




d∑

j=1

|uA(m− ej)− uA(m)|2 + |uD(m)|2

 .

Thus, if ||u||W = 0, then uD = 0 and uA is constant from cell to cell. Now, suppose that both u
and v solve (2.21). Then ||u − v||W = 0 which means that uD = vD and uA = vA + ϕ, for some
constant ϕ ∈ Ψt

ACqp. Applying this reasoning to the lattice models discussed in this section we
find the following result:
Proposition 2.27: Suppose that u, v ∈ W solve (2.21). Then for conduction problems, u and
v differ by a constant only. For mechanical problems (either trusses of frames), they differ by a
constant translation only.



CHAPTER 3

Homogenization

1. Introduction

In this section we will show that when the size of the unit cell in a lattice is much smaller
than the length-scale over which the load changes, then oftentimes, an approximate solution to the
lattice equation can be found by solving a quasi-differential equation with constant coefficients.

We capture the concept of different lengthscales by supposing that the scale over which the load
changes is 1, and the cell size is ε ¿ 1. A lattice potential will now be denoted u(ε) to mark that
it is a potential on a scaled lattice, and the corresponding lattice operator is A(ε). The lattice load
f(ε) is assumed to be derived from some fix function f by an operator Pε that projects a function
of a continuous variable to a lattice function, f(ε) := Pεf . This projection will be done by a local
averaging in such a way that for a “nice” function f , we will get f(ε)(m) ≈ f(εm). The scaled
lattice equation now reads

A(ε)u(ε) = f(ε).

The main purpose of this section is to demonstrate how for any p, one can derive constant coefficient,
quasi-differential operators A(ε,p) such that the solution u(ε,p) of the homogenized equation

A(ε,p)u(ε,p) = f,

satisfies

u(ε)(m) = u(ε,p)(εm) + O(ε2p+2),

provided that f is regular enough (the regularity requirements will increase quite rapidly with
increasing p). Both the derivation of the homogenized equation and the convergence proofs will
rely heavily on Fourier methods, cf. Babuška and Morgan [5, 46, 47, 48].

We give a detailed description of the homogenization procedue for scalar conduction problems
only. However, the corresponding results for more general lattice models can be derived in a very
similar fashion, as indicated in section 6.

The plan of the chapter is as follows: In section 2 we formally define the scaled lattices and
introduce scaled Fourier transforms and norms. In section 3 we define the projection operator Pε

and prove that the discrete Fourier transform of Pεf closely approximates the continuous Fourier
transform of f . In section 4 we derive the homogenized equations for the conduction problem on
mono-atomic lattices and prove convergence in energy and L∞-norms. In section 5 we extend the
analysis to multi-atomic conduction problems. In section 6 we indicate how the analysis can be
extended to mechanical problems and give some illustrative examples.

29
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2. Scaled lattices and function spaces

Let u(ε)(m, κ) ∈ C denote the potential of the node (m,κ) in the scaled lattice. We measure
such potentials using the scaled norms lpε defined by

||u(ε)||lpε :=


εd

∑

m∈Zd

|u(ε)(m)|p



1/p

.

We also introduce a scaled Fourier transform

ũ(ε)(ξ) = [Fεu
(ε)](ξ) := εd

∑

m∈Zd

eiεm·ξu(ε)(m), for ξ ∈ Id
ε := (−π/ε, π/ε)d.

The scaling is chosen so that if u(ε) is defined by u(ε)(m) := u(εm) for some function u of a
continuous variable, then ũ(ε)(ξ) is a Riemann sum of the continuous Fourier transform

û(ξ) = [Fu](ξ) :=
∫

Rd

eix·ξu(x) dx,

and ||u(ε)||p
lpε

is a Riemann sum of

||u||pLp :=
∫

Rd

|u(x)|p dx.

In particular, if u is “nice” (say smooth and compactly supported), then as ε → 0,

ũ(ε)(ξ) → û(ξ), and ||u(ε)||lpε → ||u||Lp .

For future reference, we note that Plancherel’s lemma takes the form

||u(ε)||2l2ε =
1

(2π)d

∫

Id
ε

|ũ(ε)(ξ)|2 dξ = ||ũ(ε)||2L2(Id
ε ).

We will next determine how the scaled lattice operator A(ε) relates to the unscaled operator A.
When a link that originally had a conductivity α(κ,n,λ) is scaled by a factor ε, its new conductivity
will be εd−2α(κ,n,λ) (since the cross-section shrinks by a factor εd−1 and the length by a factor ε).
The scaled load f(ε) is defined so that the actual source at node (m,κ) is εdf(ε)(m,κ). Thus, the
factor εd cancels and we find that the appropriate scaling is

A(ε) := ε−2A.

The symbol of the scaled operator, σ(ε) = FεA
(ε)F−1

ε , relates to the unscaled symbol as follows;

(3.1) σ(ε)(ξ) = ε−2σ(εξ).

whence the inequalities (2.12) take the form

(3.2) c
(|ξ|2|ϕA|2 + ε−2|ϕD|2

) ≤
〈
ϕ, σ(ε)(ξ), ϕ

〉
≤ C

(|ξ|2|ϕA|2 + ε−2|ϕD|2
)
,

and the corresponding inverse inequalities are

(3.3) c
(|ξ|−2|ϕA|2 + ε2|ϕD|2

) ≤
〈
ϕ, σ(ε)(ξ)−1, ϕ

〉
≤ C

(|ξ|−2|ϕA|2 + ε2|ϕD|2
)
.
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In the scaled variables, the claim of Lemma 2.12 is that there exists a matrix M such that

σ(ε)(ξ)−1 = (ξ · (Mξ))−1ΨAΨt
A + ε2O(|εξ|−1), as |εξ| → 0.

We close this section by giving the scaled lattice equation:

(3.4)

{
A(ε)u(ε) = f(ε),

||u(ε)||A(ε) <∞.

3. Projection operators

In order to derive a projection operator that creates a lattice function out of a function of a
continuous variable we fix a compactly supported function µ such that

∫
Rd µ(x) dx = 1. Then define

the projection operator by taking local averages

(3.5) [Pεv](m) = ε−d

∫

Rd

v(x)µ(ε−1x−m) dx.

We use the same function µ to create a function of a continuous variable out of a lattice function.
The associated projection operator, P?

ε , is defined by
[
P?
ε v(ε)

]
(x) =

∑

m∈Zd

v(ε)(m)µ(ε−1x−m).

Note that P?
ε is typically injective but that Pε is not. The compact support of µ is important

because it implies that the operator Pε : Lp → lpε is bounded.
Lemma 3.1: If µ is bounded and compactly supported, then for any p ∈ [1, ∞], there exists a finite
Cp such that ||Pεf ||lpε ≤ Cp||f ||Lp.
Proof: Consider first the case p < ∞ and let ω denote the support of µ, then

||Pεf ||plpε = εd
∑

m∈Zd

∣∣∣∣
1
εd

∫

Rd

µ

(
x− εm

ε

)
f(x) dx

∣∣∣∣
p

= εd
∑

m∈Zd

∣∣∣∣
∫

ω+m
µ(y −m)f(εy) dy

∣∣∣∣
p

,

and using Hölder’s inequality, with q the conjugate of p,

||Pεf ||plpε ≤ εd
∑

m∈Zd

[∫

ω+m
|µ(y −m)|q dy

]p/q [∫

ω+m
|f(εy)|p dy

]

≤ ||µ||pLq

∑

m∈Zd

∫

ω+m
|f(x)|p dx ≤ C||µ||pLq ||f ||pLp ,

where in the last step, we used that ω is finite. The case p = ∞ is trivial. ¤
We can now formulate a scaled incarnation of Theorem 2.26:

Theorem 3.2: Suppose that f(ε) = Pεf for some function f ∈ L1 ∩ L2, and that the projection
function µ is bounded and compactly supported. Then u(ε) = F−1

ε [(σ(ε))−1f̃(ε)] is well-defined and
solves equation 3.4. This solution is unique up to a constant and satisfies

||u(ε)||A(ε) ≤ C(||fA||L1 + ||fA||L2 + ε||fD||L2),

where fA and fD are defined pointwise, fA(x) := Ψt
Af(x) and fD(x) := Ψt

Df(x).
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Proof: Existence and uniqueness follow from Theorem 2.26, since f(ε) ∈ l1ε . For the stability result,
use that ||u||2A =

〈
f̃(ε), σ−1, f̃(ε)

〉
L2(Id

ε )
and (3.3) to get, with B1 the unit ball in Rd,

||u||2A ≤ C
1

(2π)d

∫

B1

|̃f(ε)A (ξ)|2
|ξ|2 dξ + C

1
(2π)d

∫

Id
ε \B1

|̃f(ε)A (ξ)|2
|ξ|2 dξ + C

1
(2π)d

ε2

∫

Id
ε

|̃f(ε)D (ξ)|2 dξ.

Now use that |̃f(ε)A (ξ)| ≤ ||f(ε)A ||l1ε in the first term, and Plancherel’s identity for the other two

||u||2A ≤ C

∫

B1

||f(ε)A ||2l1ε
|ξ|2 dξ + C

∫

Id
ε \B1

|̃f(ε)A (ξ)|2 dξ + Cε2

∫

Id
ε

|̃f(ε)D (ξ)|2 dξ

≤ C
(
||f(ε)A ||2l1ε + ||f(ε)A ||2l2ε + ε2||f(ε)D ||2l2ε

)
,

whence the claim follows from Lemma 3.1. ¤
The main results of this chapter concern the asymptotic behavior of the solution u(ε) given in

Theorem 3.2 as ε → 0. This analysis will be carried out primarily on the Fourier side and it is
therefore of interest to determine how f̃(ε) relates to f̂ when f(ε) = Pεf .
Lemma 3.3: If v and v(ε) are functions such that the right hand sides below are well-defined, then

[FεPεv](ξ) = v̂(ξ)µ̂(εξ) +
∑

m∈Zd, m 6=0

v̂(ξ +
2π

ε
m)µ̂(εξ + 2πm), and [FP?

ε v(ε)](ξ) = ṽ(ε)(ξ)µ̂(εξ).

Proof: For the first part set µε,m(x) := µ(ε−1x−m) and apply Plancherel’s theorem to (3.5),

[Pεv](m) =
1

εd(2π)d

∫

Rd

v̂(ζ)µ̂ε,m(−ζ) dζ =
1

εd(2π)d

∫

Rd

v̂(ζ)εde−iεm·ζ µ̂(εζ) dζ.

Inserting this into the definition of Fε gives that

(3.6) [FεPεv](ξ) =
∫

Rd

v̂(ζ)µ̂(εζ)


 εd

(2π)d

∑

m∈Zd

eiε(ξ−ζ)·m


 dζ.

Applying Poisson’s summation formula to the function m 7→ eiε(ξ−ζ)·m we find that

εd

(2π)d

∑

m∈Zd

eiε(ξ−ζ)·m =
∑

m∈Zd

δ(ξ − ζ +
2π

ε
m).

This identity in combination with (3.6) proves the claim.
The second part is straightforward;

[FP?
ε v(ε)](ξ) =

∑

n∈Zd

v(ε)(n)
∫

eix·ξµ(ε−1x−n) dx =
∑

n∈Zd

v(ε)(n)
∫

eiε(y+n)·ξµ(y) εddy = ṽ(ε)(ξ)µ̂(εξ).

¤
For our purposes, it is desirable that [FεPεf ](ξ) = f̂(ξ) + O(εk), for some large integer k. In

view of the previous lemma, this question appears to be related to whether µ̂(ξ) − 1 has a high
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order zero at the origin. In fact, for O(ε2p+2) approximation we need to ask that

(3.7) |µ̂(ξ)− 1| ≤ C|ξ|2+l, for − 2 ≤ l ≤ 2p.

We also ask that µ̂(ξ) decays fast for large ξ (which correspondes to a regularity requirement in
physical space) and that µ̂(ξ) has a high order zero around all points 2πn, for n ∈ Zd\{0}, i.e.

(3.8) |µ̂(ξ − 2πn)| ≤ C|ξ|2+l
d∏

j=1

1

1 + n
2(p+1)
j

, for − 2 ≤ l ≤ 2p and n ∈ Zd\{0}.

These conditions were formulated by Babuška [4] and Fix and Strang [24, 25]. They correspond to
a requirement that µ and its translates should be able to reproduce polynomials of degree 2p + 2.
When they are satisfied, the following result can easily be proved.
Lemma 3.4: Suppose that µ satisfies (3.7) and (3.8), that Pε is the corresponding projection and
that f(ε) = Pεf . Then |̃f(ε)(ξ)− f̂(ξ)| ≤ C|εξ|2p+2||f ||L1 .

We will next demonstrate that it is possible to construct a compactly supported function µ that
satisfies (3.7) and (3.8) from basic spline functions. Start by defining the lowest order spline, ψ(1), as
the characteristic function for the cube [−1/2, 1/2]d, in other words ψ(1)(x) =

∏d
j=1 χ[−1/2, 1/2](xj).

Then define the higher splines through succesive convolutions ψ(k) = ψ(1) ∗ ψ(k−1) so that

ψ̂(k)(ξ) =
d∏

j=1

(
sin(ξj/2)

ξj/2

)k

.

Note that ψ(2) satisfies both (3.7) and (3.8) for p = 0 and that ψ(2p+2) satisfies (3.8) for any p.
However, for p > 0, the function ψ(2p+2) does not satisfy (3.7) so we must define µ as a linear
combination of high order splines. For example

µ(1)(x) := 3ψ(4)(x)− 2ψ(6)(x)

satisfies both conditions for p = 1 and

µ(2)(x) := 10ψ(6)(x)− 15ψ(8)(x) + 6ψ(10)(x)

works for p = 2. We have verified that such constructions exist at least up to p = 5.
Henceforth, we will suppose that the projection operators Pε and P?

ε are defined using the spline
based weight-functions µ(k), but in principle, any compactly supported and bounded function that
satisfies (3.7) and (3.8) could be used.

4. Homogenization of conduction problems on mono-atomic lattices

4.1. Derivation of the homogenized equation. Recall that Theorem 3.2 provides a solu-
tion for equation (3.4) that is defined by

ũ(ε)(ξ) := [σ(ε)(ξ)]−1f̃(ε)(ξ),

where f(ε) = Pεf . According to Lemma 3.4, f̃(ε)(ξ) = f̂(ξ) + O(ε2p+2). Thus, if we let S(ε,p)(ξ)
denote the first 2p + 2 terms in the Taylor expansion of the inverse symbol, so that

[σ(ε)(ξ)]−1 = S(ε,p)(ξ) + O(ε2p+2),
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then

ũ(ε)(ξ) = S(ε,p)(ξ)f̂(ξ) + O(ε2p+2).

We now claim that a function of a continuous variable can be defined by

(3.9) u(ε,p) := F−1
[
S(ε,p)f̂

]
,

and that u(ε)(m) = u(ε,p)(m)+O(ε2p+2). In this section we will (1) prove that the function u(ε,p) is
well-defined, (2) rewrite (3.9) as a (quasi-) differential equation in physical space which is called the
homogenized equation and (3) prove approximation bounds under certain conditions on f . For now,
we restrict attention to conduction problems on mono-atomic lattices, but we will later demonstrate
that much of the analysis carries over to multi-atomic lattices (section 5) and more general lattice
models (section 6).

4.2. Well-posedness of the homogenized equation. We start by proving that S(ε,p)(ξ) is
a rational function in ξ. To this end, recall that according to Corollary 2.10

(3.10) σ(ξ) = ξ ·Mξ +
∞∑

j=2

bj(ξ), bj ∈ Π2j ,

where Πn is the set of homogeneous multinomials of degree n and M is a positive definite matrix.
Lemma 3.5: Suppose that ψ(ξ) is a function with a convergent series expansion of the form (3.10).
Then there exist multinomials a2j ∈ Π4j such that for any p ∈ N,

1
ψ(ξ)

=
1

ξ · (Mξ)
+

p∑

j=1

a2j(ξ)
(ξ ·Mξ)j+1

+ R̂p(ξ),

where the remainder term R̂p(ξ) satisfies |∂αR̂p(ξ)| ≤ C|ξ|2p−|α| in some neighborhood of the origin.
Proof: Using induction, we will prove that

(3.11) R̂p(ξ) =

∑∞
j=2p+2 cp

j (ξ)
(ξ ·Mξ)p+1σ(ξ)

, for cj ∈ Π2j ,

and that the multinomials a2j and cp
j can be determined from the bj ’s through the recursion formula

a0(ξ) = 1, c0
j (ξ) = −bj(ξ),

a2j(ξ) = cj−1
2j (ξ), cp+1

j (ξ) = −bj−2p−2(ξ)c
p
2p+2(ξ) + (ξ ·Mξ)cp

j−1(ξ).
(3.12)

Setting |ξ|2M := ξ ·Mξ, we first verify the statement for p = 0,

1
σ(ξ)

=
1

|ξ|2M
+
|ξ|2M − σ(ξ)
|ξ|2Mσ(ξ)

=
1

|ξ|2M
+

∑∞
j=2−bj(ξ)

|ξ|2Mσ(ξ)
.
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Next suppose that it is true up to level p− 1, then starting with (3.11) we find

R̂p−1(ξ) =
cp−1
2p (ξ)

|ξ|2p
Mσ(ξ)

+

∑∞
j=2P+1 cp−1

j (ξ)

|ξ|2p
Mσ(ξ)

=

=

[
cp−1
2p (ξ)

|ξ|2p+2
M

+
cp−1
2p (ξ)(|ξ|2M − σ(ξ))

|ξ|2p+2
M σ(ξ)

]
+

∑∞
j=2p+1 |ξ|2Mcp−1

j (ξ)

|ξ|2p+2
M σ(ξ)

=
cp−1
2p (ξ)

|ξ|2p+2
M

+

∑∞
j=2p+2

[
−cp−1

2p (ξ)bj−2p(ξ) + |ξ|2Mcp−1
j−1(ξ)

]

|ξ|2p+2
M σ(ξ)

which gives the p-level terms of the correct form. ¤
Note that the proof provides a simple algorithm for deriving the multinomials a2j from the bj ’s.
Applying the lemma to the scaled symbol σ(ε)(ξ) = ε−2σ(εξ), we find that

(3.13) [σ(ε)(ξ)]−1 =
1

ξ ·Mξ
+

p∑

j=1

ε2j a2j(ξ)
(ξ ·Mξ)j+1

+ R̂(ε)
p (ξ), where |∂αR̂(ε)

p (ξ)| ≤ Cε2p+2|ξ|2p−|α|.

This proves our initial claim that S(ε,p) is a rational function since

(3.14) S(ε,p)(ξ) =
1

ξ ·Mξ
+

p∑

j=1

ε2j a2j(ξ)
(ξ ·Mξ)j+1

.

In dimensions three and higher, S(ε,p) is a locally integrable rational function, which means that
S(ε,p)(ξ)f̂(ξ) is well-defined as a tempered distribution under very weak conditions on f , say f ∈ L1.
Consequently, the definition (3.9) is well-posed and produces a unique tempered distribution u(ε,p).
Combining (3.9) and (3.14), we find that in a distributional sense

(3.15) (−∇ ·M∇)p+1u(ε,p) = (−∇ ·M∇)pf +
p∑

j=1

ε2j(−∇M · ∇)p−ja2j(∂)f.

Note that the right hand side involves derivatives of order 4p, while the right hand side involves
an elliptic operator of order 2p + 2. This indicates that while the p = 0 homogenized equation
is regularizing, the equation for p = 1 is not, and as p increases the solution u(ε,p) will be less
regular that the data. As a consequence, the load must be very smooth indeed for high order
homogenizations to be considered.

By combining equation (3.15) with some bounded energy condition, traditional (i.e. non-
distributional) homogenized equations can be obtained. For instance, the lowest order equation
reads

(3.16)

{
−∇ ·M∇u(0) = f,

|u|H1 < ∞.

Note that u(0) = u(ε,0) does not depend on ε. We give the following existence, uniqueness and
stability result for the equation (3.16) since it is instructive to compare this result to Theorem 3.2.
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Proposition 3.6: Suppose that f ∈ L1 ∩ L2, then (3.9) provides a weak solution u(0) ∈ H1 for
equation (3.16) that is unique up to a constant. This solution satisfies

|u(0)|2H1 ≤ C (||f ||L1 + ||f ||L2) .

Proof: Let B denote the unit ball and use that |û(ξ)| ≤ C|ξ|−2|f̂(ξ)| to obtain

|u(0)|2H1 =
1

(2π)d

∫

Rd

|ξ|2|û(ξ)|2 dξ
1

(2π)d

∫

Rd

|f̂(ξ)|2
|ξ|2 dξ ≤ C

∫

B

||f ||2L1

|ξ|2 dξ + C

∫

Bc

|f̂(ξ)|2 dξ,

which is clearly bounded as required. ¤

4.3. Convergence proofs. It is time to formally prove that u(ε) = u(ε,p) + O(ε2p+2).

Theorem 3.7: Suppose that d ≥ 3, let u(ε) be the solution of the lattice equation (3.4), where
f(ε) = Pεf , and let u(ε,p) be the approximation defined by (3.9). For ε small and k and l positive
integers such that 2p− 2 ≤ l ≤ 2p and k ≤ 2 + l − 2p we have

|P?
ε u(ε) − u(ε,p)|Hk ≤ Cε2+l−k||f ||Hl .

Proof: For notational convenience, we set σ(ε,p)(ξ) := S(ε,p)(ξ)−1. Then, since |εξ| is bounded
when ξ ∈ Id

ε , equation 3.13 implies the following bound:

(3.17)
∣∣∣∣

1
σ(ε)(ξ)

− 1
σ(ε,p)(ξ)

∣∣∣∣ ≤ Cε2|εξ|l, for ξ ∈ Id
ε and 0 ≤ l ≤ 2p.

By invoking Plancherel’s equality, the bound can be proved on the Fourier side;

|P?
ε u(ε) − u(ε,p)|2Hk =

1
(2π)d

∫

Rd

|ξ|2k
∣∣∣ũ(ε)(ξ)µ̂(εξ)− û(ε,p)(ξ)

∣∣∣
2

dξ

=
1

(2π)d

∫

Id
ε

|ξ|2k|ũ(ε)(ξ)µ̂(εξ)− û(ε,p)(ξ)|2 dξ +
1

(2π)d

∫

Rd\Id
ε

|ξ|2k|ũ(ε)(ξ)µ̂(εξ)|2 dξ

+
1

(2π)d

∫

Rd\Id
ε

|ξ|2k|û(ε,p)(ξ)|2 dξ =: K1 + K2 + K3.

Applying Lemma 3.3 gives that

K1 =
1

(2π)d

∫

Id
ε

|ξ|2k
∣∣∣ f̃

(ε)(ξ)µ̂(εξ)
σ(ε)(ξ)

− f̂(ξ)
σ(ε,p)(ξ)

∣∣∣
2
dξ

≤Cε−2k

∫

Id
ε

∣∣∣ f̂(ξ)µ̂(εξ)2

σ(ε)(ξ)
− f̂(ξ)

σ(ε,p)(ξ)

∣∣∣
2
dξ

︸ ︷︷ ︸
=:K11

+Cε−2k

∫

Id
ε

∣∣∣ µ̂(εξ)
σ(ε)(ξ)

∑

n 6=0

f̂(ξ +
2π

ε
n)µ̂(εξ + 2πn)

∣∣∣
2
dξ

︸ ︷︷ ︸
=:K12

.

When bounding K11 we use that, by (3.17) and (3.7)
∣∣∣∣
µ̂2(εξ)
σ(ε)(ξ)

− 1
σ(ε,p)(ξ)

∣∣∣∣
2

≤
∣∣∣∣
µ̂2(εξ)− 1

σ(ε)(ξ)

∣∣∣∣
2

+
∣∣∣∣

1
σ(ε)(ξ)

− 1
σ(ε,p)(ξ)

∣∣∣∣
2

≤ Cε4|εξ|2l.

Then, since |ξ| ≤ Cε−1 for ξ ∈ Id
ε ,

K11 ≤ Cε−2k

∫

Id
ε

∣∣∣∣
µ̂2(εξ)
σ(ε)(ξ)

− 1
σ(ε,p)(ξ)

∣∣∣∣
2

|f̂(ξ)|2, dξ ≤ Cε4+2l−2k

∫

Id
ε

|ξ|2l|f̂(ξ)|2 dξ ≤ Cε4+2l−2k||f ||2Hl .
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When bounding K12 use first that |µ̂(εξ)| is bounded,

K12 ≤
∑

n 6=0

∑

m6=0

Cε−2k

∫

Id
ε

1
σ(ε)(ξ)2

f̂(ξ +
2π

ε
n)µ̂(εξ + 2πn)f̂(ξ +

2π

ε
m)µ̂(εξ + 2πm) dξ

≤
∑

n 6=0

∑

m6=0

Cε−2k

∫

Id
ε

(
|f̂(ξ +

2π

ε
n)|2 + |f̂(ξ +

2π

ε
m)|2

)
µ̂(εξ + 2πn)

σ(ε)(ξ)
µ̂(εξ + 2πm)

σ(ε)(ξ)
dξ

Noting that the two terms have the same sum we find that

K12 ≤
∑

n6=0

∑

m6=0

Cε−2k

∫

Id
ε

|f̂(ξ +
2π

ε
n)|2 µ̂(εξ + 2πn)

σ(ε)(ξ)
µ̂(εξ + 2πm)

σ(ε)(ξ)
dξ.

Then we use (3.8),

K12 ≤
∑

n 6=0

∑

m6=0

Cε−2k

∫

Id
ε

|f̂(ξ +
2π

ε
n)|2 |εξ|

2+l

|ξ|2
|εξ|2+l

|ξ|2 ∏d
j=1(1 + m

2(p+1)
j )

dξ

≤
∑

n 6=0

Cε4+2l−2k

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2 dξ ≤ Cε4+2l−2k||f ||2Hl .

We next turn to bounding K2. By definition

K2 =
1

(2π)d

∫

Rd\Id
ε

|ξ|2k

∣∣∣∣∣
f̃(ε)(ξ)µ̂(εξ)

σ(ε)(ξ)

∣∣∣∣∣
2

dξ =
1

(2π)d

∑

n 6=0

∫

Id
ε

|ξ +
2π

ε
n|2k

∣∣∣∣∣
f̃(ε)(ξ)µ̂(εξ + 2πn)

σ(ε)(ξ)

∣∣∣∣∣
2

dξ

Now we invoke the inequality (3.8),

K2 ≤
∑

n 6=0

∫

Id
ε

∣∣∣n
ε

∣∣∣
2k
|̃f(ε)(ξ)|2 |εξ|4+2l

|ξ|4 ∏d
j=1(1 + n

2(p+1)
j )

dξ ≤ Cε4+2l−2k

∫

Id
ε

|ξ|2l |̃f(ε)(ξ)|2 dξ.

We need to prove that the integral in the last expression is bounded by ||f ||2
Hl ; by Lemma 3.3,

∫

Id
ε

|ξ|2l |̃f(ε)(ξ)|2 dξ ≤
∫

Id
ε

|ξ|2l|f̂(ξ)µ̂(εξ)|2 dξ +
∫

Id
ε

|ξ|2l|
∑

n 6=0

f̂(ξ +
2π

ε
n)µ̂(εξ + 2πn)|2 dξ

Expanding the sum as in the bound for K12 we find that∫

Id
ε

|ξ|2l |̃f(ε)(ξ)|2 dξ ≤C||f ||2Hl + C
∑

n6=0

∑

m6=0

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2µ̂(εξ + 2πn)µ̂(εξ + 2πm) dξ.

By (3.8) the sum over m produces nothing more than a constant. Then use that µ̂(εξ + 2πn) is
bounded to obtain∫

Id
ε

|ξ|2l |̃f(ε)(ξ)|2 dξ ≤C||f ||2Hl + C
∑

n 6=0

∫

Id
ε

|ξ|2l|f̂(ξ +
2π

ε
n)|2 dξ

≤C||f ||2Hl + C
∑

n 6=0

∫

Id
ε

|ξ +
2π

ε
n|2l|f̂(ξ +

2π

ε
n)|2 dξ ≤ C||f ||2Hl ,

which shows that K2 is bounded as required.
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Finally we bound K3. By definition

K3 =
1

(2π)d

∫

Rd\Id
ε

|ξ|2k

∣∣∣∣∣
f̂(ξ)

σ(ε,p)(ξ)

∣∣∣∣∣
2

dξ ≤ C

∫

Rd\Id
ε

( |ξ|k
σ(ε,p)(ξ)

)2

|f̂(ξ)|2 dξ.

Now use that for ξ ∈ Rd\Id
ε ,

|ξ|k
σ(ε,p)(ξ)

≤ |ξ|kCε2p|ξ|2p−2 = Cε2p |ξ|l
|ξ|2+l−k−2p

≤ Cε2+l−k|ξ|l,

since 2+l−k−2p ≥ 0. This immediately yields K3 ≤ Cε4+2l−2k||f ||2
Hl and completes the proof. ¤

In many cases, u(ε) → u(ε,p) pointwise, and moreover, this convergence is uniform. Before
proving this claim we give a proposition that specifies when u(ε,p) is continuous.
Proposition 3.8: Suppose that f ∈ L1 ∩ H2p+k for some k > d/2 − 2. Then the function u(ε,p)

defined by (3.9) is continuous.

Proof: We prove the claim by proving that û(ε,p) ∈ L1. First note that, with B the unit ball,

||û(ε,p)||L1 =
∫

Rd

|S(ε,p)(ξ)f̂(ξ)| dξ ≤ C

∫

B

|f̂(ξ)|
|ξ|2 dξ + C

∫

Bc

|ξ|2p−2|f̂(ξ)| dξ

≤C

∫

B

||f ||2L1

|ξ|2 dξ + C

[∫

Bc

|ξ|−2k−4 dξ

∫

Bc

|ξ|4p+2k |f̂(ξ)|2 dξ

]1/2

,

which is finite precisely when f ∈ L1 ∩H2p+k and 2k + 4 > d. ¤
Theorem 3.9: With the same assumptions as in Theorem 3.7 we have, for small ε, and k > d/2−2,

sup
n∈Zd

|u(ε)(n)− u(ε,p)(εn)| ≤ C||f ||H2p+k





ε2(p+1) if k > d/2,

ε2(p+1)| log ε| if k = d/2,

ε2(p+1)+k−d/2 if k < d/2.

Proof: Due to translation invariance it is enough to bound |u(ε)(0)− u(ε,p)(0)|. Defining σ(ε,p) as
in the proof of Theorem 3.7, we have

u(ε)(0)− u(ε,p)(0) =
1

(2π)d

∫

Id
ε

f̃(ε)(ξ)
σ(ε)(ξ)

dξ − 1
(2π)d

∫

Rd

f̂(ξ)
σ(ε,p)(ξ)

dξ

=
1

(2π)d

∫

Id
ε

(
f̃(ε)(ξ)
σ(ε)(ξ)

− f̂(ξ)
σ(ε,p)(ξ)

)
dξ +

1
(2π)d

∫

Rd\Id
ε

f̂(ξ)
σ(ε,p)(ξ)

dξ =: J1 + J2.

By Lemma 3.3 we find that

J1 =
1

(2π)d

∫

I2
ε

(
f̂(ξ)µ̂(εξ)
σ(ε)(ξ)

− f̂(ξ)
σ(ε,p)(ξ)

)
dξ +

∑

n6=0

1
(2π)d

∫

Id
ε

f̂(ξ + 2π
ε n)µ̂(εξ + 2πn)
σ(ε)(ξ)

dξ =: J11 +J12.

When bounding J11 use that (3.17) and (3.7) combined provide the inequality
∣∣∣∣

µ̂(εξ)
σ(ε)(ξ)

− 1
σ(ε,p)(ξ)

∣∣∣∣ ≤ Cε2|εξ|2p,
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and hence

|J11| ≤ Cε2+2p

∫

Id
ε

|ξ|2p|f̂(ξ)| dξ.

Now by Cauchy’s inequality we find that

|J11| ≤ Cε2+2p

[∫

Id
ε

1
(1 + |ξ|2)k

dξ

∫

Id
ε

(1 + |ξ|2)k|ξ|4p|f̂(ξ)|2 dξ

]1/2

≤ C(ε, k, d)ε2+2p||f ||H2p+k ,

where

C(ε, k, d) =





C for k > d/2,
C| log ε| for k = d/2,

Cεk−d/2 for k < d/2.

When bounding J12 we need that

(3.18)
µ̂(εξ + 2πn)

σ(ε)(ξ)
≤ Cε2p|ξ +

2π

ε
n|2p−2, for ξ ∈ Id

ε .

When p ≥ 1 the bound (3.18) is proved from (3.7) as follows

µ̂(εξ + 2πn)
σ(ε)(ξ)

≤ C
|εξ|2p

|ξ|2 ≤ Cε2p|ξ|2p−2 ≤ Cε2p|ξ +
2π

ε
n|2p−2,

since 2p− 2 ≥ 0 and |ξ| ≤ |ξ + 2π
ε n|. When p = 0 we use instead

µ̂(εξ + 2πn)
σ(ε)(ξ)

≤ C
|εξ|2

|ξ|2 ∏d
j=1(1 + n2

j )
≤ C

1∏d
j=1(1 + (nj/ε)2)

≤ C|ξ +
2π

ε
n|−2.

Now that it is proved we can use (3.18) when bounding J12 as follows

|J12| ≤C
∑

n 6=0

∫

Id
ε

|f̂(ξ +
2π

ε
n)|ε2p|ξ +

2π

ε
n|2p−2 dξ = Cε2p

∫

Rd\Id
ε

|ξ|2p−2|f̂(ξ)| dξ

≤Cε2p

[∫

Rd\Id
ε

1
|ξ|4(1 + |ξ|2)k

dξ

]1/2 [∫

Rd\Id
ε

|ξ|4p(1 + |ξ|2)k|f̂(ξ)|2 dξ

]1/2

.

Since 2k > d− 4 the first factor is bounded by ε2+k−d/2, thus

J12 ≤ Cε2p+2+k−d/2||f ||H2p+k .

Finally we note that J2 satisfies

|J2| ≤ C

∫

R\Id
ε

|f̂(ξ)|ε2|εξ|2p−2 dξ ≤ Cε2p

∫

R\Id
ε

|ξ|2p−2|f̂(ξ)| dξ,

and thus can be bounded like J12. ¤
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1

2

Figure 3.1. A bi-atomic lattice. The unit cell is exhibited to the left.

5. Homogenization of conduction problems on multi-atomic lattices

Before giving the general homogenization results for multi-atomic lattices we will consider a
simple example that will illustrate the main points.

Example: Consider the two-dimensional lattice illustrated in Figure 3.1. Suppose that all connec-
tions have conductivity 1. Then the scaled symbol takes the form

σ(ε)(ξ) =
1
ε2

[
4 sin2 εξ1

2 + 4 sin2 εξ2
2 + 4 −1− eiεξ1 − eiεξ2 − eiε(ξ1+ξ2)

−1− e−iεξ1 − e−iεξ2 − e−iε(ξ1+ξ2) 4

]
.

The determinant can easily be computed,

detσ(ε)(ξ) =
1
ε4

[
24 sin2 εξ1

2
+ 24 sin2 εξ2

2
+ 4 sin2 ε(ξ1 + ξ2)

2
+ 4 sin2 ε(ξ1 − ξ2)

2

]
.

and thence the inverse symbol

(3.19) [σ(ε)(ξ)]−1 =
1

ε2 detσ(ξ)

[
4 1 + eiεξ1 + eiεξ2 + eiε(ξ1+ξ2)

1 + e−iεξ1 + e−iεξ2 + e−iε(ξ1+ξ2) 4 sin2 εξ1
2 + 4 sin2 εξ2

2 + 4

]
.

Now note that ε2 detσ(ε)(ξ) = 8|ξ|2 + O(ε2|ξ|4), which means that [ε2 detσ(ε)(ξ)]−1 has a power
series expansion of the form (3.13) and we find that

S(ε,0)(ξ) =
1

8|ξ|2
[

4 4 + 2εi(ξ1 + ξ2)
4− 2εi(ξ1 + ξ2) 4

]
.

From the definition (3.9), it is clear that u(ε,0) satisfies the equation

(3.20)

{
−8∆u

(ε,0)
1 = 4(f1 + f2) + 2ε(∂1 + ∂2)f2,

−8∆u
(ε,0)
2 = 4(f1 + f2)− 2ε(∂1 + ∂2)f1.

We make two observations. First that the differential operator on the left hand side is the elliptic
operator associated with the matrix M that Corollary 2.10, specifies as the leading term in the
series expansion of detσ(ξ). This fact turns out to hold for any multi-atomic lattice and we will
capitalize heavily on it in what follows. The second observation is that to first order, the equations
for u1 and u2 are identical, with a right hand side given by

∑
κ fκ. This fact holds for general

lattices as well, as we shall demonstrate. ¤
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For the general case, we first recall that according to Corollary 2.10, there exists a positive
definite matrix M ∈ Rd×d such that

(3.21) detσ(ξ) = ξ ·Mξ + O(|ξ|4).

Among other things, this means that detσ(ξ) is the symbol for some fictitious mono-atomic lattice.
This lattice will feature frequently in this section, and even more prominently in Chapter 4 on
lattice Green’s functions and we name it as follows:

Definition: Given a multi-atomic lattice with symbol σ(ξ), call the mono-atomic lattice that has
the symbol detσ(ξ) the associated mono-atomic lattice.

We can also use (3.21) to derive the series expansion for σ(ξ)−1. First note that all codetermi-
nants of σ(ξ) are trigonometric polynomials, which is to say there exist multinomials pκλ such that
the κλ-codeterminant is given by pκλ(eiξ). Then by Cramer’s rule,

[
σ(ξ)−1

]
κλ

=
pκλ(eiξ)
detσ(ξ)

.

Lemma 3.5 now provides the series expansion of (detσ(ξ))−1. This gives, taking the scaling
σ(ε)(ξ) = ε−2σ(εξ) into account,

(3.22)
[
[σ(ε)(ξ)]−1

]
κλ

=
pκλ(eiεξ)
ξ ·Mξ

+
p∑

j=1

ε2j pκλ(eiεξ)a2j(ξ)
(ξ ·Mξ)j+1

+ ε2O(|εξ|2p).

Since every pκλ is a multi-nomial, the Taylor expansion of S(ε,p)(ξ) can now easily be derived.
While equation (3.22) can be used to derive homogenizations of arbitrary order, we will for

the rest of this section study the lowest order equation only. First we recall that according to
Lemma 2.12, Ch. 2, the series expansion of the co-determinants must take the form pκλ(eiξ) =
c0 + v(κλ) · (iξ) + O(|ξ|2), for some c0 > 0 that does not depend on κλ. Thus

[
[σ(ε)(ξ)]−1

]
κλ

=
c0 + εv(κλ) · (iξ)

ξ ·Mξ︸ ︷︷ ︸
=:[S(ε,0)(ξ)]κλ

+ε2O(|εξ|0), as εξ → 0.

The homogenized equation then reads

(3.23)

{
−∇ · (M∇u

(ε,0)
κ ) = c0fκ + ε

∑q
λ=1 v(κλ) · ∇fj , κ = 1, . . . , q.∑q

κ=1

∫ |∇u
(ε,0)
κ |2 < ∞.

Note that −∇ · (M∇) is the homogenized operator of the associated mono-atomic lattice.
Error bounds can be derived in a fashion very similar to the mono-atomic case. The only

adjustments needed arise because of the slightly weaker regularizing effect of the new homogenized
equations. As an illustration we formulate and prove the pointwise bound. Note that for the
solution to be continuous we now need that f ∈ Hk ∩ L1 for some k > d/2− 1, cf. Prop. 3.8.
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Theorem 3.10: Suppose that d ≥ 3, let u(ε) be the solution of (3.4) with f(ε) = Pεf , and let u(ε,p)

be the solution of (3.23). Then if ε is small and k > d/2− 1,

sup
n∈Zd

|u(ε)(n)− u(ε,p)(εn)| ≤ C||f ||H2p+k





ε2(p+1) if k > d/2,

ε2(p+1)| log ε| if k = d/2,

ε2(p+1)+k−d/2 if k < d/2.

Proof: The proof follows the proof of Theorem 3.9 closely. Simply replace [σ(ε,p)(ξ)]−1 by the
matrix S(ε,p)(ξ) and then split the error into J11, J12 and J2 as before. Bound J11 using that

∣∣∣µ̂(εξ)[σ(ε)(ξ)−1]κλ − [S(ε,0)(ξ)]κλ

∣∣∣ ≤ Cε2, ∀ ξ ∈ Id
ε .

The bound for J12 is also entirely analogous since |[σ(ε)(ξ)−1]κλ| ≤ C|ξ|−2 in Id
ε .

The only real difference lies in the bound for J2. Since [S(ε,0)(ξ)]κλ decays somewhat more
slowly than |ξ|−2 we get

|J2| ≤max
κ

q∑

λ=1

1
(2π)d

∫

Rd\Id
ε

|[S(ε,0)(ξ)]κλ| |f̂λ(ξ)| dξ ≤ C

q∑

λ=1

∫

Rd\Id
ε

(
1
|ξ|2 +

ε

|ξ|
)
|f̂λ(ξ)| dξ

≤Cε

q∑

λ=1

∫

Rd\Id
ε

1
|ξ| |f̂λ(ξ)| dξ ≤ Cε

q∑

λ=1

[∫

Rd\Id
ε

1
|ξ|2(1 + |ξ|2)k

dξ

∫

Rd\Id
ε

(1 + |ξ|2)k|f̂(ξ)|2 dξ

]1/2

.

We see that the bound evaluates to the same quantity, Cε2+k−d/2||f ||Hk , as in the mono-atomic
case, but that a necessary condition for convergence of the first integral is now that k > d/2−1. ¤

Before closing this section we will show that by re-structuring the equations the nature of
the homogenization can be rendered more transparent. Note that by setting fA := (f1 + f2)/2,
fD = (f1−f2)/2, and likewise u

(ε,0)
A := (u(ε,p)

1 +u
(ε,p)
2 )/2, u

(ε,0)
D := (u(ε,p)

1 −u
(ε,p)
2 )/2, the homogenized

equations for the model problem (3.20), can be rearranged as
{
−4∆u

(ε,0)
A = 4fA − ε(∂1 + ∂2)fD,

−4∆u
(ε,0)
D = ε(∂1 + ∂2)fA.

What is significant here is that to lowest order, u
(ε,0)
A satisfies Poisson’s equation with right hand

side fA, and that uD = O(ε). In order to generalize this observation we split the functions u(ε,0)

and f into averages and differences by applying the operators ΨA and ΨD from section 4 to u(ε,0)

and f pointwise,

u(ε,0)
α (x) = Ψt

αu(ε,0)(x), fα(x) = Ψt
αf(x), α = A, D,

and define the elliptic operator Adom as the differential operator corresponding to the matrix M
in the series expansion (3.21), Adom := −∇(M∇). Now, invoking Lemma 2.12, we can write the
lowest order homogenized equations as

Adomu
(ε,p)
A =c0fA + εBfD,

Adomu
(ε,p)
D =εB∗fA,

where B is a vector of first order difference operators.
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6. Homogenization of mechanical lattices

6.1. Preliminaries. In this section we will show how the analysis of conduction problems in
sections 4 and 5 can be extended to cover mechanical lattice models. It will become apparent
that while the analysis of truss lattices is a very straight-forward generalization of the material
covered, the case of frame lattices is more involved. For simplicity, we treat only the first order
homogenization, although higher order models can easily be derived. Throughout, we will assume
that the truss lattices are locally N -coercive and that the frame lattices are connected.

In a mechanical lattice model, the scaled symbol σ(ε) is a matrix consisting of q×q blocks, each
of size k × k (where k = d for trusses and k = d(d + 1)/2 for frames). Set

τ (κλ)(ξ) :=
[
lim
ε→0

σ(ε)(ξ)−1
]
Block(κλ)

,

where the subscript “Block(κλ)” indicates that the submatrix corresponding to the κλ-block should
be extracted. We also define

σ
(κλ)
H (ξ) := τ (κλ)(ξ)−1.

It can be demonstrated that for the models under consideration, the matrix τ (κλ)(ξ) has entries
that are rational functions in ξ, and σ

(κλ)
H (ξ) has entries that are polynomials in ξ.

6.2. Truss lattices. We will first determine how σ(ε) scales with ε. As an axial spring is
scaled, its cross-section scales as εd−1 and its length scales as ε so every element of the local
stiffness matrix scales as εd−2. Since the load scales as εd, this implies that the relation (3.1)
derived for the conduction problem remains valid, i.e. σ(ε)(ξ) = ε−2σ(εξ). Combining this scaling
relation with Lemma 2.16 we find that, with σ0 defined by (2.19),

lim
ε→0

σ(ε)(ξ)−1 = lim
ε→0

(
ε2ΨAσ0(εξ)−1Ψt

A + ε2O(|εξ|−1)
)

= ΨAσ0(ξ)−1Ψt
A.

We used that ε2σ0(εξ)−1 = σ0(ξ)−1 (since every entry of σ0(ξ) is a second order polynomial). This
means that τ (κλ) = σ−1

0 , and thus σ
(κλ)
H = σ0. Thus, to lowest order, the homogenized equations for

the qd×qd system of equations Au = f, consists of the d×d system, Au = f , where A is the matrix
of second order differential operators that has the symbol σ0. It is our belief (although this is not
yet proved) that A will always be an elasticity operator. Some examples are given in Appendix B.

The convergence will be O(ε2) for mono-atomic lattices and O(ε) for multi-atomic ones. This
can be proved using the same techniques used for the conduction problem, the only difference being
that for the present case, all entries of σ(ε)(ξ)−1 will have as their dominant term a rational function
consisting of a polynomial of degree 2(d− 1) that is divided by a polynomial of degree 2d. For the
conduction problem, the corresponding dominant term was a constant divided by a polynomial of
degree 2. However, the relevant bounds on derivatives and decay rates are the same for both cases.

6.3. Frame lattices. The homogenization of frame lattices is more subtle than the previous
cases considered because different terms of σ(ε) scale differently with ε. Let ‘t’ and ‘r’ denote
translational and rotational degrees of freedom, as in the discussion near equation (2.8), and write
the equilibrium equations in the form([

σaxial
tt (ξ) 0

0 0

]
+

[
σbending

tt (ξ) σbending
tr (ξ)

σbending
rt (ξ) σbending

rr (ξ)

]) [
ũt(ξ)
ũr(ξ)

]
=

[
f̃t(ξ)
f̃r(ξ)

]
.
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The first matrix, σaxial
tt , is the same symbol as in the truss model, so it scales as ε−2. When

determining the scaling of the bending components, we note that, cf. (A.1),

σbending
tt (ξ) ∼ I

L3
, σbending

tr (ξ) = [σbending
rt (ξ)]t ∼ I

L2
, σbending

rr (ξ) ∼ I

L
,

where I is the moment of inertia of a beam and L is its length. As the beam is scaled, Iε = I0ε
d+1,

and Lε = L0ε. Taking into account that the load scales as εd, this gives the aggregate scaling[
σ

(ε)
tt (ξ) σ

(ε)
tr (ξ)

σ
(ε)
rt (ξ) σ

(ε)
rr (ξ)

]
=

[
ε−2σtt(εξ) ε−1σtr(εξ)
ε−1σrt(εξ) σrr(εξ)

]
.

This means that when the limit is computed and σ
(κλ)
H is split up,

σ
(κλ)
H (ξ) =

[
σ

(κλ)
H,tt (ξ) σ

(κλ)
H,tr (ξ)

σ
(κλ)
H,rt (ξ) σ

(κλ)
H,rr (ξ)

]
,

one will find that σ
(κλ)
H,tt consists of second order polynomials, σ

(κλ)
H,rt and σ

(κλ)
H,tr consist of first order

polynomials and σ
(κλ)
H,rr has constant entries. Unlike the previous cases studied, it is not the case

that all σ
(κλ)
H are identical. Consequently, the O(ε) homogenized equations, Au = f , is a large

system governing qd(d + 1)/2 variables. The displacement variable u represents both translational
and rotational degrees of freedom and f both force and torque loading.

The reason that the blocks σ
(κλ)
H are all different is that a torque load produces distinctly

different responses depending on the point of application. In a case where fr = 0, the rotational
degrees of freedom can be eliminated by forming the Schur complement of the matrices σ

(κλ)
H ,

σ
(κλ)
H,reduced = σ

(κλ)
H,tt − σ

(κλ)
H,tr [σ(κλ)

H,rr ]−1σ
(κλ)
H,rt .

These matrices are the same for every κλ. In fact, σ
(κλ)
H,reduced = σ0, where σ0 is defined as in section

3.4, Ch. 2. The matrix σ0(ξ) is a d×d matrix whose entries are second order polynomials. In every
case that we have studied, it is the symbol of a classical elasticity operator.

In Appendix B we give examples that illustrate the main concepts discussed here. For lattice
A we explicity derive the homogenized equations. Lattices D and E illustrate how the different
matrices σ

(κλ)
H may be different but still have the same Schur complement.



CHAPTER 4

The lattice Green’s function

1. Introduction

Consider the basic lattice equation

(4.1)
{

Au = f,

||u||A <∞,

in dimension d ≥ 3. We suppose that f ∈ l1, so that the solution is given by u = F−1[σ−1f̃] (cf.
Theorem 2.21). Since multiplication in Fourier space corresponds to a convolution in physical space
we can write u = [F−1σ−1] ∗ f. Thus, setting

(4.2) G(m) :=
[
F−1σ−1

]
(m) =

1
(2π)d

∫

Id

e−im·ξσ−1(ξ) dξ,

we can write the solution of (4.1) as

(4.3) u(m) = [G ∗ f](m) =
∑

n∈Zd

G(m− n)f(n).

In this section we will investigate the asymptotic behavior of G(m) for large m. We will first
show that for conduction problems on mono-atomic lattices we can, for any natural integer P , find
a rational function GP such that

G(m) = GP (m) + O(|m|−2P−d).

We will also show that each function GP satisfies the poly-harmonicity condition

(−∇ · (M∇))P+1GP (x) = 0, for x 6= 0,

where M is the matrix given by Corollary 2.10. In fact, the function GP is the fundamental solution
of the homogenized operator A(ε,p) derived in Chapter 3, evaluated at ε = 1. Considering next
multi-atomic lattices (for which G(m) is a matrix), we will construct a scalar Green’s function
GH such that any entry of G(m) can be obtained by adding a finite number of shifts of GH. The
asymptotic expansion then follows directly from the expansion of GH. The function GH turns out
to be the Green’s function connected with the associated mono-atomic lattice from section 5 in
Ch. 3

We restricted attention to dimensions three and higher because in two dimensions, the integral
in the definition (4.2) is divergent. However, for loads f such that

∑
n f(n) = 0, a renormalized

Green’s function G can be defined in such a way that equation (4.3) is still valid and asymptotic
expansions of the kind described can be derived (see section 3).

The structure of the chapter is as follows: In section 2 we consider the conduction problem and
derive the asymptotic expansion for a mono-atomic lattice in three dimensions. In section 3 we

45
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extend the analysis to mono-atomic lattices in arbitrary dimension. In section 4 we consider multi-
atomic lattices. In section 5 we give some numerical examples that indicate that the constants in
the error estimates of the previous sections are small.

For some classical lattices, we give the functions GP in Appendix B.

2. Mono-atomic lattices in three dimensions

Consider the conduction problem on a connected mono-atomic lattice in three dimensions. For
this case, the function σ(ξ)−1 is analytic for ξ 6= 0. This means that the contribution to the integral
in (4.2) from any domain bounded away from the origin decays faster than any rational function
as |m| → ∞ and the asymptotic behavor of G(m) is determined entirely by the |ξ|−2-singularity at
the origin. We will capture this behavior using the series expansion of σ(ξ)−1 provided by Lemma
3.5.

For notational convenience we assume for the moment that the matrix M in the expansion
(3.10) equals unity, so that

(4.4) σ(ξ) = |ξ|2 +
∞∑

j=2

bj(ξ), for bj ∈ Π2j .

Then for any P , Lemma 3.5 furnishes an expansion

1
σ(ξ)

=
P∑

p=0

a2p(ξ)
|ξ|2p+2

+ R̂P (ξ),

where a0(ξ) = 1, a2q ∈ Π4q, and |∂αR̂P (ξ)| ≤ C|ξ|2P−|α|, for ξ ∈ I3. Recall that the multi-nomials
a2p can be obtained from the multi-nomials bj ’s through the recursive relation (3.12). Now we
define

(4.5) GP := F−1




P∑

p=0

a2p(ξ)
|ξ|2p+2


 .

Note that the integral is strongly divergent since the integrand actually grows as |ξ| → ∞. We
therefore interpret F as an operator on the tempered distributions. Following Gel’fand & Shilov
(1964), we let S denote the set of Schwartz functions and set, for ϕ ∈ S,

ϕ̂(x) := [Fϕ](x) =
∫

R3

eix·ξϕ(x) dx, and ϕ̌(x) := [F−1ϕ](x) =
1

(2π)d

∫

R3

e−ix·ξϕ(x) dx, .

Then GP ∈ S ′ is defined as the function for which

〈GP , ϕ〉 =
∫

Rd




P∑

p=0

a2p(ξ)
|ξ|2p+2


 ϕ̌(ξ) dξ, ∀ ϕ ∈ S,

where 〈·, ·〉 is the usual pairing between S ′ and S.
Even though the definition of GP is somewhat involved, it is actually a simple matter to evaluate

the inverse Fourier transform in (4.5):



2. MONO-ATOMIC LATTICES IN THREE DIMENSIONS 47

Proposition 4.1: Given a function a2p ∈ Π4p we have, for p ≥ 1,

gp(x) := F−1

[
a2p(ξ)
|ξ|2p+2

]
(x) =

(−1)p

π 2p+2 p! (2p− 1)!!
a2p(∂)|x|2p−1,

where ∂ = (∂1, ∂2, ∂3) is the vector of first order partial differential operators.
Proof: We first use induction to show that the function fp(x) := αp|x|2p−1, where α0 = (4π)−1

and αp = (−1)p(π2p+2 p! (2p− 1)!!)−1 for p ≥ 1, solves the distributional equation

(4.6) (−∆)p+1fp(x) = δ(x).

It is well known that this is true for p = 0. Next suppose that it is true for all integers up to
(p− 1). Then, recalling that the product rule for differentiation holds for distributions of the type
ψF , where ψ is a multi-nomial and F is any distribution, we find that

(−∆)p+1fp(x) =− (−∆)pαp

[
(∆|x|2p)|x|−1 + 2(∇|x|2p) · (∇|x|−1) + |x|2p(∆|x|−1)

]

=− (−∆)pαp

[
2p(2p + 1)|x|2p−3 − 4p|x|2p−3 − 4π|x|2pδ(x)

]

=− (−∆)pαp(4p2 − 2p)|x|2p−3.

At this point we apply the induction assumption which completes the proof of (4.6).
Applying the Fourier transform to equation (4.6) we find that |ξ|2p+2f̂p(ξ) = 1 and so

(4.7) |ξ|−(2p+2) = f̂p(ξ) + ϕ̂(ξ)

where ϕ(x) is a distribution such that |ξ|2p+2ϕ̂(ξ) = 0. Consequently, support(ϕ̂) = {0} and since ϕ̂
is a tempered distribution we then know that ϕ̂(ξ) is a finite sum of delta-functions and derivatives
of delta-functions, all supported at the origin. This in turn means that ϕ is a finite multi-nomial.
Multiplying equation (4.7) by a2p(ξ) and taking inverse Fourier transforms we find that

gp(x) = a2p(∂)fp(x) + a2p(∂)ϕ(x).

It remains to prove that the last term on the right hand side vanishes. Since it is a multi-nomial
it is sufficient to prove that it tends to zero as |x| → ∞. The term a2p(∂)fp clearly decays in
this fashion so we only need to prove that gp decays. To this end fix a compactly supported,
infinitely differentiable function ψ such that ψ(x) ≡ 1 in some neighbourhood of the origin and set
g′p := F−1[ψĝp] and g′′p := F−1[(1− ψ)ĝp] so that gp = g′p + g′′p . Then

|x|2pg′p(x) = |x|2pF−1[ψĝp](x) = F−1[(−∆)p(ψĝp)](x),

which is uniformly bounded since (−∆)p(ψĝp) ∈ L1. The proof for g′′p is analogous. ¤
We are now prepared to state and prove a bound on the truncation error.

Theorem 4.2: Let G be defined by (4.2) and GP by (4.5). Then

|G(n)−GP (n)| ≤ C

|n|2P+3
, ∀ n ∈ Z3,

where C depends on P but not on n.

Proof: First note that, with gp defined in Proposition 4.1,

G−GP = G−GP+1 + gP+1.
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By Proposition 4.1, gP+1(n) = O(|n|−2P−3). Therefore we only need to prove that |G(n) −
GP+1(n)| ≤ C|n|−2P−3. This reformulation is necessary because our technique for bounding the
remainder term does not give a sharp bound.

Fix an infinitely differentiable function ψ such that ψ(ξ) ≡ 1 for |ξ| ≤ 1 and ψ(ξ) ≡ 0 for
|ξ| ≥ 2. Using that F−1[ψϕ] = F−1[ψϕ] for any ϕ, we obtain the representation

G−GP+1 =F−1[σ−1]−F−1[ĜP+1]

=F−1[σ−1]− F−1[ψ ĜP+1] + F−1[ψ ĜP+1]−F−1[ĜP+1]

=F−1[σ−1 − ψ ĜP+1] + F−1[(ψ − 1)ĜP+1] =: E1 + E2.

We start by bounding E1. Set R = σ−1 − ψ ĜP+1 so that E1 = F−1[R]. Note that R is I3-
periodic, has partial derivatives of all orders away from the origin, and that |∂αR(ξ)| ≤ C|ξ|2P+2−|α|.
Then

|n|2P+4E1(n) =
1

(2π)3

∫

I3

[
(−∆)P+2e−in·ξ

]
R(ξ) dξ

= lim
ε→0

1
(2π)3

∫

I3\Bε

[
(−∆)P+2e−in·ξ

]
R(ξ) dξ.

where Bε is the ball of radius ε around the origin. We use Green’s theorem to move all the
derivatives onto R. The volume integrals will then contain a |ξ|−2 singularity at the origin and the
surface integrals a |ξ|−1 singularity. Consequently the integral is bounded as ε → 0, which means
that |n|2P+4|E1(n)| is uniformly bounded in n.

To bound E2, we use that for any positive integer p

|n|2pE2(n) = |n|2pF−1[(ψ − 1)ĜP+1](n) = F−1[(−∆)p(ψ − 1)ĜP+1](n).

Note that the function (ψ−1)ĜP+1 is infinitely differentiable and that it equals a rational function
outside the sphere |ξ| = 2. This means that for sufficiently large p, the function (−∆)p(ψ−1)ĜP+1

is integrable and thus E2(n) decays faster than any inverse polynomial. ¤
Remark I: If the series expansion of the symbol has the general form σ(ξ) = ξ · (Mξ) + O(|ξ|4) so
that (4.4) does not hold, then set ξ′ := M1/2ξ and change variables in (4.2) so that

G(n) =
1

(2π)3
√

det M

∫

M−1/2I3

e−i(M−1/2n)·ξ′ 1
σ(M−1/2ξ′)

dξ′.

Since the function ξ′ 7→ σ(M−1/2ξ′) does have the series expansion (4.4), the asymptotic expansion
results provided can be applied to approximate this integral. ¤
Remark II: When considering the definition (4.2) we note that

∑P
p=0 a2p(ξ)/|ξ|2p+2 = S(1,P )(ξ),

where S(ε,P ) is defined as in Chapter 3. Thus GP = F−1[S(1,P )] which means that GP is the
fundamental solution of the quasi-differential equation (3.15). ¤

3. Mono-atomic lattices in dimensions other than three

First note that the analysis in section 2 can trivially be extended to dimensions d > 3. The case
d = 2 requires more care since for this case, the O(|ξ|−2) singularity at the origin is not integrable.
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We recall from the existence results of section 4 in Ch. 2 that for the two-dimensional counterpart
of the basic lattice equation (4.1), to be well-posed, we need to ask that

∑
m |mf(m)| < ∞ and that

∑

m∈Z2

f(m) = 0.

Under these conditions equation (4.1) is guaranteed to have a solution that is unique up to a
constant. Furthermore, under these conditions one can easily verify that a solution is given by

u(m) = [G ∗ f](m) =
∑

n∈Z2

G(m− n)f(n),

where the lattice Green’s function is now defined by

(4.8) G(m) :=
1

(2π)2

∫

I2

[
e−im·ξ 1

σ(ξ)
− 1

σ(ξ)

]
dξ.

Note that we needed to insert a regularising term since the O(|ξ|−2) singularity at the origin is not
integrable in two dimensions. This singularity is fundamental and cannot be overcome by defining
the integral in a distributional sense.

Let bj and aj be defined as in section 2 and assume (without loss of generality) that σ(ξ) =
|ξ|2 + O(|ξ|4). Then define the first term in the approximation of G by

(4.9) g0(x) :=
1

(2π)2

∫

R2

[
e−ix·ξ

|ξ|2 − χ(ξ)
σ(ξ)

]
dξ,

where χ is the characteristic function for the square I2. Strictly speaking this definition is made in
a distributional sense;

〈g0, ϕ〉 :=
1

(2π)2

∫

R2

(
ϕ̌(ξ)
|ξ|2 − χ(ξ)ϕ̌(0)

σ(ξ)

)
dξ, ∀ϕ ∈ S.

For p ≥ 1 the terms are straight-forwardly defined by gp := F−1[a2p(ξ)/|ξ|2p+2] and then

(4.10) GP :=
P∑

p=0

gp.

The next two results provide elementary methods for calculating GP given the symbol.
Proposition 4.3: The function g0 defined by (4.9) evaluates to

g0(x) = − 1
2π

log |x|+ Cfund +
1

(2π)2

∫

I2

[
1
|ξ|2 −

1
σ(ξ)

]
dξ,

where Cfund does not depend on σ. Numerically, Cfund = −0.18124942796 · · ·
Proof: We rewrite the definition of g0 as follows

g0(x) = Gfund(x) +
1

(2π)2

∫

R2

[
χ(ξ)
|ξ|2 − χ(ξ)

σ(ξ)

]
dξ,

where

Gfund(x) :=
1

(2π)2

∫

R2

e−ix·ξ − χ(ξ)
|ξ|2 dξ,
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which as usual is short-hand for the strict definition: For any ϕ ∈ S,

(4.11) 〈Gfund, ϕ〉 =
1

(2π)2

∫

R2×R2

ϕ(x)
e−ix·ξ − χ(ξ)

|ξ|2 dx dξ =
1

(2π)2

∫

R2

ϕ̌(ξ)− ϕ̌(0)χ(ξ)
|ξ|2 dξ.

First we demonstrate that −∆Gfund = δ,

〈−∆Gfund, ϕ〉 = 〈Gfund,−∆ϕ〉 =
1

(2π)2

∫

R2

|ξ|2ϕ̂(ξ)− 0 · ϕ̂(0)χ(ξ)
|ξ|2 dξ

=
1

(2π)2

∫

R2

ϕ̂(ξ) dξ = ϕ(0).

Define h ∈ S ′ by h(x) = Gfund(x) + (2π)−1 log |x| so that ∆h = 0. Then h is a harmonic multi-
nomial. Since Gfund is a radial function, so is h. Finally note that all radial harmonic multi-nomials
are constant and thus there exists a constant Cfund such that Gfund(x) = −(2π)−1 log |x|+Cfund. ¤

We remark, in passing, that the function Gfund ∈ S ′ that was defined in equation (4.11), is a
viable candidate for a distributional fundamental solution to the Laplace operator on R2.
Proposition 4.4: For any a2p ∈ Π4p

F−1

[
a2p(ξ)
|ξ|2p+2

]
= − 1

2π(p!)2(−4)p
a2p(∂)|x|2p log |x|.

The proof of this result is completely analogous to the proof of Proposition 4.1. The final result
of this section also mimics its three-dimensional counterpart and we omit the proof.
Theorem 4.5: Let G be defined by (4.8) and GP by (4.10). Then

|G(n)−GP (n)| ≤ C

|n|2P+2
, ∀ n ∈ Z2,

where C depends on P but not on n.

4. Multi-atomic lattices

For multi-atomic lattices, G(m) is a q × q-matrix. We will demonstrate that each entry of this
matrix can be obtained by adding a finite number of shifts of the (scalar) Green’s function for
the associated mono-atomic lattice introduced in section 5 in Ch. 3. The asymptotic expansion is
then easily obtained through the asymptotic expansion of the Green’s function for the associated
mono-atomic lattice. Before giving a general result, we illustrate how these ideas apply to the
bi-atomic lattice introduced in section 5 in Ch. 3.

Example: Consider heat conduction through the lattice illustrated in Figure 3.1, with the nodes
labeled as illustrated. The equilibrium equations read

f(n, 1) =8u(n, 1)− u(n− e1, 1)− u(n + e1, 1)− u(n− e2, 1)− u(n + e2, 1)

− u(n, 2)− u(n− e1, 2)− u(n− e1 − e2, 2)− u(n− e2, 2),

f(n, 2) =4u(n, 2)− u(n, 1)− u(n + e1, 1)− u(n + e1 + e2, 1)− u(n + e2, 1).

The symbol then takes the form

σ(ξ) =
[

8− eiξ1 − e−iξ1 − eiξ2 − e−iξ2 −1− eiξ1 − eiξ2 − ei(ξ1+ξ2)

−1− e−iξ1 − e−iξ2 − e−i(ξ1+ξ2) 4

]
.
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The determinant of the symbol is given by

detσ(ξ) =
[
24 sin2 ξ1

2
+ 24 sin2 ξ2

2
+ 4 sin2 (ξ1 + ξ2)

2
+ 4 sin2 (ξ1 − ξ2)

2

]
,

and the inverse is given by

(4.12) σ(ξ)−1 =
1

detσ(ξ)

[
4 1 + eiξ1 + eiξ2 + ei(ξ1+ξ2)

1 + e−iξ1 + e−iξ2 + e−i(ξ1+ξ2) 8− eiξ1 − e−iξ1 − eiξ2 − e−iξ2

]

Defining GH as the Green’s function for the associated mono-atomic lattice,

GH(n) :=
∫

I2

(
e−in·ξ 1

det σ(ξ)
− 1

)
dξ,

we then use that F−1[eiξ1ϕ̂](n1, n2) = ϕ(n1 − 1, n2) to obtain that,
[G(n)]11 =4GH(n),

[G(n)]12 =GH(n) + GH(n1 − 1, n2) + GH(n1, n2 − 1) + GH(n1 − 1, n2 − 1),

[G(n)]21 =GH(n) + GH(n1 + 1, n2) + GH(n1, n2 + 1) + GH(n1 + 1, n2 + 1),

[G(n)]12 =8GH(n)−GH(n1 − 1, n2)−GH(n1 + 1, n2)−GH(n1, n2 − 1)−GH(n1, n2 + 1).

¤
For the general case, we define GH as the Green’s function of the associated mono-atomic lattice

defined in section 5 in Ch. 3, so that (for dimensions three and higher)

(4.13) GH(n) := F−1

[
1

det σ(ξ)

]
.

The asymptotic expansions we derived in sections 2 and 3 all apply to GH. The main result of
this section states that the full Green’s function of the multi-atomic lattice is given by adding up
a finite number of shifts of GH.
Theorem 4.6: Given a general lattice Green’s function G, let GH be the associated Green’s function
defined by (4.13). Then there exists a local convolution operator D such that G = GH ∗D.
Proof: Start with Cramer’s rule,

[σ(ξ)−1]κλ =
pκλ(eiξ)
det σ(ξ)

,

where pκλ is a multinomial of the form (cf. the derivation of the homogenized equations for a
multi-atomic lattice in ection 5 in Ch. 3)

pκλ(eiξ) =
∑

m∈Dκλ

cκλ,meim·ξ.

for some finite sets Dκλ ⊂ Zd and constants {cκλ,m}m∈Dκλ
. Then for any lattice function v,

F−1[pκλ(eiξ)ṽ(ξ)](n) =
∑

m∈Dκλ

cκλ,mv(n−m) =: [Dκλ ∗ v](n),

which defines the κλ component of the convolution operator D. Evaluating Gκλ, we find that

Gκλ = F−1

[
pκλ(eiξ)
det σ(ξ)

]
= Dκλ ∗ F−1

[
1

det σ(ξ)

]
= Dκλ ∗GH = GH ∗Dκλ,
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which proves the claim. ¤
Remark: By Lemma 2.12, we know that there exists a positive c0 such that

∑
κλ cκλ,m = c0. To

lowest order, all components of G are thus identical. ¤

5. A numerical example

In this section, we compute the first terms in the asymptotic expansion for the simple square
lattice in two dimensions. These are compared to highly accurate estimates of G(n) obtained by
numerical quadrature, to indicate that the numbers C = C(P ) in Theorem 4.5 are small.

Consider the two-dimensional square lattice Z2 where each node is connected to its four nearest
neighbours so that the lattice operator equals the five-point discrete Laplace operator. Then

σ(ξ) = 4 sin2 ξ1

2
+ 4 sin2 ξ2

2
.

Using Lemma 3.5 we compute the series expansion of the inverse symbol and find that

1
σ(ξ)

=
1
|ξ|2 +

1
|ξ|4

(
ξ4
1

12
+

ξ2
2

12

)
+

1
|ξ|6

(
ξ8
1

240
− ξ6

1ξ
2
2

360
+

ξ4
1ξ

4
2

72
− ξ2

1ξ
6
2

360
+

ξ8
2

240

)
+

1
|ξ|8

(
ξ12
1

6048
− 11ξ10

1 ξ2
2

30240
+

ξ8
1ξ

4
2

756
− ξ6

1ξ
6
2

1080
+

ξ4
1ξ

8
2

756
− 11ξ2

1ξ
10
2

30240
+

ξ12
2

6048

)
+ O(|ξ|6).

By virtue of Propositions 4.3 and 4.4 we can now compute the gp(x)’s, which are most easily given
in polar coordinates, (x1, x2) = r(cos θ, sin θ),

g0(x) =− 1
2π

log r + C, where C = −0.2573434264137 · · ·

g1(x) =
(

∂4
1

12
+

∂4
2

12

)
1
8π
|x|2 log |x| = 1

24π
x4

1 − 6x2
1x

2
2 + x4

2

|x|6 =
1

24π

cos(4θ)
r2

,

g2(x) = · · · = 1
480π

25 cos(8θ) + 18 cos(4θ)
r4

g3(x) = · · · = 1
2016π

490 cos(12θ) + 459 cos(8θ)
r6

.

(4.14)

and set GP =
∑P

p=0 gp.
In order to estimate the approximation error

EP (n) := G(n)−GP (n)

we randomly distributed 500 points n ∈ Z2 in the annulus 5 ≤ |n| ≤ 100. For each point we
computed the error and plotted |EP (n)| versus |n| in a log-log diagram, see Figure 4.1. Note
that the remainder terms are very small, and that they seem to decay as Theorem 4.5 claimed;
|EP (n)| ≤ C(P )|n|−(2P+2). In order to estimate C(P ) numerically we plotted |n|2P+2|EP (n)|
versus |n|, see Figure 4.2. We estimate that for |n| ≥ 20, the bound in the theorem is valid with
the constants

C(0) ≈ 0.015, C(1) ≈ 0.03, C(2) ≈ 0.15.
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Figure 4.1. The absolute error |EP (n)| plotted versus |n|. |E0| is marked with x,
|E1| with o and |E2| with *.

These numbers indicate that for large n, the remainder term EP (n) is entirely dominated by the
next term in the asymptotic expansion gP+1 since

sup
x
|x|2|g1(x)| ≈ 0.013, sup

x
|x|4|g2(x)| ≈ 0.029, sup

x
|x|6|g3(x)| ≈ 0.15.

Remark: Duffin and Shelly [20] and Cserti [15] give the analytic expression g0(x) = −(log |x| +
γ + (log 8)/2)/(2π), where γ = 0.5772 . . . is the Euler constant. ¤
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Figure 4.2. Plots of |n|2P+2|EP (n)| versus |n| for P = 0, 1, 2, respectively.



CHAPTER 5

Fast summation methods for poly-harmonic kernels

1. Introduction

In this chapter we will derive a fast algorithm for computing convolutions of the form

(5.1) u(m) = [G ∗ f](m) =
∑

n∈Ω1

G(m− n) f(n) ∀ m ∈ Ω2,

where G is the lattice Green’s function and Ω1 and Ω2 are two sets in Zd. Letting kj denote the
number of elements in the set Ωj , we see that a naive evaluation of the sum (5.1) would require
evaluating and adding k1k2 terms, for each of which, we need to somehow determine G(m−n). We
will present a method that computes the sum (5.1) to any level of accuracy, using no quadrature,
in O(k1 + k2) operations. The first step is to approximate G(m− n) by the asymptotic expansion
GP (m− n) (defined by (4.5)) when |m− n| is larger than some cut-off range R,

(5.2) u(m) =
∑

n∈Ω1∩BR(m)

G(m− n) f(n) +
∑

n∈Ω1\BR(m)

GP (m− n) f(n)+

∑

n∈Ω1\BR(m)

(
G(m− n)−GP (m− n)

)
f(n),

where BR(m) = {x : |x−m| ≤ R}. The last term is an error term that is bounded by C||f||l1(Ω1)/R2P+d.
Thus, by making R sufficiently large, this term can be made as small as desired. The first term can
be evaluated in O(k2) operations since for any m, the number of nodes in Ω1 ∩BR(m) is bounded
by a constant (for a fixed R). Furthermore, BR(m) ∩ Zd is typically a set of very modest1 size,
which makes it possible to precompute the values of G(m− n) that enter the first term.

For the middle term in (5.2) we will use a variation of the Fast Multipole Method by Greengard
and Rokhlin [31, 32]. This algorithm was originally presented as a tool for evaluating convolutions
between a charge distribution f and the fundamental solution of the Laplace equation,

(5.3) Φ(x) =
{ −(4π|x|)−1, d = 3,
−(2π)−1 log |x|, d = 2,

and reduces the work required to evaluate the potential from N point charges at N sites from O(N2)
to O(N). This is accomplished through the use of hierarchical data-structures and a representation
of harmonic potential fields through multipole expansions. The main goal of this chapter is to
demonstrate how to extend the FMM to cover poly-harmonic kernel functions such as GP .

1For a typical lattice such as the square, triangular or honeycomb lattices described in Appendix B, choosing
P = 2 and R = 30 gives a relative accuracy of 10−10, which is sufficient for most purposes. Then #[B30∩Z2] ≈ 3000,
but due to symmetry, only an eigth of those values actually need to be computed.

55
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We will not in this context give a full presentation of the FMM since this can be found in the
references mentioned. Our goal is exclusively to provide the mathematical results that are required
to extend the FMM to cover poly-harmonic kernels. For this purpose, it is sufficient to consider
the following toy problem: Suppose that we want to evaluate

(5.4) u(xi) =
k1∑

j=1

fjG(xi − yj) for i = 1, . . . , k2,

where xi ∈ Ω1 and yj ∈ Ω2 for two well-separated sets Ω1 and Ω2. It is then advantageous to
introduce a separation of variables

(5.5) G(x− y) =
∞∑

q=0

∑

α∈Iq

hα(y) Hα(x),

where the Iq’s are index sets, the hα’s are polynomials of degree q and Hα are some basis functions.
When such a separation of variables is available, the sum (5.4) can be reorganized as follows;

u(xi) =
k1∑

j=1

fj

∞∑

q=0

∑

α∈Iq

hα(yj)Hα(xi) =
∞∑

q=0

∑

α∈Iq




k1∑

j=1

fjhα(yj)


Hα(xi).

If the sum converges fast, it can be truncated after Q terms, so that

u(xi) ≈
Q∑

q=0

∑

α∈Iq

cαHα(xi), where cα =
k1∑

j=1

qjhα(yj).

The coefficients cα can be precomputed using O(k1) operations, so that then u(xi) can be computed
using O(k2) operations, which gives a total operation count of O(k1 + k2). For this algorithm to
be efficient, the separation (5.5) must be economical, in the sense that the index sets Iq are small,
and it must converge fast, so that a small Q gives high accuracy. The classical FMM deals with
the kernel G = Φ, and achieves both of these goals using a classical multipole expansion in (5.5).

In this chapter we will present a generalized multipole expansion of the form (5.5) that is
valid for a poly-harmonic kernel G. In section 2 we derive the expansion and show that the poly-
harmonicity can be used to attain sparsity. In section 3 we will show that when G is a rational
function (which it is in our case), the expansion converges almost as fast as for the harmonic case.
For simplicity, we restrict attention to two-dimensional problems in this section. In section 4 we
give some numerical examples that indicate that the constants in the asymptotic error bounds
provided in section 3 are small. Without loss of generality, we will throughout this chapter assume
that the matrix M in (3.10) equals unity.

2. Multipole expansions of poly-harmonic functions

When deriving the multipole expansion for a poly-harmonic function we will start from a plain
MacLaurin expansion,

(5.6) f(x) =
∞∑

q=0

∑

α∈Iq

1
α!

cαxα, where cα = ∂αf(0), Iq = {α ∈ Nd : |α| = q}.
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We suppose that this series is absolutely convergent in some neighborhood Ω containing the origin
and that f satisfies (−∆)P+1f = 0 in Ω (the variable P is set to conform with the P defined in
Chapter 4). This imposes the following condition on the coefficients cα: For any positive integer q

(5.7) (−∆)P+1
∑

α∈Iq

1
α!

cαxα = 0, ∀ x ∈ Ω.

Let the constants bα
β be such that (−∆)P+1xα =

∑
β∈I|α|−2(P+1)

bα
βxβ. Then we can write (5.7) as

∑

β∈Iq−2(P+1)


∑

α∈Iq
bα
βcα


xβ = 0,

which forms a system of #Iq−2(P+1) equations for #Iq unknowns. This system is of full rank (since
the equation (−∆)P+1φ = xβ has a solution φ ∈ Πq for any β ∈ Iq−2(P+1)). As a consequence we
can find a subset Iq ⊂ Iq (of cardinality #Iq −#Iq−2(P+1)) such that any cα is entirely determined
by the values {cβ}β∈I|α| . In other words, there exist numbers dβ

α such that for any α

(5.8) cα =
∑

β∈I|α|

dβ
αcβ.

Recalling that cα = [∂αf ](0), we see that (5.8) is simply a relationship between the partial deriva-
tives of a poly-harmonic function.

Lemma 5.1: If f satisfies (−∆)P+1f = 0, then ∂αf =
∑

β∈I|α| d
β
α∂βf .

Next, we insert (5.8) into the expansion (5.6) and obtain

(5.9) f(x) =
∞∑

q=0

∑

α∈Iq

1
α!

∑

β∈Iq

dβ
αcβxα =

∞∑

q=0

∑

β∈Iq

cβ


∑

α∈Iq

1
α!

dβ
αxα


 .

Defining poly-harmonic “basis”-functions

(5.10) hβ(x) =
∑

α∈I|β|

1
α!

dβ
α xα,

we get the following result (which uses that poly-harmonicity implies analyticity):
Lemma 5.2: Suppose that (−∆)P+1f = 0 on Ω 3 0. Then

f(x) =
∞∑

q=0

∑

α∈Iq

cαhα(x), where cα = ∂αf(0).

This lemma directly gives the multipole expansion for poly-harmonic kernels.
Theorem 5.3: Multipole expansion. If (−∆)P+1G = 0 in Rd\{0}, then for |y| < |x|,

(5.11) G(x− y) =
∞∑

q=0

∑

α∈Iq

hα(−y)Hα(x), where Hα(x) = [∂αG](x).
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Proof: The function y 7→ G(x − y) is poly-harmonic in the open ball {y : |y| < |x|} and is thus
analytic in this region. An application of Lemma 5.2 then yields the desired result. ¤

Note the sparsity of the representation (5.11). Using the poly-harmonicity of the kernel function,
we reduced the number of terms at level q from #Iq to #Iq = #Iq−#Iq−2(P+1). In two dimensions,
#Iq = q + 1 and thus the representation (5.11) has at most 2(P + 1) terms at each level. In three
dimensions, #Iq = (q + 2)(q + 1)/2 and thus #Iq = (P + 1)(2q + 1 − 2P ). Happily, these results
conform with the familiar results for harmonic functions (the case P = 0).

Examples: Consider the kernel Φ(x) = −(2π)−1 log |x|. Setting Iq := {(q, 0), (q − 1, 1)} in the
new formalism, we retrieve the classical expansion in multipoles. In polar coordinates (x1, x2) =
r(cos θ, sin θ) these take the form

h(q,0)(x) = rq cos(qθ), h(q−1,1)(x) = rq sin(qθ),

H(q,0)(x) =
(−1)q

2πq

cos(qθ)
rq

, H(q−1,1)(x) =
(−1)q

2πq

sin(qθ)
rq

.

Consider next the bi-harmonic kernel G1(x) = Φ(x) + (x4
1 − 6x2

1x
2
2 + x4

2)/(24π|x|6), cf. (4.14). We
then set Iq := {(q, 0), (q − 1, 1), (q − 2, 2), (q − 3, 3)} and obtain, e.g.

h(4,3)(x) = r7

(
−5

4
sin(7θ) +

7
4

sin(5θ)
)

, H(4,3)(x) =
1

14π
sin(7θ)

r7
+

9 sin(11θ)− sin(9θ)
6πr9

.

¤
The FMM relies on three “shift theorems” that specify (1) how to change the origin of a

multipole expansion, (2) how to convert a multipole to a local expansion and (3) how to shift
the origin of a local expansion. We next give analogues of these results valid for poly-harmonic
functions.
Proposition 5.4: [Translation of a multipole expansion.] Suppose that for a fixed y ∈ Rd a
potential ϕ(x) is defined for |x| > |y| by

(5.12) ϕ(x) =
∞∑

q=0

∑

α∈Iq

cαHα(x− y),

with Hα defined in Theorem 5.3. Then

ϕ(x) =
∞∑

r=0

∑

γ∈Ir

c′γHγ(x),

where

c′γ =
|γ|∑

q=0

∑

α∈Iq

cα

∑

β∈I|γ|−q

dγ
α+βhβ(−y).

Proof: First we apply Lemma 5.2 to the function y 7→ Hα(x− y),

Hα(x− y) =
∞∑

p=0

∑

β∈Ip

hβ(−y)∂βHα(x).
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Then apply Lemma 5.1

∂βHα(x) = ∂α+βG(x) =
∑

γ∈I|α+β|

dγ
α+β∂γG(x) =

∑

γ∈I|α+β|

dγ
α+βHγ(x).

Combining these expressions with (5.12) we get

ϕ(x) =
∞∑

q=0

∑

α∈Iq

cα

∞∑

p=0

∑

β∈Ip

hβ(−y)
∑

γ∈Ip+q

dγ
α+βHγ(x),

and changing summation variables, r = p + q,

ϕ(x) =
∞∑

r=0

∑

γ∈Ir

[ r∑

q=0

∑

α∈Iq

cα

∑

β∈Ir−q

dγ
α+βhβ(−y)

]
Hγ(x).

¤
Proposition 5.5: [Conversion of a multipole expansion into a local expansion.] Suppose
that ϕ(x) is defined by equation (5.12), then for |x| < |y|,

ϕ(x) =
∞∑

p=0

∑

β∈Ip

c′βhβ(x),

where

c′β =
∞∑

q=0

∑

α∈Iq

cα

∑

γ∈I|α+β|

dγ
α+βHγ(−y).

Proof: This is very similar to the previous proof, but with the variables reversed,

Hα(x− y) =
∞∑

p=0

∑

β∈Ip

hβ(x)Hα+β(−y) =
∞∑

p=0

∑

β∈Ip

hβ(x)
∑

γ∈I|α+β|

dγ
α+βHγ(−y),

and so

ϕ(x) =
∞∑

q=0

∑

α∈Iq

cα

∞∑

p=0

∑

β∈Ip

hβ(x)
∑

γ∈I|α+β|

dγ
α+βHγ(−y),

whence the claims follows upon a simple interchange of summation order. ¤
Proposition 5.6: [Translation of a local expansion.] For any x and y we have

(5.13)
Q∑

q=0

∑

α∈Iq

cαhα(x− y) =
Q∑

p=0

∑

β∈Ip

c′βhβ(x),

where

c′β =
Q∑

q=|β|

∑

α∈Iq

cα[∂βhα](−y).
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Proof: Applying Lemma 5.2 to the function x 7→ hα(x− y) we get

hα(x− y) =
∞∑

p=0

∑

β∈Ip

hβ(x)[∂βhα](−y) =
|α|∑

p=0

∑

β∈Ip

hβ(x)[∂βhα](−y),

whence the claim follows immediately. ¤
Remark 1: According to the Almansi representation formula (see [41]) a polyharmonic function
ψ of degree k can be written ψ(x) =

∑k−1
j=0 |x|2jφj(x), for some harmonic functions φj . A series

expansion analogous to (5.11) can be obtained by combining this representation with the well-known
expansions of harmonic functions ([41] section 10.14). This derivation requires more work than the
one presented here but is very relevant in that it directly shows that the new basis functions hα

and Hα can be constructed from the well-known spherical harmonics.

Remark 2: In two dimensions, the multipole expansion can be derived using complex variables
(Vekua [64, 65]). This is faster and yields explicit expressions for hα and Hα but since this
derivation obscures the key point we want to make that the multipole expansion is a “culled”
Taylor expansion and since it does not generalize to higher dimensions we have relegated this
derivation to Appendix C.

Remark 3: The formula given in Proposition 5.5 for shifting a multipole to a local expansion is
a direct analogue of the formula for harmonic functions given in the original version of the FMM.
In three dimensions, this formula requires O(Q4) operations to shift a multipole expansion that is
truncated after Q terms to a local expansion. This is oftentimes prohibitively expensive but it has
been discovered that a quite simple trick can be used to reduce the cost to O(Q3), while a more
elaborate method brings it down to O(Q2), see Greengard and Rokhlin [32]. The first of these
enhancements certainly generalizes to the present case (since it builds on a simple property of the
spherical harmonics) and it is our belief that the second does as well.

3. Convergence of the new multipole expansions

In section 1 we stated that the two key properties that a separation of variables (5.5) must
satisfy are sparsity and fast convergence. In section 2, we showed that poly-harmonicity implies
sparsity. In this section we show that when the kernel is a rational function

(5.14) G(x− y) =
ϕ(x− y)
|x− y|2k

,

for some polynomial ϕ of degree l < 2k, then

(5.15)
∣∣∣G(x− y)−

Q∑

q=0

∑

α∈Iq

hα(y)Hα(x)
∣∣∣ ≤ (C + cQ2k−1)

1
(1− |y|/|x|)2k

1
|x|2k

( |y|
|x|

)Q+1

for some C and c that do not depend on Q, x or y. Since the Taylor and the multipole expansions are
identical, it will be sufficient to prove (5.15) for the Taylor expansion. This observation significantly
simplifies the analysis. All results in this section are proved for the case d = 2 only.

Since the asymptotic expansion GP of a lattice Green’s function is a sum of rational functions
of the form (5.14), the bound (5.15) will apply to the situation discussed in section 1.
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Definition: Given a function f(y) we let [TQf ](y) denote its Q’th order MacLaurin expansion and
[RQf ](y) the remainder part so that f(y) = [TQf ](y) + [RQf ](y).
Lemma 5.7: Let k be an integer and fix an x ∈ R2 such that x 6= 0. Then the function fx(y) =
|x− y|−2k has the MacLaurin series

(5.16)
1

|x− y|2k
=

1
|x|2k

∞∑

q=0

q∑

n=0

(
n + k − 1

k − 1

)(
q − n + k − 1

k − 1

)(
y1 + iy2

x1 + ix2

)n (
y1 − iy2

x1 − ix2

)q−n

,

which converges absolutely for |y| < |x|. The truncation error is bounded by

∣∣[RQfx](y)| ≤ C
Q2k−1

(1− |y|/|x|)2k

1
|x|2k

( |y|
|x|

)Q+1

where C depends on k but not on x, y or Q.
Proof: Identifying the points x and y with their complex representations we have

(5.17)
1

|x− y|2k
=

1
|x|2k

1
(1− y/x)k

1
(1− ȳ/x̄)k

.

Then use that w 7→ (1− w)−k has the MacLaurin expansion

(5.18)
1

(1− w)k
=

∞∑

n=0

(
n + k − 1

k − 1

)
wn,

absolutely convergent for |w| < 1. The expression (5.16) then follows by inserting (5.18) into (5.17)
and interchanging the summation order.

We will prove below that there exists a C = C(k) such that

(5.19)
q∑

n=0

(
n + k − 1

k − 1

)(
q − n + k − 1

k − 1

)
≤ Cq2k−1.

We use this to bound the truncation error,

∣∣[RQfx](y)
∣∣ ≤ 1

|x|2k

∞∑

q=Q+1

Cq2k−1 |y|q
|x|q = C

1
|x|2k

( |y|
|x|

)Q+1 ∞∑

q=0

(q + Q + 1)2k−1

( |y|
|x|

)q

≤C
1

|x|2k

( |y|
|x|

)Q+1 ∞∑

q=0

(
Q2k−1 + (q + 1)2k−1

)( |y|
|x|

)q

≤C
1

|x|2k

( |y|
|x|

)Q+1 [
Q2k−1

1− |y|/|x| +
1

(1− |y|/|x|)2k

]
.

It remains only to demonstrate (5.19),

q∑

n=0

(
n + k − 1

k − 1

)(
q − n + k − 1

k − 1

)
=

q∑

n=0

(n + k − 1) · · · (n + 1)
(k − 1)!

(q − n + k − 1) · · · (q − n + 1)
(k − 1)!

≤
q∑

n=0

(q + k − 1)k−1

(k − 1)!
(q + k − 1)k−1

(k − 1)!
= (q + 1)

(q + k − 1)2(k−1)

((k − 1)!)2
≤ C(k)q2k−1.
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¤
Lemma 5.8: Let ϕ be a multinomial of degree l, where l < 2k. Then the function

gx(y) =
ϕ(x− y)
|x− y|2k

has a MacLaurin series, convergent for |y| < |x|, such that

∣∣[RQgx](y)
∣∣ ≤ C

Q2k−1

(1− |y|/|x|)2k

1
|x|2k−l

( |y|
|x|

)Q+1

.

Proof: There exist coefficients cβγ such that

ϕ(x− y) =
∑

|β|+|γ|=l

cβγ (−y)βxγ .

Let fx(y) be defined as in Lemma 5.7. Then, since gx(y) = ϕ(x− y)fx(y),

gx(y) =
∑

|β|+|γ|=l

cβγ(−y)βxγ [TQ−|β|fx](y)

︸ ︷︷ ︸
=:[TQgx](y)

+
∑

|β|+|γ|=l

cβγ(−y)βxγ [RQ−|β|fx](y)

︸ ︷︷ ︸
=:[RQgx](y)

.

Using the bound in Lemma 5.7 for [RQfx](y) we now get

∣∣[RQgx](y)
∣∣ ≤

∑

|β|+|γ|=l

|cβγ | |y||β||x||γ|C (Q− |β|)2k−1

(1− |y|/|x|)2k

1
|x|2k

( |y|
|x|

)Q+1−|β|

≤
∑

|β|+|γ|=l

|cβγ |C Q2k−1

(1− |y|/|x|)2k

1
|x|2k−|β|−|γ|

( |y|
|x|

)Q+1

,

which simplifies to the required bound. ¤
In the last result of this chapter, we sum up the various findings of this section and section 2

and demonstrate how they apply to the asymptotic approximation of the lattice Green’s function.
Theorem 5.9: Let G = GP be the asymptotic expansion of a lattice Green’s function defined by
(4.5). Its multipole expansion is given by Theorem 5.3. The translation formulas are given in
Propositions 5.4, 5.5 and 5.6. If any of these expansions is truncated after Q terms, then for any
ρ < |y|/|x|, there is a constant C such that the truncation error is bounded by CρQ.
Remark: The term Q2k−1 in the bound in Lemma 5.8 indicates that the expansion of a poly-
harmonic function may converge significantly slower than a that of a harmonic function. When the
results are applied to the function GP defined by (4.5), this is not observed. A careful investigation
of the error bounds indicate why. First, we note that the bound (5.19) is very coarse, a more careful
analysis shows that as p →∞

q∑

n=0

(
n + k − 1

k − 1

)(
q − n + k − 1

k − 1

)
=

1
2k−1 (k − 1)! (2k − 1)!!

q2k−1 + O(q2k−2),

which shows that even though the sum does indeed grow like q2k−1, the coefficient in front of the
leading factor is very small. Second, for the present application, the terms with k = 2, 3, 4 have very
small coefficients in front of them, and furthermore, the negative effect that the Q2k−1 term may
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Figure 5.1. Left: Plot of Q 7→ (|x|/|y|)Q|GP −GPQ| for Q = 1, x = (10, 10) and
y = (5, 5) (dotted line), y = (5, −5) (solid line) and y = (−5, −5) (dashed line).
Right: Plot of Q 7→ (4|x|/5|y|)Q|GP −GPQ| for the same parameter values.

induce is ameliorated by the decay factor |x|−2k. Thus, in practical applications, the truncation
error is dominated by the error incurred by the leading term in the expansion, which is precisely
the harmonic kernel Φ that the classical FMM deals with. ¤

4. Numerical experiments

Our goal in this section is to estimate the constants that occur in the error bound (5.15) by
applying the results derived in this section to a concrete example.

Let GP denote the P term asymptotic expansion of the Green’s function for a square lattice,
as specified by (4.14), and let GPQ denote a multipole expansion of the form (5.11) that has been
truncated after Q levels. We expect that, if |y|/|x| ≤ c < 1, then

(5.20) |GP (x− y)−GPQ(x, y)| ≤ C(Q)
( |y|
|x|

)Q

,

where C does not depend on Q for P = 0 but may grow at most polynomially with Q for Q ≥
1. Inspired by the form (5.20) we plot the function Q 7→ (|x|/|y|)Q|GP (x − y) − GPQ(x, y)| for
different P , x and y. In the left graph of Figure 5.1 we chose Q = 1, x = (10, 10) and y =
(5, 5), (5, −5), (−5, −5). We note first that in this situation the bound (5.20) holds with C = 0.1.
Similar experiments carried out for many different values of x and y confirmed the estimate C ≈ 0.1
when P ≤ 30. What is less satisfying is that it appears that C(P ) does start to grow for large P
in certain situations. Fortunately, this is significant only for values of P that would not normally
be used (note that P = 30 corresponds to a relative accuracy of 10−9). We also note that since the
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Figure 5.2. Left: Plot of Q 7→ (|x|/|y|)Q|GP −GPQ| for Q = 2, x = (10, 10) and
y = (5, 5) (dotted line), y = (5, −5) (solid line) and y = (−5, −5) (dashed line).
Right: Plot of Q 7→ (4|x|/5|y|)Q|GP −GPQ| for the same parameter values.

growth is polynomial the entity ρ−Q|GP −GPQ| should be uniformly bounded for any ρ < |y|/|x|.
The plot of Q 7→ ((4/5)(|x|/|y|))Q|GP − GPQ| to the right in Figure 5.1 seems to confirm this
prediction.

In Figure 5.2 give show the results of the same experiment carried out for Q = 2. We see that
the situation remains qualitatively the same.



CHAPTER 6

Boundary equation methods for problems on finite domains

1. Introduction

In this chapter we present methods for solving lattice problems on finite domains. Given
a homogeneous Dirichlet or Neumann problem, we reformulate it as a boundary equation very
similar in spirit to the boundary integral equations of classical potential theory, but with the lattice
Green function as the kernel, rather than the fundamental solution of the Laplace operator. These
boundary equations have low condition numbers and can be solved very efficiently using iterative
solvers. The most time-consuming step of such a solver is the application of a dense matrix to a
vector, but this matrix-vector multiplication is of a form very close to the convolution (5.1) for
which we derived fast methods in the previous chapter.

An inhomogeneous discrete boundary value problem (i.e one including a body load) can be
split into one inhomogeneous problem on Zd and one homogeneous boundary value problem using
the “fictitious domain method”, as done in Beylkin et al [3] for the continuous case, and can thus
be treated by combining the techniques presented in Chapter 5 and the present chapter.

Since we have not heretofore discussed problems on finite domains, we need to introduce some
new notation. Let Ω ⊂ Z2 denote a domain, let Γ ⊂ Ω denote those nodes in Ω that connect to
Ωc and set Ω− := Ω\Γ. Similarly, let Γ+ be those nodes of Ωc that connect to Ω. For n ∈ Γ, let
Dn ⊂ Γ+ denote the nodes in Ωc that connect to n and set [δνu](n) =

∑
k∈Dn

(u(k)− u(n)).
The Dirichlet problem reads

(D)

{
[Au](m) = 0, m ∈ Ω−,

u(m) = g(m), m ∈ Γ.

Note in particular that the condition Au = 0 is enforced only at the internal nodes. The Neumann
problem reads

(N)

{
[Au](m) = 0, m ∈ Ω,

[δνu](m) = g(m), m ∈ Γ.

For m ∈ Γ, the operator [Au](m) formally involves values of u on Γ+ which are as yet undefined.
However, their contribution to the equation at m ∈ Γ is fully specified by the value of [δνu](m).

2. Indirect formulations of the Dirichlet problem

2.1. A single layer formulation: The single layer potential S maps a function defined on Γ
to a function on Zd. Given φ : Γ → R we set

Sφ : Zd → R : m 7→
∑

n∈Γ

G(m− n)φ(n).

65
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Note that [A(Sφ)](m) = 0 for any m /∈ Γ. Thus, if we can find a φ such that

(2.3) [Sφ](m) = g(m), ∀ m ∈ Γ,

then Sφ satisfies (D). We refer to (2.3) as a (discrete) single layer boundary equation. In this context
it is a linear system with a square matrix KS.
Proposition 6.1: The matrix KS associated with (2.3) is non-singular.
Proof: We consider first the case d ≥ 3. Suppose that u = Sφ and that u|Γ = 0. Then u satisfies

(2.4)





[Au](m) = 0, m ∈ Zd\Γ,

u(m) = 0, m ∈ Γ,

||u||A < ∞.

In other words, u satisfies homogeneous Dirichlet problems with zero boundary data on both the
interior and exterior domains. This implies that u ≡ 0, and thus φ = 0.

What complicates the two dimensional case is that unless
∑

φ = 0, the function u does not have
finite energy. We must therefore fall back on a limit argument to prove the statement. Let G(J)

be the Green’s function for a homogeneous Dirichlet problem with zero boundary data on ∂ΩJ ,
where J is large enough that Ω ⊂ ΩJ . Let K

(J)
S be the matrix with entries G(J)(m,n). Then the

argument made for the three dimensional case can be used to prove that K
(J)
S is non-singular (the

exterior problem in (2.4) is replaced by a problem on ΩJ\Ω). The last point of the argument is to
note that as J →∞, G(J)(m,n) → G(m−n)+ (2π)−1 log R and so K

(J)
S − (2π)−1 log R → KS. ¤

2.2. A double layer formulation: The double layer potential D maps a boundary function
to a global function as follows,

Dφ : Zd → R : m 7→
∑

n∈Γ

Gν(m,n)φ(n),

where the kernel Gν is a discrete analogue of the double layer kernel, ∂νyG(x− y),

Gν(m,n) :=
∑

k∈Dn

(
G(m− k)−G(m− n)

)
= δνnG(m− n).

Physically, the function Dφ is the potential produced by a double layer source field on Γ∪Γ+. For
n ∈ Γ, node n is given a charge −|Dn|φ(n) and each node in Dn ⊂ Γ+ is given a charge φ(n), see
Figure 6.1. Consequently, [A(Dφ)](m) = 0 if m /∈ Γ∪Γ+. Now, Dφ is a solution of (D) if φ satisfies

(2.5) [Dφ](m) = g(m), ∀ m ∈ Γ,

which is our (discrete) double layer boundary equation.
The form of the equation (2.5) makes it look like a discrete analogue of an integral equation

of the first kind. This is disconcerting since we know that in the continuous case, the double layer
equation is a second kind Fredholm equation, cf. (1.14). In order to demonstrate the connection
between the discrete and the continuous equations, we introduce B as a local averaging operator
(τm is the shift operator defined by (2.4)),

Bu :=
1
2d

d∑

j=1

(
τeju + τ−eju

)
,
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Figure 6.1. The double layer potential. Given a function φ defined on the black
circles, place charges at all nodes marked with circles in the right picture in such a
way that node k gets the charge −|Dk|φ(k) and its nearest neighbors (white circles)
get the charge φ(k). Note that the corner nodes (gray) get the charge −2φ(k).

so that A = 2d(I −B). Let ū = Dφ be the global potential induced by φ so that, for m ∈ Γ,

−|Dm|φ(m) = [Aū](m) = 2dū(m)− 2d[Bū](m) = 2dg(m)− 2d[BDφ](m).

We can then write (2.5) in the equivalent form

−|Dm|
2d

φ + BDφ = g,

which looks more like the second kind equation (1.14).

Proposition 6.2: The matrix KD associated with (2.5) is non-singular.
Proof: The proof goes along the same lines as the proof of Proposition 6.1, we set u = Dφ, suppose
that u|Γ = 0 and will prove that then φ must be zero. Since in this case u has finite energy even in
two dimensions, we do not need to resort to the limiting argument in the previous proof.

When Au = φ and u|Ω = 0, the function u satisfies a homogeneous Neumann problem on Ωc

with zero boundary data. To see this, loop over all nodes n ∈ Γ. For each node, lift out all the
links that connect the node to nodes in Γ+. If we simultaneously remove the loads on Γ and Γ+

that are due to φ(n), then u will still be in equilibrium on the reduced lattice (since there are no
flows going inside Ω). After having removed all links that connect Ω to Ωc, we will see that indeed,
u will be in equilibrium on Ωc and there will be no flows going into Ωc. Thus u is constant on Ωc,
and since u(m) is the potential due to a number of dipole charges, it tends to zero as |m| → ∞.
This shows that u ≡ 0 on Ωc, thus u ≡ 0, and φ = 0. ¤

3. Inclusions

The boundary equation method can be used to treat equations modeling lattices with inclusions
that destroy the periodicity of the equilibrium operator. Consider the perturbed Dirichlet problem

(3.6)

{
[(A− Ar)u](m) = 0, m ∈ Ω−,

u(m) = g(m), m ∈ Γ,
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where Ar represents a (typically local) perturbation. We reformulate (3.6) as an unperturbed
problem with a “fictitious” load

(3.7)

{
[Au](m) = fr, m ∈ Ω−,

u(m) = g(m), m ∈ Γ,

where fr = Aur. This term can be determined using the boundary equation framework derived
earlier. As an illustration, suppose that Ar corresponds to removing the bars connecting the nodes
k

(j)
− to k

(j)
+ for j = 1, . . . , J . Since fr ∈ Ran(Ar), there exist loads ψ(j) such that

fr(m) =
J∑

j=1

ψ(j)
[
δ(m− k

(j)
+ )− δ(m− k

(j)
− )

]
.

We make the Ansatz

u(m) =
∑

n∈Γ

G(m− n)φ(n) +
J∑

j=1

[
G(m− k

(j)
+ )−G(m− k

(j)
− )

]
ψ(j).

Inserting the Ansatz directly into the boundary condition we get the equations

(3.8) g(m) =
∑

n∈Γ

G(m− n)φ(n) +
J∑

j=1

[
G(m− k

(j)
+ )−G(m− k

(j)
− )

]
ψ(j), m ∈ Γ.

The condition at the removed bars is that u(k(i)
+ )− u(k(i)

− ) = ψ(i), or that for i = 1, . . . J ,

(3.9) ψ(i) =
∑

n∈Γ

[
G(k(i)

+ − n)−G(k(i)
− − n)

]
φ(n)+

J∑

j=1

[
G(k(i)

+ − k
(j)
+ )−G(k(i)

+ − k
(j)
− )−G(k(i)

− − k
(j)
+ ) + G(k(i)

− − k
(j)
− )

]
ψ(j).

Combined, the equations (3.8) and (3.9) determine the fictitious loads φ and ψ.
A double layer formulation can be derived in an entirely analogous fashion from the Ansatz

u(m) =
∑

n∈Γ

Gν(m,n)φ(n) +
J∑

j=1

[
G(m− k

(j)
+ )−G(m− k

(j)
− )

]
ψ(j).

Finally, we note that the case of a lattice where the the pairs {k(j)
+ , k

(j)
− }J

j=1 have been shortcut can

be solved using the same technique by adjusting the condition at the inclusion to read u(k(i)
+ ) −

u(k(i)
− ) = 0.

4. Partial summation and direct formulations

In sections 2 and 3 the boundary equations were derived from the Ansatz u = Sφ or u = Dφ,
respectively. This method is a straight-forward analogue of the “direct” derivation of boundary
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integral equations in classical potential theory, see [45] or [2]. The other common technique for
deriving integral equations is to start with the Green’s identity

(4.10)
∫

Ω

(
(∆u)v − u(∆v)

)
=

∫

∂Ω

(
∂u

∂n
v − u

∂v

∂n

)
.

Then by letting v denote the fundamental solution, and u the solution of the boundary value
problem it is possible to relate u|Γ and ∂νu|Γ. For, say, a Dirichlet problem, u|Γ is known and using
the derived relation, ∂νu|Γ can be determined. It is then a simple matter to reconstruct u in the
entire domain. In this section we will illustrate how the discrete boundary equations can similarly
be derived from a discrete analogue of (4.10) and then use it to derive the boundary equations. We
will restrict attention to the square lattice with the standard five-point stencil on a square domain
Ω = {−N, . . . , N}2. The results can easily be generalized to other domains but due to the plethora
of lattice geometries and different domains, this has to be done on a case by case basis.

First we need to derive some “partial summation” results. For a function u : Z→ R set

[δu](n) := u(n + 1)− u(n), and [δ̄u](n) := u(n)− u(n− 1).

For such operators we have
N∑

n=−N

[δu](n)v(n) = −
N∑

n=−N

u(n)[δ̄v](n) + u(N + 1)v(N)− u(−N)v(−N − 1),

N∑

n=−N

[δ̄u](n)v(n) = −
N∑

n=−N

u(n)[δv](n) + u(N)v(N + 1)− u(−N − 1)v(−N).

Applying these results to the operator [δδ̄u](n) = u(n + 1)− 2u(n) + u(n− 1) we find that

(4.11)
N∑

−N

[δδ̄u](n)v(n) =
N∑

−N

u(n)[δδ̄v](n)+

(
[δu](N)v(N)− u(N)[δv](n)

)
+

(− [δ̄u](−N)v(−N) + u(−N)[δ̄v](−N)
)
.

For a multi-variate function u : Zd → R, let δj and δ̄j denote the “partial” difference operators, so
that for instance [δ1u](n) = u(n1 + 1, n2, . . . , nd) − u(n1, n2, . . . , nd). Setting Ω = {−N, . . . , N}2,
Γ = ∂Ω and ∆ = δ1δ̄1 + δ2δ̄2 we then get

∑

Ω

(
[∆u]v− u[∆v]

)
=

N∑

n2=−N

([δ1u](N,n2)v(N, n2)− u(N, n2)[δ1v](N, n2)) +

N∑

n2=−N

(−[δ̄1u](−N,n2)v(−N, n2) + u(−N, n2)[δ̄1v](−N, n2)
)
+

N∑

n1=−N

([δ2u](n1, N)v(n1, N)− u(n1, N)[δ2v](n1, N))+

N∑

n1=−N

(−[δ̄2u](n1,−N)v(n1,−N) + u(n1,−N)[δ2v](n1,−N)
)
.
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This can be written compactly using the external difference operator δν defined in section 1,

(4.12)
∑

Ω

(
[∆u]v− u[∆v]

)
=

∑

Γ

(
(δνu)v− u(δνv)

)
.

Note that at the corners we have

δν |(N,N) = δ1 + δ2, δν |(−N,N) = −δ̄1 + δ2, δν |(−N,−N) = −δ̄1 − δ̄2, δν |(N,−N) = δ1 − δ̄2.

Next, let u denote the solution of (D) and let ū denote an extension of u that is harmonic in
Ω. (To construct ū, let φ(n) denote the flow out of node n ∈ Γ in the solution of (D). Then note
that for any k ∈ Γ+ there is a unique n ∈ Γ such that k ∈ Dn and set ū(k) = u(n) + 1

|Dn|ϕ(n) and
ū(m) = 0 for m /∈ Ω ∪ Γ+.) Then fix m ∈ Γ and apply the representation (4.12) to the functions ū
and n 7→ G(m− n), this gives that

(4.13) ū(m) =
∑

n∈Γ

(
[δν ū](n)G(m− n)− ū(n)Gν(m,n)

)
,

which we rewrite as

(4.14) S[δν ū] = (I + D)[ū].

When either u|Γ or δνu|Γ is given, the other quantity can be determined using (4.14) and then
(4.13) is used to construct the solution. We point out that for the continuous case, a delicate limit
process is required before the double layer potential can be ascribed a value on the boundary. This
complication is absent in the discrete case.

Finally, we note that starting with the basic partial summation result (4.11) equations similar
to (4.12) can be derived for general lattices and general domains. For domains that are more
complicated than the example above, especially ones that have re-entrant corners, it is sometimes
necessary to enrich the space of boundary functions by adding a few “fictitious” loads near the
trouble region in a fashion similar to how we handled inclusions in section 3.

5. Conditioning of the boundary equations

As mentioned in section 1, a main reason for working with boundary formulations of boundary
value problems is that we expect these to be well conditioned. An indication that this is the case
is that as the lattice cell size tends to zero, the discrete boundary equations appear to converge to
continuous boundary equations that are very similar to those of classical potential theory. These
equations, especially those associated with second kind equations with a compact integral operator,
are known to produce well-conditioned systems upon discretization.

In this section we will present numerical results that indicate that (2.3) and (2.5) are well-
conditioned. We assembled KS and KD for some different problems and computed the condition-
numbers numerically. The experiments were carried out for the Dirichlet problem with a square
lattice on the four geometries illustrated in Figure 6.2. The square is a simple square with (2N +
1)×(2N+1) nodes. The L-shape is the square with one quadrant removed. For the slit we removed
the vertical connections in the middle third of the middle row. In the shortcut we connected the
nodes in the middle third of the middle row by an infinitely conductive strip. For each case,
we assembled the matrices KS and KD associated with the single and double layer formulations
and computed their condition numbers. For the problems with inclusions, the technique given in
section 3 was used. For comparison, we also assembled the matrix K associated with the five-point
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Figure 6.2. The geometries we used to estimate the condition numbers. Reading
from left to right, first row first, we label them: “the square”, “the L-shape”, “the
slit” and “the shortcut”. The long side of the square has 2N + 1 nodes.

Square L-shape Slit Shortcut
cond(K) 1.6N2 0.83N2 1.6N2 0.28N3

cond(KS) 40N 40N 4N2 4.2N2

cond(KD) 7.0 7.3 0.63N 0.68N

Table 6.1. Asymptotic estimates of the condition numbers for different boundary
equations and different geometries.

difference operator on the domain itself. The exact values obtained are given in tables at the end
of this chapter. A summary of the results is given in table 6.1.

The numbers in the table strongly support our belief that the condition numbers should improve
upon reformulating a problem as a boundary equation. This is especially true for the double
layer formulation, for which the condition number for the two physically reasonable geometries
are not only uniformly bounded as N grows, but are also very low in absolute numbers. We note
that although the condition numbers for the single layer potential perform somewhat poorer, the
estimates in the tables can be improved considerably by a simple trick, see the remark 2 below.

Remark 1: In order to compute the entries of KS and KD one needs to numerically evaluate G(k)
for a large numbers of k’s. For |k| ≤ 30, we precomputed G(k) by integrating analytically in one
dimension and then used numerical quadrature to evaluate the resulting one dimensional integral,
see Appendix D. For larger values the asymptotic expansion G3 was used. This yielded an absolute
accuracy of about 10−14.

Remark 2: The eigenstructure of KS is interesting. In Figure 6.3 we plot the eigenvalues for the
square with N = 10. The lone negative eigenvalue λ0 ≈ −52 corresponds to an almost constant



72 6. BOUNDARY EQUATION METHODS FOR PROBLEMS ON FINITE DOMAINS

0 10 20 30 40 50 60 70 80
−60

−50

−40

−30

−20

−10

0

10

Figure 6.3. Eigenvalues for KS when N = 10

eigenvector. We found that by restricting KS to the orthogonal complement of the constants the
condition number can be reduced by over 90% and we found that asymptotically KS ∼ 3.5N .

Legend for the numerical data: In the last pages of this chapter we provide the raw data for the
experiments on the condition numbers. For each of the four geometries, we present the condition
numbers of K, KS and KD for values of N between 2 and 50. These numbers are also presented as
log-log plots in which ‘o’ represents cond(K), ‘+’ represents cond(KS) and ‘x’ represents cond(KD).
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1: A square domain

N cond(K) cond(K)/N2 cond(KS) cond(KS)/N cond(KD)
2 5.83 1.48 34.6 17.3 6.81
5 39.9 1.59 121 24.2 7.08
10 161 1.61 292 29.3 7.09
15 364 1.62 483 32.3 7.08
20 648 1.62 686 34.3 7.07
25 1010 1.62 898 35.9 7.06
30 1460 1.62 1120 37.2 7.05
35 — — 1340 38.3 7.04
40 — — 1570 39.3 7.04
45 — — 1810 40.1 7.04
50 — — 2050 40.9 7.03
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2: An L-shaped domain

N cond(K) cond(K)/N2 cond(KS) cond(KS)/N cond(KD)
2 2.53 0.63 33.3 16.6 8.12
5 19.7 0.79 117 23.4 7.48
10 82.6 0.82 285 28.5 7.45
15 185 0.82 471 31.4 7.38
20 330 0.83 670 33.5 7.36
25 517 0.83 878 35.1 7.33
30 745 0.83 1090 36.4 7.32
35 — — 1310 37.6 7.31
40 — — 1540 38.5 7.30
45 — — 1770 39.4 7.29
50 — — 2010 40.1 7.28
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1

10
2

10
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3: A domain with a slit

N cond(K) cond(K)/N2 cond(KS) cond(KS)/N2 cond(KD) cond(KD)/N
2 5.72 1.43 34.6 8.66 6.80 3.40
5 39.3 1.57 121 4.83 7.08 1.42
10 161 1.61 336 3.36 7.76 0.776
15 363 1.61 702 3.12 9.52 0.635
20 647 1.62 1380 3.46 13.2 0.661
25 1010 1.62 2320 3.72 16.9 0.677
30 1460 1.62 3240 3.60 18.8 0.626
35 — — 4660 3.80 22.5 0.643
40 — — 6360 3.97 26.2 0.656
45 — — 7860 3.88 28.1 0.624
50 — — 10100 4.03 31.8 0.637
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4: A domain with a shortcut

N cond(K) cond(K)/N3 cond(KS) cond(KS)/N2 cond(KD) cond(KD)/N
2 5.83 0.729 34.6 8.66 6.81 3.40
5 44.8 0.358 121 4.83 7.08 1.42
10 328 0.328 329 3.28 7.64 0.764
15 929 0.275 684 3.04 9.29 0.619
20 2280 0.285 1410 3.53 13.5 0.673
25 4560 0.292 2430 3.88 17.7 0.708
30 7322 0.270 3350 3.72 19.5 0.649
35 — — 4890 4.00 23.7 0.677
40 — — 6760 4.22 28.0 0.699
45 — — 8300 4.10 29.7 0.661
50 — — 10700 4.29 34.0 0.680
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10
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10
4



CHAPTER 7

Vibrations of lattices and acoustic bandgaps

Synopsis: This chapter concerns analysis of elastic waves in lattice structures.
We analyse the propagating modes as well as filtering properties of lattices.
Special attention is paid to the connection between micro-structural geometry
and the presence of so-called “phononic bandgaps”, intervals of frequencies for
which there exist no propagating wave-modes.

Note: This chapter does not directly inter-connect with the preceding chapters.
We therefore present the material here in a self-contained fashion and avoid
making references to results that are presented earlier.

1. Introduction.

1.1. Background. In this chapter we will demonstrate that for many mechanical lattice struc-
tures there are intervals of frequencies for which no propagating elastic waves exist. This raises
the possibility of designing materials, or structures, that can completely block mechanical waves
of certain frequencies. We will present a method of analysis that can be used to determine such
bandgaps and then show how lattices can be constructed that have bandgaps around prescribed
frequencies.

There are many observations of bandgap phenomena in nature; in the classical litterature (see
for example Kittel [40] and Brillouin [11]), examples are given of real life molecular structures
that exhibit bandgaps in both the acoustic and electro-magnetic spectra (referred to as phononic
and photonic bandgaps, respectively). A comprehensive bibliography including more than one
thousand articles on photonic band structures was compiled by Dowling, Everitt and Yablonovitch
[18]. Theoretical and numerical studies based on the plane wave expansion method were published
by Sigalas and Economou [58, 59, 60], who considered scalar problems for acoustic wave band
structures as well as vector problems for elastic waves in plates containing periodic sets of inclusions.
For continuum elastic structures the phononic bandgap phenomena were studied in the paper by
Poulton et al. [54], where a generalisation of the Rayleigh method was developed to analyse the
elastic wave propagation through a two-dimensional array of circular voids.

It is evident that one can establish a correspondence between continuum structures and discrete
lattices. For example, for the case of a normal incidence of an anti-plane wave on a stack of two
types of elastic layers (see Figure 7.1a) we can assume that the layers of one of the groups are
thin and soft. In this case, it can be shown (Movchan and Zalipaev [49]) that asymptotically
the dispersion equation for this structure would be equivalent to the one corresponding to a bi-
atomic one-dimensional chain of particles of different mass connected by weightless elastic springs
(see Figure 7.1b). The dispersion diagram given in Figure 7.2 shows the normalized frequency
versus the magnitude of the Bloch vector and exhibits the bandgap between the acoustic and
optical modes for this one-dimensional problem. The comparison of certain anti-plane problems for

77
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Figure 7.1. One-dimensional array, of period d, involving two types of layers, of
thickness a and (d− a) (A), and a two-particle system with springs (B).

continuous systems in two dimensions and two-dimensional lattice structures was also included in
Movchan and Zalipaev [49]. It is noted that the analysis of lattice structures is easy compared to
numerical computations for continuum systems of complicated geometries; on the other hand the
lattice structure may exhibit the physical phenomena similar to continuum structures, and hence
it is highly important to be able to evaluate the transmission and reflection characteristics of the
lattice structures.

In this chapter, we emphasise analysis of vector problems of elasticity for lattice structures and
pay particular attention to the emergence of phononic bandgaps. Our analysis is restricted to two
dimensions but the methodology easily generalizes to three-dimensional structures. The plan of
the chapter is as follows:

• In the following subsection of the introduction we consider elementary examples of membrane-
like lattices with different assumptions related to the mass distribution along the strings.

• In section 2 we analyse in-plane elastic vibrations of degenerate and non-degenerate bi-
atomic lattice structures that exibit phononic bandgaps.

• A general approach to spectral problems for lattice structures is presented in section 3.
• This approach is used in section 4 to design structures which possess bandgap frequencies

of given magnitude. It is specifically noted that the bandgap phenomena are associated
with the presence of standing waves within the structure.

1.2. A membrane-like lattice. In this section we consider illustrative examples for a lattice
with the square geometry illustrated in Figure 7.3. We think of the lines of the lattice as strings
with an axial force F , and a weight-per-length density ρ. The strings are attached to each other at
the nodal points. We consider harmonic vibrations of this lattice with displacements of the strings
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Figure 7.2. Acoustic and optical branches for a one-dimensional array of particles
of mass m1 = 1 and m2 = 2 connected by springs of length a = 1 and stiffness
c = 10. Along the horizontal axis we put the magnitude of the Bloch vector, and
we have the radian frequency on the vertical axis.

and the nodes in the direction perpendicular to the plane of the lattice. Our goal is to determine
the eigenmodes and look for bandgaps in the spectrum. We consider two different cases; first that
the density is constant, second, that the string consists of two parts that each have constant density.

Homogeneous strings of constant density: Since the domain is infinite and the vibrations are
quasi-periodic in space we can restrict attention to a unit cell, as illustrated in Figure 7.3. Let
u(j), j = 0, 1 . . . , 4, denote the displacement of the nodes, where j is the index shown in the figure.
Let w(j)(x, t) denote the displacement of the string connecting node 0 to node j, with x ∈ (0, l)
measured as shown in the figure and t denoting time. Then Newton’s second law reads

F
d2w(j)

dx2
= ρ

d2w(j)

dt2
.
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Figure 7.3. Square lattice with mass distributed along the bars.

Since we consider time-harmonic oscillations, say of radian frequency ω, we have d2w(j)/dt2 =
−ω2w(j) and obtain

d2w(j)

dx2
+

ω2

v2
w(j) = 0,

where v =
√

F
ρ is the internal group-velocity of the strings. The boundary conditions are w(j)(0) =

u(0) and w(j)(l) = u(j). Considering first the case sin ωl
v 6= 0 we find that

w(j)(x) = u(0) cos
ωx

v
+

u(j) − u(0) cos ωl
v

sin ωl
v

sin
ωx

v
.

Equilibrium of the central node now reads

(1.1) 0 =
4∑

n=1

dw(j)

dx

∣∣∣∣
x=0

=
1

sin ωl
v

(
u(1) + u(2) + u(3) + u(4) − 4 cos

ωl

v
u(0)

)
.

Looking for waves with a Bloch vector k = (k1, k2) we have the quasi-periodicity conditions

u(1) = e−ik1lu(0), u(2) = e−ik2lu(0), u(3) = eik1lu(0), u(4) = eik2lu(0).

Plugging this into equation (1.1) we obtain the equation

cos(k1l) + cos(k2l)− 2 cos
ωl

v
= 0.

For the case sin ωl
v = 0 there exist, for any k, standing wave modes corresponding to internal

vibrations of the strings, with no associated nodal displacements. The total dispersion equation
therefore takes the form

sin
ωl

v

(
cos(k1l) + cos(k2l)− 2 cos

ωl

v

)
= 0.

Note that in the limit k → 0 the dispersion equation has the asymptotic solution |k| = √
2ω/v, the

same dispersion equation as that for a continuous membrane with group velocity v/
√

2.
Given k ∈ (−π, π)2 the dispersion equation allows us to determine all frequencies ω such that

there is a vibration mode with frequency ω and the Bloch vector k. In Figure 7.4 we plot the
solutions ω versus k’s along the path shown to the right in the figure. It is clear that no complete
bandgaps exist.
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Figure 7.4. Dispersion diagram for the square lattice with distributed mass. The
non-dimensionalized solutions ωl/v are plotted against k along the contour shown
to the right.

Figure 7.5. Lattice consisting of strings with non-constant density. The white part
of the strings have density ρ, the black have density ρ/α2.

Inhomogeneous strings: We will next consider a structure similar to the one analysed above but
where the strings are not homogeneous; the density has been changed from ρ to ρ/α2 in half the
bar, as illustrated in Figure 7.5. In this case we derive (see Appendix 1) the dispersion equation

(1.2)
[
cos

ωl

2v
sin

ωl

2αv
+

1
α

cos
ωl

2αv
sin

ωl

2v

]

×
[

1
α

(
cos(k1l) + cos(k2l)− 2 cos

ωl

2v
cos

ωl

2αv

)
+

(
1 +

1
α2

)
sin

ωl

2v
sin

ωl

2αv

]
= 0.

One very interesting feature here is that the first factor captures exactly the eigenfrequencies
of the inhomogeneous string with fixed ends. As shown in Figure 7.6, around these frequencies
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Figure 7.6. Dispersion diagram similar to the one shown in Figure 7.4 but for the
lattice with strings of varying density, α = 2.

there are typically complete bandgaps. This means that no waves with frequencies close to the
eigenfrequencies of the composite bars can propagate through the structure.

The two elementary examples considered above provide sufficient motivation for analysis of
trapped modes and phononic bandgaps in elastic structures. These vector problems are considered
in the text below.

2. Two examples of mechanical lattices

Every periodic lattice is characterised by an irreducible cell and a corresponding stiffness matrix
A associated with this cell. Thinking of the members of the lattice as beams we know that the
matrix A splits into two components, A = Aaxial + Abending, with the first representing the axial
stiffness of the beams and the second representing the bending stiffness. If the bars are slender we
know that the axial stiffness is much higher than the bending stiffness. If Aaxial has full rank when
restricted to the translational degrees of freedom it will entirely dominate the problem and in this
case we usually neglect the effect of Abending and solve only for the translational degrees of freedom.
We refer to these structures as truss structures. On the other hand, if Aaxial does not have full
rank (when restricted to the translational degree of freedom) we do need to keep Abending in order
to maintain structural integrity. Note that in this case A will be badly conditioned and we will
expect the lattice to exhibit strongly anisotropic behaviour. Such structures we refer to as frame
structures. In the next two subsections we will study one each of these two kinds of structures. We
will try to make plausible the claim that even though bandgaps do exist in some truss structures
they are more typical for the frames of the type considered in section 2.2.

2.1. A bi-atomic triangular lattice. Consider the triangular lattice illustrated in Figure
7.7. It consists of bars with an axial stiffness c connected with pin-joints. At the nodes with small
dots there is a mass m1 and at the big dots there is a mass m2. The lattice has an irreducible
unit cell Ω whose integer translations along the lattice vectors t(1) = (2l, 0) and t(2) = (l/2,

√
3l/2)

cover the whole plane,
⋃

n∈Z2(Ω + n1t
(1) + n2t

(2)) = R2. We identify the coordinates of the two
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m1 m2

t2

t1

Figure 7.7. Triangular bi-atomic lattice. To the right we illustrate the irreducible
unit cell and the lattice vectors.

nodes in Ω as x1 = (0, 0) and x2 = (l, 0), then the node κ ∈ {1, 2} in cell n ∈ Z2 has coordinates
x(n,κ) = xκ + Tn where T = [t(1), t(2)].

We let u(n,κ) = (u(n,κ)
1 , u

(n,κ)
2 )T denote the displacement of node (n, κ). Introducing the unit

vectors

(2.3) aj = (cos
2(j − 1)π

3
, sin

2(j − 1)π
3

)T, j = 1, 2, 3.

and setting e1 = [1, 0]T, e2 = [0, 1]T we can express the equations of motion for the case of harmonic
oscillations (of radian frequency ω) as

ω2m1u
(n,1) =c a1a

T
1 (2u(n,1) − u(n,2) − u(n−e1,2))+

c a2a
T
2 (2u(n,1) − u(n+e2,1) − u(n−e2,1))+

c a3a
T
3 (2u(n,1) − u(n−e1+e2,2) − u(n−e2,2)),

ω2m2u
(n,2) =c a1a

T
1 (2u(n,2) − u(n+e1,1) − u(n,1))+

c a2a
T
2 (2u(n,2) − u(n+e2,2) − u(n−e2,2))+

c a3a
T
3 (2u(n,2) − u(n+e2,1) − u(n+e1−e2,1)).

Applying the condition of quasi-periodicity, u(n+m,κ) = eik·Tmu(n,κ), we obtain

ω2m1u
(n,1) =c

[
2a1a

T
1 + 4 sin2 k1l +

√
3k2l

4
a2a

T
2 + 2a3a

T
3

]
u(n,1)+

c

[
(1 + e−2ik1l)a1a

T
1 + (e−i

3k1l−√3k2l
2 + e−i

k2l+
√

3k2l
2 )a3a

T
3

]
u(n,2)

ω2m2u
(n,2) =c

[
2a1a

T
1 + 4 sin2 k1l +

√
3k2l

4
a2a

T
2 + 2a3a

T
3

]
u(n,1)+

c

[
(1 + e2ik1l)a1a

T
1 + (ei

3k1l−√3k2l
2 + ei

k2l+
√

3k2l
2 )a3a

T
3

]
u(n,2).
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Figure 7.8. Eigenfrequencies for the triangular biatomic lattice with c = 1. In the
left graph, m1 = m2 = 1, in the right, m1 = 1, m2 = 10.

Introducing the vector u(n) = [u(n,1), u(n,2)]T ∈ R4 we write this compactly as

(2.4) ω2Mu(n) = σ(k)u(n),

where we defined a mass matrix M = diag{m1, m1, m2, m2} and a 4×4 stiffness matrix σ(k). The
entries of σ(k) are given by

σ11(k) = σ22(k) = c

[
5
2 + sin2 k1l+

√
3k2l

4 −
√

3
2 +

√
3 sin2 k1l+

√
3k2l

4

−
√

3
2 +

√
3 sin2 k1l+

√
3k2l

4
3
2 + 3 sin2 k1l+

√
3k2l

4

]
,

σ12(k) = σ21(k)? = c

[
1 + e2ik1l + 1

4e−i
3k1l−√3k2l

2 + 1
4e−i

k1l+
√

3k2l
2

√
3

4 e−i
3k1l−√3k2l

2 +
√

3
4 e−i

k1l+
√

3k2l
2

√
3

4 e−i
3k1l−√3k2l

2 +
√

3
4 e−i

k1l+
√

3k2l
2

3
4e−i

3k1l−√3k2l
2 + 3

4e−i
k1l+

√
3k2l

2

]

Equation (2.4) has non-trivial solutions if and only if

(2.5) det(σ(k)− ω2M) = 0.

This equation is referred to as the dispersion equation of the lattice.
The equation (2.5) has been solved numerically for some different combinations of masses (the

spring constant c was set to unity). As illustrated in the left graph of Figure 7.8 there is no bandgap
when m1 = m2 = 1. In this graph k follows the path illustrated in Figure 7.9. By increasing one of
the masses while keeping the other one fixed we can push the “acoustic” modes down in frequency
until a bandgap appears when m2/m1 ≈ 5. In the right graph of Figure 7.8 we illustrate the
spectrum for m1 = 1, m2 = 10.

2.2. A bi-atomic square lattice. Next we consider the lattice illustrated in Figure 7.10.
This structure would be degenerate if bending stiffnesses were disregarded so we need to model
it as a frame. To this end we endow the beams with axial stiffnesses cj and bending stiffnesses
dj , as illustrated in the figure. There are nodes located at points x1 = (0, 0) and x2 = (l, 0) in
the unit cell, these nodes have masses mκ and polar moments of inertia Jκ, for κ = 1, 2. We use
the same notation as in the previous example but note that now the lattice vectors are given by
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Figure 7.9. The reciprocal lattice is contained in the dashed parallelogram. The
thick line illustrates the contour along which the eigen-frequencies are plotted.
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Figure 7.10. Square bi-atomic lattice with its irreducible unit cell to the right.

t(1) = (2l, 0)T and t(2) = (l, l)T. We also need to include a rotational degree of freedom to the
nodal displacements, u(n,κ) = (u(n,κ)

1 , u
(n,κ)
2 , u

(n,κ)
rot )T.

The equations of motion will this time constitute a set of three equations for each node, two for
the components of the momentum and one for the angular momentum. The process of writing these
down and combining them with the quasi-periodicity condition is straight-forward but somewhat
lengthy so we leave it to Appendix 2. The end result is an equilibrium equation of the form (2.4)
where now M = diag{m1, m1, J1, m2, m2, J2} and the stiffness matrix σ(k) consists of four 3× 3
blocks whose entries depend on the axial and bending stiffnesses cj and dj .

The dispersion equation, which again takes the form (2.5), has been solved numerically, and
in Figure 7.11 we show some characteristic dispersion diagrams. Note that the slope of the lowest
acoustic line is far lower when going from A to B than it is when going from B to C. This is a
manifestation of the strong anisotropy of this material. It is also evident from the diagram that
the interval [0.9, 1.3] forms a large bandgap.
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Figure 7.11. Dispersion curves for the square, bi-atomic lattice along the contour
illustrated to the right. The constants are c1 = 1, c2 = 2, d1 = 0.002, d2 = 0.004,
m1 = 2, m2 = 3, J1 = 1, J2 = 2.

3. Periodic structures of general geometry

A general lattice geometry in Rd can be specified by the following objects:
Reference cell: We specify an irreducible reference cell Ω ⊂ Rd in the form of a parallel-

epipede spanned by some translation vectors t(i) ∈ Rd, 1 ≤ i ≤ d. Then its translates

⋃

n∈Zd

(
Ω +

d∑

i=1

nit
(i)

)

will form a disjoint covering of Rd. We frequently collect the translation vectors in a
matrix T = [t(1), . . . , t(d)]. Then, for n ∈ Zd label the set Ω(n) = Ω + Tn “cell n”.

Nodes: Let {xκ}q
κ=1 ⊂ ω be the nodes in the reference cell. We use the notation x(n,κ) =

xκ + Tn to index nodes in the lattice by giving their node number κ and the label of the
cell they belong to, n.

Lattice members: Finally we specify a list of b lattice members {(κj , nj , λj)}b
j=1, where

for each member we specify the node xκj (in the reference cell) that it starts from, and
the node x(nj ,λj) it connects to.

For convenience we define two index sets:
• Bκ = {(n, λ)} is a list of nodes (n, λ) connected to the node (0, κ).
• Bκ,λ = {n} is a list of the indices n such that (0, κ) connects to (n, λ).

It is easy to verify that

(n, λ) ∈ Bκ ⇔ n ∈ Bκλ ⇔ −n ∈ Bλκ ⇔ (−n, κ) ∈ Bλ.

Introduce the variable u(n,κ) to denote the “displacement” of node (n, κ). The term displacement
should be interpreted in a generalized sense since depending on context it may model either the
temperature at the node or translational and/or rotational degrees of freedom of a mechanical
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structure. Assumimg that the “load-displacement” relationship is linear for each lattice member
we write equilibrium for the member of type (κ,m, λ) that connects (n, κ) to (n + m,λ) as

[
f (1)

f (2)

]
= A(κ,m,λ)

[
u(n,κ)

u(n+m,λ)

]
=

[
A

(κ,m,λ)
11 A

(κ,m,λ)
12

A
(κ,m,λ)
21 A

(κ,m,λ)
22

][
u(n,κ)

u(n+m,λ)

]
,

where f (1) and f (2) are the (generalized) forces acting at the ends of the member. The matrices
A(κ,m,λ) should all be non-negative and symmetric (to conform with Castigliano’s theorems). Since
the lattice is periodic we must also have

(3.6) A
(κ,m,λ)
12 = (A(λ,−m,κ)

12 )T, A
(κ,m,λ)
11 = A

(λ,−m,κ)
22 .

Newton’s second law for the node (n, κ) takes the form

f (n,κ) = Mκü(n,κ) +
∑

(m,λ)∈Bκ

[
A

(κ,m,λ)
11 u(n,κ) + A

(κ,m,λ)
12 u(n+m,λ)

]
,

where Mκ is a mass-matrix corresponding to masses lumped at node x(n,κ). The equation is of
convolution form and it is therefore easily diagonalizable by the Fourier transform

F : u → ũ(k) =
∑

n∈Zd

eix(n)·ku(n), for k ∈ T−T[−π, π]d,

where x(n) = Tn. We find

f̃κ(k) =Mκ∂2
t ũ(k) +

∑

(m,λ)∈Bκ

[
A

(κ,m,λ)
11 ũκ(k) + A

(κ,m,λ)
12 e−ix(m)·kuλ(k)

]

=Mκ∂2
t ũ(k) +

q∑

λ=1

∑

m∈Bκλ

[
A

(κ,m,λ)
11 δκλ + e−ix(m)·kA(κ,m,λ)

12

]
ũλ(k).

Write ũ(k) = [ũ1(k), . . . , ũq(k)]T and f̃(k) = [f̃1(k), . . . , f̃ q(k)]T, and introduce a matrix σ(k) whose
κλ-block is given by

(3.7) σκλ(k) =
∑

m∈Bκλ

[
A

(κ,m,λ)
11 δκλ + e−ix(m)·kA(κ,m,λ)

12

]
,

and let M = diag{Mκ}q
κ=1 be the mass-matrix. Then we can write the equations compactly as

f̃(k) = M∂2
t ũ(k) + σ(k)ũ(k).

Looking for harmonic waves we set the forcing to zero, substitute ∂2
t ũ(k) → −ω2ũ(k) and find

the eigenvalue problem

(3.8)
[
σ(k)− ω2M

]
ũ(k) = 0.

The following proposition guarantees that the solutions ω2 are all real and non-negative.

Proposition. The symbol σ(k) is a Hermitian, non-negative matrix.
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Proof: Starting with equation (3.7) and using (3.6) we find

[σκλ(k)]? =
∑

m∈Bκλ

[
[A(κ,m,λ)

11 δκλ]T + eix(m)·k[A(κ,m,λ)
12 ]T

]

=
∑

m∈Bκλ

[
A

(κ,m,λ)
11 δκλ + eix(m)·kA(λ,−m,κ)

12

]
= σλκ(k),

where in the last step we used that m ∈ Bκλ ⇔ −m ∈ Bλκ. This proves that σ(k) is Hermitian.
To prove the non-negativeness claim fix any test-function ũ and set u = F−1[ũ]. Then by

Parsevals theorem
∫

T−T(−π,π)d

(ũ(k))?σ(k)ũ(k) dk = (2π)d
∑

n∈Zd

b∑

j=1

[
u(n,κj)

u(n+mj ,λj)

]T

A(κj ,mj ,λj)

[
u(n,κj)

u(n+mj ,λj)

]
≥ 0

since all the local matrices are non-negative.

In the context of mechanical lattices we earlier made the distinction between truss and frame
structures. For the truss structures we study only the translational degrees of freedom so that
u(m,κ) ∈ Rd. The stiffness matrix of a bar with cross-section s, length l, Young’s modulus E and
oriented along the unit vector a will be given by

A =
sE

l

[
aaT −aaT

−aaT aaT

]
.

The mass of a bar is proportional to slρ where ρ is the density of the base material. Looking at
the dispersion equation (3.8) we then determine the typical frequency ωtruss of the eigenmodes of
the truss,

(3.9)
sE

l
∼ ω2

trussslρ, ⇒ ωtruss ∼ 1
l

√
E

ρ
.

Recalling that elastic waves in the base material travel with a group velocity proportional to
√

E/ρ
we find that this frequency corresponds to waves in the base material with a wavelength equal to
the cell size. Note in particular that the cross-sectional area of the bars canceled.

For frame structures the situation is somewhat more complicated, even when we restrict atten-
tion to two-dimensional structures. For a beam oriented along the x1-axis with cross-sectional area
s and cross-sectional moment of inertia I the equilibrium equation reads

(3.10)




f1
1

f1
2

T 1

f2
1

f2
2

T 2




=




sE
l 0 0 − sE

l 0 0
0 12EI

l3
6EI
l2

0 −12EI
l3

6EI
l2

0 6EI
l2

4EI
l 0 −6EI

l2
2EI

l

− sE
l 0 0 sE

l 0 0
0 −12EI

l3
−6EI

l2
0 12EI

l3
−6EI

l2

0 6EI
l2

2EI
l 0 −6EI

l2
4EI

l







u1
1

u1
2

θ1

u2
1

u2
2

θ2




.

Here we labeled the two ends of the beam 1 and 2 and let (f j
1 , f j

2 , T j) denote the forces and
moments acting at end j, and similarly (uj

1, uj
2, θj) denote the translational and rotational degrees
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Figure 7.12. Triangular lattice with an oscillator.

of freedom of the displacement at end j. We commonly work with non-dimensional entities in which
case the equilibrium equation takes the form (writing it only for node 1),

(3.11)




1
sE f1

1
1

sE f1
2

1
slE T 1


 =




1 0 0
0 12I

sl2
6I
sl2

0 6I
sl2

4I
sl2







1
l u

1
1

1
l u

1
2

θ1


 +




1 0 0
0 −12I

sl2
6I
sl2

0 − 6I
sl2

2I
sl2







1
l u

2
1

1
l u

2
2

θ2


 .

For a solid bar of width b we have I ∼ b2s so that I/(sl2) ∼ (b/l)2. For a slender bar the slenderness
ratio ε = b/l is small and the splitting of the stiffness matrix into one part that scales as O(1) and
one part that scales as O(ε2) is clear. These two parts correspond to axial and bending stiffness,
respectively.

Finally we note that the polar moment of inertia of a bar will scale as mbarl
2 = ρsl3. We can

then estimate the typical frequency of rotational modes from equation (3.8),

EI

l
∼ ω2

rotJ, ⇒ ωrot ∼
√

EI

Jl
∼

√
Esb2

ρsl4
∼ b

l2

√
E

ρ
=

b

l
ωtruss

where in the last step we used equation (3.9) for ωtruss.

4. Designing lattices with prescribed bandgaps

In this section we will illustrate how the spectrum of an elastic lattice can be manipulated by
introducing certain types of micro-structures. The idea is that the added microstructure should be
such that it has its own vibrational modes corresponding to certain types of standing waves in the
whole lattice.

As a first example consider a triangular truss structure with an added mass m◦ at the center
of every other cell, as illustrated in Figure 7.12. The mass is suspended by three bars, each with
stiffness c◦. For simplicity we let the basic triangular structure (drawn with thick lines in the figure)
have unit masses at the nodes and let it be connected with bars of unit stiffness. In Figure 7.13
the effect of the added micro-structure is illustrated. The left graph depicts the spectrum of the
original, triangular lattice. In the middle graph the micro-structure is included, for c◦ = 1, m◦ = 1.
The right graph shows the effect of weakening the springs to c◦ = 0.25 and increasing the internal
mass to m◦ = 4. The interesting feature of these graphs is that the added structure clearly has
introduced a bandgap in the spectrum. Interestingly, we can predict and control the location of
this bandgap.
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Figure 7.13. Spectrum for a triangular truss (left) and the same truss with a
simple oscillator (middle and right).

Consider a mass m◦ suspended by three springs with stiffness c◦, attached to the rigidly fixed
vertices of an equilateral triangle. Using the unit vectors aj defined in equation (2.3) and letting
u ∈ R2 denote the displacement of the mass from the equilibrium point we can write

m◦ω2u = c◦
[
a1a

T
1 + a2a

T
2 + a3a

T
3

]
u = c◦

[
3/2 0
0 3/2

]
u.

This shows that the mass will oscillate about the equilibrium point with the frequency ω◦ :=√
3c◦
2m◦ . For the examples illustrated in the graphs, {m◦, c◦} = {1, 0.2}, {5, 0.2} we find ω◦ =

{
√

3/2,
√

3/32} ≈ {1.22, 0.32}. These values coincide to a very high degree of accuracy with the
lower limits of the bandgaps observed in Figure 7.13.

Next we consider a more complex oscillator, as illustrated in Figure 7.14. In the case illustrated
the small internal triangle is 0.15 times the size of the large ones. In Figure 7.15 we display the
spectrum obtained if all internal nodes have mass 1 and all the internal springs have stiffness 0.2.
Doing a calculation similar to the one we did for the simple oscillator in the previous paragraph, we
find that the frequencies of the articulated oscillator are ω◦ = {0.41, 0.41, 0.55, 0.73, 0.73, 0.83}.
These frequencies match the bands seen in Figure 7.15 very well.

Finally we will look at how an oscillator effects the spectrum of a frame structure, as illustrated
in Figure 7.16. The thick lines representing the original lattice all have unit axial stiffness, a
bending stiffness of 0.05 and there are unit masses at the nodes. Then we added another unit mass,
m◦ = 1, that is supported by the thin lines, which have an axial stiffness of c◦ = 0.2 but no bending
stiffness. This is the same oscillator as in the first example so we expect standing wave modes at
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Figure 7.14. Triangular lattice with a complex oscillator.
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Figure 7.15. Spectrum for a triangular truss (left) and the same truss with a
complex oscillator (right).

ω◦ =
√

(3c◦)/(2m◦) ≈ 0.55, which corresponds exactly to where the new bandgap shows up in the
right hand graph in Figure 7.17.

5. Conclusions

We have demonstrated that many mechanical lattice structures exhibit complete bandgaps, i.e.
intervals of frequencies for which there are no propagating mechanical waves. We have provided a
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Figure 7.16. Honeycomb frame with an oscillator
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Figure 7.17. Spectrum for the honeycomb frame (left) and the same frame with
an oscillator (right).

method for analysis that can be used to quickly determine the bandgaps, a method that is easily
implemented on a computer for analysis of complicated structures. Finally we have exhibited a
method by which lattices can be modified to create complete bandgaps at prescribed frequencies.

This work has a wide range of applications in the design of earthquake resistant structures,
acoustic mirrors, filters and acoustic lasers.



CHAPTER 8

Concluding remarks

When the presented results are combined, they provide a powerful set of tools for solving a
lattice equation defined on a very large set Ω,{

Au = f on Ω,

αu + βδνu = g on ∂Ω.

We can find a particular solution that satisfies the body load by computing the convolution G ∗ f
using the fast summation algorithm given in Chapter 5. In order to satisfy the boundary condition,
we solve a homogeneous boundary value problem using the method given in Chapter 6. Note that
a fast numerical solver for this problem again relies on the fast summation methods of Chapter 5.

The proposed method can fully resolve the problem and accurately compute u at all the N
nodes of Ω using O(N) operations, just like other fast methods such as the FFT. However, the new
method can do significantly better; taking advantage of whatever regularity happens to be present,
it can use averaging in those regions where this is permissible and actually compute a solution in
far less than O(N) time. In essence, we embed the derivation of an averaged model directly into the
fast numerical methods (FMM and BEM). This way, the resolution depth can change with spatial
position and we can in a stable and systematic fashion resolve exactly those length-scales that are
needed to obtain the desired level of accuracy.

Several remarks are in order:
• Short-range interactions are computed using the exact Green’s function. This means that

no à priori assumptions need to be made on the regularity of the problem.
• Long-range interactions are computed using the asymptotic expansion GP of the lattice

Green’s function derived in Chapter 4. Note that GP is the fundamental solution of the
O(ε2P+2) homogenized equations given in Chapter 3, which means that we are taking
advantage of the very fast convergence of high-order homogenization without imposing
the prohibitive regularity requirements that have heretofore been associated with such
methods.

• The new method is most efficient when A is perfectly periodic but inclusions and local
defects can be handled using the methods of section 3 of Chapter 6.
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APPENDIX A

The stiffness matrix of a slender beam

In this appendix we describe the local stiffness matrices in the two-dimensional frame model.
These results are basic strength of materials fare and are given here for reference only. For a fuller
description of mechanical modelling of the kind we only touch upon here, see Przemieniecki [55].

In the frame model, a link is considered to be a slender mechanical beam. Suppose that the
beam is oriented along the x1-axis, that its ends are displaced by the distances U, V ∈ R2 and are
rotated anti-clockwise by angles φ, ψ ∈ [−π, π), as shown in Figure A.1. Then the forces F, G ∈ R2

and moments M,N ∈ R that are required to keep the beam in equilibrium are given by

(A.1)




AE
L 0 0 −AE

L 0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L3
2EI
L

−AE
L 0 0 AE

L 0 0
0 −12EI

L3 −6EI
L2 0 12EI

L3 −6EI
L2

0 6EI
L2

2EI
L 0 −6EI

L3
4EI
L







U1

U2

φ
V1

V2

ψ




=




F1

F2

M
G1

G2

N




.

Here E is the Young’s modulus, A is the cross-sectional area of the beam, L its length and I its
moment of inertia. First we put (A.1) in non-dimensional form




1 0 0 −1 0 0
0 12I

AL2
6I

AL2 0 − 12I
AL2

6I
AL2

0 6I
AL2

4I
AL2 0 − 6I

AL2
2I

AL2

−1 0 0 1 0 0
0 − 12I

AL2 − 6I
AL2 0 12I

AL2 − 6I
AL2

0 6I
AL2

2I
AL2 0 − 6I

AL2
4I

AL2







U1/L
U2/L

φ
V1/L
V2/L

ψ




=




F1/AE
F2/AE
M/AEL
G1/AE
G2/AE
N/AEL




.

Next set u = (u1, u2, u3) := (U1/L, U2/L, φ), f = (f1, f2, f3) := (F1/AE, F2/AE, M/AEL) and
define v and g likewise. Then we can write (A.1) as, cf. (2.2) and (2.7),

([
Baxial −Baxial

−Baxial Baxial

]
+ β2

[
Bbend Cbend

Ct
bend Dbend

])[
u
v

]
=

[
f
g

]
,

where β2 = 12I/(AL2) and

Baxial =




1 0 0
0 0 0
0 0 0


 , Bbend =




0 0 0
0 1 1

2
0 1

2
1
3


 , Cbend =




0 0 0
0 −1 1

2
0 −1

2
1
6


 , Dbend =




0 0 0
0 1 −1

2
0 −1

2
1
3


 .

Note that typically I ∼ A2, which means that β2 ∼ A/L2 ∼ (r/L)2, where r is the length of the
cross-section of the bar. This justifies the claim made in connection with equation (2.7) that the
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x1

x2

u
v

φ

Figure A.1. Illustration of the coordinates in the beam model.

component of the stiffness matrix that corresponds to bending stiffness scales as the slenderness
ratio squared.

It remains only to describe how to obtain the stiffness matrix for a beam that is not parallel to
the x1-axis. Let θ be the angle that the beam forms with this axis (counted positive anti-clockwise)
and define rotation matrices

Uθ =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

Then the stiffness matrix for the rotated beam is given by

Kθ :=
[

Uθ 0
0 Uθ

]([
Baxial −Baxial

−Baxial Baxial

]
+ β2

[
Bbend Cbend

Ct
bend Dbend

])[
U t

θ 0
0 U t

θ

]
.



APPENDIX B

Examples of lattices

1. Introduction

In this appendix we will apply the techniques derived in the thesis to study several classical
lattice geometries. For all geometries, we study the conduction problem and either the truss or the
frame mechanical model, depending on whether the truss model is degenerate or not.

Given a lattice geometry and a local model, the following steps are carried out:

Step 1: Compute the symbol σ(ξ) using (2.10) and (2.11).

Step 2: Compute the series expansion of σ(ξ).

Step 3: Use the series expansion of Step 2 to compute the series expansion of σ(ξ)−1 using
Lemma 3.5.

Step 4: Read off the homogenized equations from the series expansion of σ(ξ)−1.

Step 5: Compute the terms in the asymptotic expansion of the lattice Green’s function
using the series expansion of σ(ξ)−1 combined with either Proposition 4.1 (when d = 3)
or Propositions 4.3 and 4.4 (when d = 2).

While steps 2, 3 and 5 involve conceptually simple operations, they tend to require very lengthy
algebraic manipulations in practice. This makes the use of symbolic algebra software indispensible.
A complete suite of subroutines for dealing with arbitrary lattice geometries and the three local
models studied in this thesis can be downloaded from:

http://www.ticam.utexas.edu/˜pgm/Thesis/maple program.html

2. Simple square and cubic lattices

Two-dimensional square model: The lattice is defined by

X(0, 1) =
[

0
0

]
, T =

[
1 0
0 1

]
, B+ = {(1, [1, 0], 1), (1, [0, 1], 1)}.

Consider first the conduction problem, assuming that all bars have conductivity 1. Then

σ(ξ) = 4 sin2 ξ1

2
+ 4 sin2 ξ2

2
= 2(1− cos ξ1) + 2(1− cos ξ2) =

∞∑

j=1

(−1)j−1 2
(2j)!

(ξ2j
1 + ξ2j

2 ),
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and

1
σ(ξ)

=
1
|ξ|2 +

1
|ξ|4

(
ξ4
1

12
+

ξ2
2

12

)
+

1
|ξ|6

(
ξ8
1

240
− ξ6

1ξ
2
2

360
+

ξ4
1ξ

4
2

72
− ξ2

1ξ
6
2

360
+

ξ8
2

240

)
+

1
|ξ|8

(
ξ12
1

6048
− 11ξ10

1 ξ2
2

30240
+

ξ8
1ξ

4
2

756
− ξ6

1ξ
6
2

1080
+

ξ4
1ξ

8
2

756
− 11ξ2

1ξ
10
2

30240
+

ξ12
2

6048

)
+ O(|ξ|6).

We can now read off the homogenized equations, the first three read

(−∆)1u(0,ε) = f,

(−∆)2u(1,ε) = (−∆)f + ε2(
∂4

1

12
+

∂4
2

12
)f,

(−∆)3u(2,ε) = (−∆)2f + ε2(
∂4

1

12
+

∂4
2

12
)f + ε4

(
∂8

1

240
− ∂6

1∂2
2

360
+

∂4
1∂4

2

72
− ∂2

1∂6
2

360
+

∂8
2

240

)
f.

The asymptotic expansion of the lattice Green’s function is

G(m) = − 1
2π

(
log |m|+ γ +

log 8
2

)
+

1
24π

m4
1 − 6m2

1m
2
2 + m4

2

|m|6

+
1

480π
43m8

1 − 772m6
1m

2
2 + 1570m4

1m
4
2 − 772m2

1m
6
2 + 43m8

2

|m|12
+ · · · .

In polar coordinates, m = r(cos θ, sin θ), we write

G(m) = − 1
2π

(
log r + γ +

log 8
2

)
+

cos(4θ)
24πr2

+
25 cos(8θ) + 18 cos(4θ)

480πr4

+
490 cos(12θ) + 459 cos(8θ)

2016πr6
+

9625 cos(16θ) + 10800 cos(12θ) + 1302 cos(8θ)
3840πr8

+ · · · ,

where γ = 0.577206 · · · is the Euler constant.
Next we model the lattice as a frame. With γ the bending stiffness of the bars, the scaled

symbol takes the form

σ(ε)(ξ) =




4ε−2 sin2 εξ1
2 + 4γε−2 sin2 εξ2

2 0 iγε−1 sin εξ2

0 4ε−2 sin2 εξ2
2 + 4γε−2 sin2 εξ1

2 −iγε1 sin εξ1

−iγε−1 sin εξ2 iγε−1 sin εξ1
1
3γ(4 + cos εξ1 + cos εξ2)


 .

We have

(B.1) σH(ξ) :=
[
lim
ε→0

[σ(ε)(ξ)]−1
]−1

=




ξ2
1 + γξ2

2 0 iγξ2

0 γξ2
1 + ξ2

2 −iγξ1

−iγξ2 iγξ1 2γ


 ,

from which the homogenized equations follow straight-forwardly: Letting u1 and u2 denote dis-
placements and u3 micro-rotations, we get

−(∂2
1 + γ∂2

2)u1 + γ∂2u3 = f1,

−(γ∂2
1 + ∂2

2)u2 − γ∂1u3 = f2,

−γ∂2u1 + γ∂1u2 + 2γu3 = f3,
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where f1 and f2 are force loads and f3 is the torque loading. If there is no torque load, then u3 can
be eliminated from the equations. We take the Schur complement of σH and obtain

σH,reduced(ξ) =
[

ξ2
1 + γξ2

2/2 γξ1ξ2/2
γξ1ξ2/2 γξ2

1/2 + ξ2
2

]
.

This matrix equals the matrix σ0(ξ) provided by Lemma 2.20. It corresponds to the following
equation of two-dimensional elasticiy,

(B.2)

{
−(∂2

1 + (γ/2)∂2
2)u1 − (γ/2)∂1∂2u2 = f1,

−(γ/2)∂1∂2u1 − ((γ/2)∂2
1 + ∂2

2)u2 = f2.

Two-dimensional square with an appendix: Next we add a node in the center of the cell that
is attached to the original node by a single link. Note that unless this node is loaded, it is “inert” in
the sense that there will be no flow in the diagonal bar. The lattice is described by the parameters:

X(0, 1) =
[

0
0

]
, X(0, 2) =

[
1/2
1/2

]
, B = {(1, [1, 0], 1), (1, [0, 1], 1), (1, [0, 0], 2)}.

Consider first the conduction problem with the diagonal bar having conductivity α and the
horizontal and vertical ones conductivity 1. Then

σ(ξ) =
[

4 sin2 ξ1
2 + 4 sin2 ξ2

2 + α −α
−α α

]
.

We find that

detσ(ξ) = α

(
4 sin2 ξ1

2
+ 4 sin2 ξ2

2

)
,

and consequently

σ−1(ξ) =
1

4 sin2 ξ1
2 + 4 sin2 ξ2

2

[
1 1
1 1 + α−1

(
4 sin2 ξ1

2 + 4 sin2 ξ2
2

)
]

.

Note that the upper left entry exactly equals the inverse symbol for the square lattice.
Next we consider the frame model and assign for simplicity the diagonal bar with the same

properties as the other bars. Then, cf. (B.1),

σ
(11)
H (ξ) =




ξ2
1 + γξ2

2 0 iγξ2

0 γξ2
1 + ξ2

2 −iγξ1

−iγξ2 iγξ1 2γ




σ
(12)
H (ξ) = σ

(11)
H (ξ),

σ
(22)
H (ξ) =

1
1 + 12

√
2




(1 + 12
√

2)ξ2
1 + γ(1 + 6

√
2)ξ2

2 6
√

2γξ1ξ2 iγξ2

6
√

2γξ1ξ2 γ(1 + 6
√

2)ξ2
1 + (1 + 12

√
2)ξ2

2 −iγξ1

−iγξ2 iγξ1 2γ


 .

The matrix σ0 (which again is the Schur complement of either one of the σ
(κλ)
H ’s) if given by

σ0(ξ) =
[

ξ2
1 + γξ2

2/2 γξ1ξ2/2
γξ1ξ2/2 γξ2

1/2 + ξ2
2

]
.

This expression is identical with the dominant term for lattice A, (B.2), as expected.



100 B. EXAMPLES OF LATTICES

The cubic lattice: The analysis for the cubic lattice is a trivial analogue of the analysis for the
square lattice. For reference, we give the asymptotic expansion of the lattice Green’s function;

G(m) =
1

4π|m| +
m4

1 + m4
2 + m4

3 − 3m2
1m

2
2 − 3m2

1m
2
3 − 3m2

2m
2
3

16π|m|7

+
1

128π|m|13

[
23(m8

1 + m8
2 + m8

3)− 244
(
m6

1(m
2
2 + m2

3) + m6
2(m

2
1 + m2

3) + m6
3(m

2
1 + m2

2)
)

228m2
1m

2
2m

2
3|m|2 + 621(m4

1m
4
2 + m4

1m
4
3 + m4

2m
4
3)

]
+ O(|m|−7).

3. Body-centered lattices

The two-dimensional BCC lattice: The lattice is defined by

X(0, 1) =
[

1
0

]
, X(0, 2) =

[
1/2
1/2

]
, T =

[
1 0
0 1

]
,

and

B+ = {(1, [1, 0], 1), (1, [0, 1], 1), (1, [0, 0], 2), (2, [1, 0], 1), (2, [1, 1], 1), (2, [0, 1], 1)}.
For the conduction model, let the horizontal and vertical bars have conductivity 1 and the

diagonal conductivity α. Then the symbol is

σ(ξ) =
[

4 sin2 ξ1
2 + 4 sin2 ξ2

2 + 4α −α(1 + eiξ1 + eiξ2 + ei(ξ1+ξ2))
−α(1 + e−iξ1 + e−iξ2 + e−i(ξ1+ξ2)) 4α

]
.

and its determinant is

detσ(ξ) = 4α(1 + α/2)
(

4 sin2 ξ1

2
+ 4 sin2 ξ2

2

)
+ α2

(
4 sin2 (ξ1 + ξ2)

2
+ 4 sin2 (ξ1 − ξ2)

2

)

= 4α(1 + α)|ξ|2 + O(|ξ|4).
We then get the inverse symbol

σ(ξ)−1 =
1

detσ(ξ)

[
4α α(1 + eiξ1 + eiξ2 + ei(ξ1+ξ2))

α(1 + e−iξ1 + e−iξ2 + e−i(ξ1+ξ2)) 4 sin2 ξ1
2 + 4 sin2 ξ2

2 + 4α

]
.

The series expansion around the origin is

σ(ξ)−1 =
1

(1 + α)|ξ|2
[

1 1 + (1/2)i(ξ1 + ξ2)
1− (1/2)i(ξ1 + ξ2) 1

]
+ O(1).

The homogenized equations follow directly,
{
−(1 + α)∆u

(ε,0)
1 = (f1 + f2) + (1/2)ε(∂1 + ∂2)f2,

−(1 + α)∆u
(ε,0)
2 = (f1 + f2)− (1/2)ε(∂1 + ∂2)f1.
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Before giving the asymptotic expansion of the lattice Green’s function we recall that

[G(n)]11 =4αGH(n),

[G(n)]12 =α[GH(n) + GH(n1 − 1, n2) + GH(n1, n2 − 1) + GH(n1 − 1, n2 − 1)],

[G(n)]21 =α[GH(n) + GH(n1 + 1, n2) + GH(n1, n2 + 1) + GH(n1 + 1, n2 + 1)],

[G(n)]22 =4(1 + α)GH(n)− α[GH(n1 − 1, n2) + GH(n1 + 1, n2)

+ GH(n1, n2 − 1) + GH(n1, n2 + 1)],

where

GH(n) :=
1

(2π)2

∫

(−π, π)2

e−in·ξ − 1
det σ(ξ)

dξ.

We then only need to give the expansion of GH. In polar coordinates,

4αGH(m) = − log r + C

2π(1 + α)
+

(1− α/2) cos(4θ)
24π(1 + α)2r2

+
25(1− α/2)2 cos(8θ) + 18(1 + 2α− α2/4) cos(4θ)

480π(1 + α)3r4
+ · · · .

where C is a constant. Note that as α → 0, the Green’s function for the square lattice is recovered
and that for α = 2, the second term vanishes.

For the truss model we give the horizontal and vertical bars stiffness 1 and the diagonal ones
stiffness α. Then

[σ(ξ)]11 =
[

4 sin2 ξ1
2 + 2α 0
0 4 sin2 ξ1

2 + 2α

]
,

[σ(ξ)]12 =
[ −α

2 (1 + eiξ1 + eiξ2 + ei(ξ1+ξ2)) −α
2 (1− eiξ1 − eiξ2 + ei(ξ1+ξ2))

−α
2 (1− eiξ1 − eiξ2 + ei(ξ1+ξ2)) −α

2 (1 + eiξ1 + eiξ2 + ei(ξ1+ξ2))

]
,

[σ(ξ)]22 =
[

2α 0
0 2α

]
.

The matrix σ0 specified in Lemma 2.16 is

σ0(ξ) =
[

(1 + α/2)ξ2
1 + (α/2)ξ2

2 αξ1ξ2

αξ1ξ2 (α/2)ξ2
1 + (1 + α/2)ξ2

2

]
.

The lowest order system of homogenized equations is then

−(
(1 + α/2)∂2

1 + (α/2)∂2
2

)
u1 − (α∂1∂2)u2 = f1,

−(α∂1∂2)u1 −
(
(α/2)∂2

1 + (1 + α/2)∂2
2

)
u1 = f2.

These are equations of two-dimensional elasticity for any α > 0. If α = 1, we get the equations
of an isotropic medium (in plane stress) with Young’s modulus 4/3 and Poisson’s ratio 1/3. Note
that if we model an actual physical truss, the isotropic case corresponds to one where the diagonal
bars have a cross-sectional area that is

√
2 smaller than the horizontal and vertical ones (since axial

stiffness scales as area divided by length).
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The three-dimensional BCC: The lattice is defined by

X(0, 1) =




0
0
0


 , X(0, 2) =




1/2
1/2
1/2


 , T =




1 0 0
0 1 0
0 0 1




B = {(1, [1, 0, 0], 1), (1, [0, 1, 0], 1), (1, [0, 0, 1], 1), (2, [0, 0, 0], 1), (2, [0, 0, 1], 1), (2, [0, 1, 0], 1),

[0, 1, 1], 1), (2, [1, 0, 0], 1), (2, [1, 0, 1], 1), (2, [1, 1, 0], 1), (2, [1, 1, 1], 1)}.
For the conduction model we let the bars that are parallel with the coordinate axes have

stiffness one and the diagonal ones stiffness α. Then

[σ(ξ)]11 =4 sin2 ξ1

2
+ 4 sin2 ξ2

2
+ 4 sin2 ξ3

2
+ 8α,

[σ(ξ)]12 = − α(1 + eiξ1 + eiξ2 + ei(ξ1+ξ2) + eiξ3 + ei(ξ1+ξ3) + ei(ξ2+ξ3) + ei(ξ1+ξ2+ξ3)),

[σ(ξ)]22 =8α.

We find that detσ(ξ) = 8α(1 + 2α)|ξ|2 + O(|ξ|4) and so the series expansion of the inverse symbol
is given by

σ(ξ)−1 =
1

(1 + 2α)|ξ|2
[

1 1 + (1/2)(iξ1 + iξ2 + iξ3)
1− (1/2)(iξ1 + iξ2 + iξ3) 1

]
+ O(|ξ|0).

The homogenized equations are{
(1 + 2α)(−∆)u1 = f1 + f2 + (1/2)ε(∂1 + ∂2 + ∂3)f2,
(1 + 2α)(−∆)u2 = f1 + f2 − (1/2)ε(∂1 + ∂2 + ∂3)f1.

The lattice Green’s function can now be determined using the method described for lattice B. As
an example, we use that G11(m) = 8αGH(m) and obtain

G11(m) =
1

4π(1 + 2α)|m| +
(1− α)(m3

1 + m4
2 + m4

3 − 3m2
1m

2
2 − 3m2

1m
2
3 − 3m2

1m
2
3)

16π(1 + 2α)2|m|7 + O(|m|−5).

For α = 1, the second term vanishes and when α → 0, the expansion for a cubic lattice is recovered.
For the truss model let the diagonal bars have stiffness α and the others stiffness 1. Then

σ0(ξ) =




1
2ξ2

1 + α
3 |ξ|2 2

3αξ1ξ2
2
3αξ1ξ3

2
3αξ1ξ2

1
2ξ2

2 + α
3 |ξ|2 2

3αξ2ξ3
2
3αξ1ξ3

2
3αξ2ξ3

1
2ξ2

4 + α
3 |ξ|2


 .

If α = 3/4, then this corresponds to an isotropic material with Lamé constants λ = µ = 1/2 and
Poisson’s ratio ν = 1/4.

4. Triangular and hexagonal lattices

When we treat structures that do not have a cubic (or square) unit cell, i.e. T 6= I, we work
with a modified Fourier transform,

ũ(ξ) =
∑

m∈Zd

ei(Tm)·ξu(m),

so that ξ truly represents inverse of physical position (the position of node m is Tm).
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The triangular lattice: The lattice is defined by

X(0, 0) =
[

0
0

]
, T =

[
1 1/2
0

√
3/2

]
, B+ = {(1, [1, 0], 1), (1, [0, 1], 1), (1, [−1, 1], 1)}.

For the conduction problem we let all bars have conductivity 1, whence

σ(ξ) = 4 sin2 ξ1

2
+ 4 sin2 ξ1 +

√
3ξ2

4
+ 4 sin2 ξ1 −

√
3ξ2

2
,

which implies that

1
σ(ξ)

=
2

3|ξ|2 +
1
24

+
23ξ6

1 + 105ξ2
1ξ

4
2 + 45ξ2

1ξ
4
2 + 27ξ6

2

17280|ξ|4 +
5ξ6

1 + 51ξ4
1ξ

2
2 − 9ξ2

1ξ
4
2 + 9ξ6

2

193536|ξ|2 + · · ·

Note in particular the cancellations that appear in this series due to the very strong symmetry
properties of the lattice. When writing down the equilibrium equations that result from this
expansion, we must take into account that the unit cell has area detT =

√
3/2. We get

√
3(−∆)1u(0,ε) = f,

√
3(−∆)2u(1,ε) =(−∆)f + ε2 1

24
(−∆)2f,

√
3(−∆)3u(2,ε) =(−∆)2f + ε2 1

24
(−∆)3f + ε4 1

11520
(
23∂6

1 + 105∂4
1∂2

2 + 45∂2
1∂4

2 + 27∂6
2

)
(−∆)f,

√
3(−∆)4u(3,ε) =(−∆)3f + ε2 1

24
(−∆)4f + ε4 1

11520
(
23∂6

1 + 105∂4
1∂2

2 + 45∂2
1∂4

2 + 27∂6
2

)
(−∆)2f

+ ε6 1
193536

(
5∂6

1 + 51∂4
1∂2

2 − 9∂2
1∂4

2 + 9∂6
2

)
(−∆)3f.

The asymptotic expansion of the lattice Green’s function is

G(n) ∼− 1
2
√

3π
log r + C +

1
60
√

3π

cos(6θ)
r4

+
5

168
√

3π

cos(6θ)
r6

+
7

40
√

3π

cos(12θ)
r8

+ O(r−12).
(B.3)

Note again how the symmetry of the lattices kills most of the terms in the expansion. In particular,
since both reflection in the origin (ξ 7→ −ξ) and rotation by π/6 (reiθ 7→ rei(θ+π/6)) leave the lattice
invariant, only terms with angular dependence cos(6kθ) for some integer k, survive. Incidentally,
the error term does have the correct decay rate, the term corresponding to r−10 vanishes.

Next we consider the truss model. Letting all links have axial stiffness 1 we get

σ(ξ) =


 4 sin2 ξ1

2 + sin2 ξ1+
√

3ξ2
2 + sin2 ξ1−

√
3ξ2

2

√
3

(
sin2 ξ1+

√
3ξ2

2 − sin2 ξ1+
√

3ξ2
2

)
√

3
(
sin2 ξ1+

√
3ξ2

2 − sin2 ξ1+
√

3ξ2
2

)
3

(
sin2 ξ1+

√
3ξ2

2 + sin2 ξ1+
√

3ξ2
2

)

 .

This leads to the limit symbol

σ0(ξ) =
3
8

[
3ξ2

1 + ξ2
2 2ξ1ξ2

2ξ1ξ2 ξ2
1 + 3ξ3

2

]
,

which corresponds to a 2D isotropic material with Poisson’s ratio 1/3 and Young’s modulus 2/
√

3
(the last number is obtained after taking the scaling by detT =

√
3/2 into account).
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The hexagonal lattice: The lattice is defined by

X(0, 0) =
[

1
0

]
, X(0, 1) =

[
1/2√
3/2

]
, T =

[
3/2 0√
3/2

√
3

]
,

and
B = {(1, [0,−1], 2), (1, [0, 0], 2), (2, [−1, 1], 1)}.

For the conduction problem we have

σ(ξ) =

[
3 −1− e

√
3iξ2 − e−3iξ1/2+

√
3iξ2/2

−1− e−
√

3iξ2 − e3iξ1/2−√3iξ2/2 3

]
,

which implies that

S(ε,0)(ξ) =
2

3|ξ|2
[

1 1 + ε(−iξ1/3 + iξ2/
√

3)
1 + ε(iξ1/3− iξ2/

√
3) 1

]

and, scaling by detT = 3
√

3/2, we get the homogenized equations
{
−(1/

√
3)∆u

(ε,0)
1 = (f1 + f2) + ε(−∂1/2 +

√
3∂2/2)f2,

−(1/
√

3)∆u
(ε,0)
2 = (f1 + f2) + ε(∂1/2−√3∂2/2)f1.

In order to compute the lattice Green’s function, we start with

det σ(ξ) = 4 sin2(
√

3ξ2) + 4 sin2 3ξ1 +
√

3ξ2

2
+ 4 sin2 3ξ1 −

√
3ξ2

2
.

If we let σtri denote the symbol of the triangular lattice C, then detσ(ξ1, ξ2) = σtri((2
√

3)ξ2, (2
√

3)ξ1).
In other words, the associated mono-atomic lattice for a honeycomb lattice, is a triangular lattice,
one that is enlarged by a factor 2

√
3 and rotated 90◦ compared to the lattice C. Thus, the asymptotic

expansion of the Green’s function for the honeycomb lattice follows directly from (B.3).
We will not consider truss problem in detail since it is degenerate but we want to mention that

is so degenerate that detσ(ξ) ≡ 0.
For the frame model, we endow all bars with axial stiffness 1 and bending stiffness γ. Then

σ
(11)
H (ξ) =

√
3

24




1
1+γ

(
4(1 + 3γ)ξ2

1 + γ(9 + γ)ξ2
2

)
(4− γ)ξ1ξ2 2γiξ2

(4− γ)ξ1ξ2
1

1+γ

(
γ(9 + γ)ξ2

1 + 4(1 + 3γ)ξ2
2

) −2γiξ1

−2γiξ2 2γiξ1 4γ


 ,

σ
(12)
H (ξ) =

√
3

24




1
1+γ

(
4(1 + 3γ)ξ2

1 + 2γ(3− γ)ξ2
2

)
(4 + 2γ)ξ1ξ2 −4γiξ2

(4 + 2γ)ξ1ξ2
1

1+γ

(
2γ(3− γ)ξ2

1 + 4(1 + 3γ)ξ2
2

)
4γiξ1

4γiξ2 −4γiξ1 −8γ


 ,

σ
(22)
H (ξ) = σ

(11)
H (ξ).

As stated in section 6, Ch. 3, we have σ
(11)
H 6= σ

(22)
H and thus the lowest order homogenized equations

form a 6× 6 system of mixed second first and zero’th order differential operators.
The dominant behavior of this model is governed by the matrix σ0 defined in Lemma 2.20,

σ0(ξ) =
3

4(1 + γ)

[
(1 + 3γ)ξ2

1 + 2γξ2
2 (1 + γ)ξ1ξ2

(1 + γ)ξ1ξ2 2γξ2
1 + (1 + 3γ)ξ2

2

]
.
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It is easily verified that σ0 is the Schur complement of either σ
(11)
H or σ

(12)
H . This matrix corresponds

to the equations of two-dimensional (plane stress) elasticity with Young’s modulus and Poisson’s
ratio given by

E′ =
6γ

1 + 3γ
, ν =

1− γ

1 + 3γ
.

Recall that in order to get the constants for the homogenized material, the Young’s modulus must
be divided by detT = 3

√
3, which gives

E =
2√
3

γ

1 + 3γ
, ν =

1− γ

1 + 3γ
.





APPENDIX C

A derivation of the multipole expansion of a poly-harmonic
function using Laurent series

In this appendix, we will show that in two dimensions, the multipole expansion of a poly-
harmonic kernel can be derived using complex function methods. This method is not necessarily
simpler than the derivation in Chaper 5 but it has the advantage that it yields direct expressions
for the expansion functions. A different derivation of essentially the same expansion was given by
Vekua [64] (English translation in [65]).

We start by reviewing how analytic function methods can be used to derive the multipole
expansion of the harmonic kernel in two dimensions, G0(x−y) = − log |x−y|. Setting z = x1 + ix2

and w = y1 + iy2, we find that

G0(x− y) = Re[− log(z − w)] = Re[− log z − log(1− w/z)] = Re


− log z +

∞∑

q=1

wq 1
q zq


 .

We note that in polar coordinates, x = r(cos θ, sin θ), y = ρ(cosα, sinα), we have

wq = ρq
(
cos(qα) + i sin(qα)

)
, z−q = r−q

(
cos(qθ)− i sin(qθ)

)
,

whence the familiar expansion in real basis functions easily follows.
We will next consider a kernel of the form

(C.1) GP (x) = c
(0)
0 log |x|+

P∑

p=1

gp(x),

where gp are rational functions with (exact) decay rate |x|−2p that satisfy (−∆)p+1gp = 0 away
from the origin. Due to the poly-harmonicity, each function gp has an Almansi expansion gp(x) =∑p

m=0 |x|2mφ
(p)
m (x) for some harmonic functions φ

(p)
m . Since gp is a rational function with decay

rate |x|−2p, there must exist complex constants {c(p)
m }p

m=0 such that

(C.2) gp(x) = Re

[
p∑

m=0

c(p)
m

|z|2m

z2p+2m

]
= Re

[
p∑

m=0

c(p)
m

z̄m

z2p+m

]
.

Example: For the Green’s function for the square lattice specified in 4.14 we have

G2(x) =− 1
2π

log |x|+ x4
1 − 6x2

1x
2
2 + x4

2

24π|x|6 +
43x8

1 − 772x6
1x

2
2 + 1570x4

1x
4
2 − 772x2

1x
6
2 + 43x8

2

480π|x|12

=Re
[
− 1

2π
log z +

1
24π

z̄

z3
+

1
480π

(
18
z4

+
25z̄2

z6

)]
.
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Thus, c
(0)
0 = −1/(2π), c

(1)
0 = 0, c

(1)
1 = 1/(24π), c

(2)
0 = 3/(80π), c

(2)
1 = 0 and c

(2)
2 = 5/(96π). ¤

We are now prepared to derive the multipole expansion of gp. First rewrite (C.2),

(C.3) gp(x− y) = Re
p∑

m=0

c(p)
m

(z̄ − w̄)m

z2p+m

1
(1− w/z)2p+m .

Next use the Taylor expansion

(1− t)−k =
∞∑

q=0

(
q + k − 1

q

)
tq =

∞∑

q=j

(
q − j + k − 1

q − j

)
tq−j ,

which yields, when inserted into (C.3)

gp(x) =Re
p∑

m=0

c(p)
m

1
z2p+m




m∑

j=0

(
m
j

)
(−1)j z̄m−jw̄j






∞∑

q=j

(
2p + m + q − j − 1

q − j

)
wq−j

zq−j




= Re
∞∑

q=0

min{q,p}∑

j=0

wq−jw̄j

[
(−1)j

z2p+q

p−j∑

k=0

c
(p)
j+k

(
j + k

j

) (
2p + k + q − 1

q − j

)
z̄k

zk

]
.

(C.4)

Setting h(q,j)(w) := wq−jw̄j , H(0,0)(z) := GP (z) and for q ≥ 1, 0 ≤ j ≤ min{P, q}

H(q,j)(z) = −δj,0
c
(0)
0

qzq
+

P∑

p=max(1,j)

(−1)j

z2p+q

p−j∑

k=0

c
(p)
j+k

(
j + k

j

)(
2p + k + q − 1

q − j

)
z̄k

zk
,

we can write (C.4) compactly as

G(x− y) = Re
∞∑

q=0

min{P,q}∑

j=0

h(q,j)(w)H(q,j)(z).

This is an alternative representation of (5.11). The connection with the classical multipole expan-
sion becomes clear once we note that, with w = ρeiα,

h(q,j)(w) = (ρeiα)q−j(ρe−iα)j = ρq
[
cos((q − 2j)α) + i sin((q − 2j)α)

]

and that the functions H(q,j) can be rewritten in a similar fashion.



APPENDIX D

Numerical evaluation of the lattice Green’s function

The lattice Green’s function for a mono-atomic lattice in two dimensions is given by

G(m) =
1

(2π)2

∫

I2

e−im·ξ − 1
σ(ξ)

dξ.

This integral is absolutely convergent and standard quadrature formulæ can be used to approximate
it to arbitrary accuracy. However, the integrand is both oscillatory and, worse, discontinuous, at
the origin, which slows down the convergence of the quadrature. In this appendix, we will show
that using residue calculus, one integration can be carried out analytically. This simplifies the
approximation dramatically. We will demonstrate the procedure for the, by now familiar, square
lattice Green’s function

(D.1) G(m1,m2) =
1

(2π)2

∫

(−π,π)2

e−i(m1ξ1+m2ξ2) − 1
4− eiξ1 − e−iξ1 − eiξ2 − e−iξ2

dξ.

It is conceptually simple to generalize the technique to arbitrary mono-atomic lattice, and then
Theorem 4.6 can be invoked to treat fully arbitrary lattices. For a general lattice, the algebra will
be far more involved, and the use of symbolic computation is recommended.

We prepare the integral (D.1) for application of the residue theorem by performing some
straight-forward algebraic manipulations,

G(m1, m2) =
1

(2π)2

∫

(−π,π)2

eiξ2m2
(
eiξ1

)m1 − 1
(2− eiξ1 − e−iξ1) + (2− eiξ2 − e−iξ2)

dξ

=
1

(2π)2

∫

(−π,π)2

cos(ξ2m2)
(
eiξ1

)m1 − 1
(2− eiξ1 − e−iξ1) + 2(1− cos(ξ2))

dξ

=
2

(2π)2

∫ π

0
[cos(m2ξ2)fm1(1− cos ξ2)− f0(1− cos ξ2)] dξ,

where

fk(α) =
∫ π

−π

(
eit

)k

(2− eit − e−it) + 2α
dt.

We rewrite this last integral as a contour integral around the unit circle S1 in C by setting z = eit.
Then, with dt = dz/(iz),

fk(α) =
∫

S1

zk

2− z − z−1 + 2α

dz

iz
= i

∫

S1

zk

z2 − 2(1 + α)z + 1
dz.
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Now, z2 − 2(1 + α)z + 1 = (z − z+)(z − z−) where z± = 1 + α±√α2 + 2α. In our case, α > 0, so
the only pole insize S1 is z− and we find that

fk(α) = (2πi)i
zk−

z− − z+
= π

(
1 + α−√α2 + 2α

)k

√
α2 + 2α

.

Note that the function fk(1− cos ξ2) blows up as ξ2 → 0 but that
lim

ξ2→0
[cos(m2ξ2)fm1(1− cos ξ2)− f0(1− cos ξ2)] = −πm1,

lim
ξ2→0±

d

dξ2
[cos(m2ξ2)fm1(1− cos ξ2)− f0(1− cos ξ2)] = ±π

1
2
(m2

2 −m2
1).

Thus, G(m1,m2) can be evaluated as a one-dimensional quadrature of a regular integrand.



APPENDIX E

Notes on Chapter 7

1. Derivation of the second dispersion equation in section 1.2

First consider a vibrating string, characterized by its length l and intrinsic velocity v, attached
to two supports with the displacements eiωtuI and eiωtuII so that its displacement w satisfies the
equation

w′′(x) +
ω2

v2
w(x) = 0, x ∈ (0, l),

w(0) = uI, w(l) = uII.

If sin ωl
v 6= 0, then the solution is

w(x) = uI cos
ωx

v
+

uII − uI cos ωl
v

sin ωl
v

sin
ωx

v
,

and thus the dynamic force the string exerts at x = 0 equals

−F
dw

dx

∣∣∣∣
x=0

= F
ω

v

1
sin ωl

v

(
uI cos

ωl

v
− uII

)
.

7

5

6
21

3

4

Figure E.1. Labeling used in Appendix 1. The white strings have wavespeed v,
the black αv. The numbers refer to the nodes.
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Applying the formula above to the system shown in Figure E.1 (which is a part of the big lattice
shown in Figure 7.5) we get the three equilibrium equations

0 =F
ω

2v

1
sin ωl

2v

(
u(1) cos

ωl

2v
− u(2)

)
+ F

ω

2αv

1
sin ωl

2αv

(
u(1) cos

ωl

2αv
− u(3)

)

+ F
ω

2αv

1
sin ωl

2αv

(
u(1) cos

ωl

2αv
− u(4)

)
+ F

ω

2v

1
sin ωl

2v

(
u(1) cos

ωl

2v
− u(5)

)
,

0 =F
ω

2v

1
sin ωl

2v

(
u(2) cos

ωl

2v
− u(1)

)
+ F

ω

2αv

1
sin ωl

2αv

(
u(2) cos

ωl

2αv
− u(6)

)

0 =F
ω

2αv

1
sin ωl

2αv

(
u(3) cos

ωl

2αv
− u(1)

)
+ F

ω

2v

1
sin ωl

2v

(
u(3) cos

ωl

2v
− u(7)

)
.

(E.1)

We set
c1 = cos

ωl

2v
, s1 = sin

ωl

2v
, c2 = cos

ωl

2αv
, s2 = sin

ωl

2αv
,

and apply quasi-periodicity,

u(4) = eik1lu(2), u(5) = eik2lu(3), u(6) = e−ik1lu(1), u(7) = e−ik2lu(1),

to reduce the system (E.1) to



0
0
0


 =




2 c1
s1

+ 2 c2
αs2

− 1
s1
− eik1l

αs2
− 1

αs2
− eik2l

s1

− 1
s1
− e−ik1l

αs2

c1
s1

+ c2
αs2

0
− 1

αs2
− e−ik2l

s1
0 c1

s1
+ c2

αs2







u(1)

u(2)

u(3)


 .

The left hand side of the dispersion equation (1.2) is now simply the determinant of the matrix in
the system above.

2. Derivation of the stiffness matrix for a square framed structure

In equation (3.10) we provided the stiffness matrix for a beam oriented along the x1-axis, with
end-points 1 and 2 to the left and right of the beam, respectively. In the structure illustrated in
Figure 7.10 there are beams of cross-sectional areas s1 and s2, and with moments of intertia I1 and
I2. We fix a reference area s and define non-dimensional lattice variables ū and f̄ by

ūj =
1
l
uj , f̄j =

1
sE

fj , j = 1, 2,

ū3 = urot, f̄3 =
1

sEl
M.

Then equilibrium for a beam of type j reads


f̄1
1

f̄1
2

f̄1
3


 =




cj 0 0
0 dj

1
2dj

0 1
2dj

1
3dj




︸ ︷︷ ︸
=:A0◦

j




ū1
1

ū1
2

ū1
3


+




cj 0 0
0 −dj

1
2dj

0 −1
2dj

1
6dj




︸ ︷︷ ︸
=:B0◦

j




ū2
1

ū2
2

ū2
3


 , where cj =

sj

s
, dj =

12Ij

sl2
.

Note that if there had been bars of different lengths in the lattice one would have had to fix a
reference length l to use in the non-dimensionalization.
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The stiffness matrix for a bar with axial stiffness cj and bending stiffness dj , rotated φ degrees
anti-clockwise from the x1-axis is given by

Aφ
j = UφA0◦

j (Uφ)T, Bφ
j = UφB0◦

j (Uφ)T, where Uφ =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 .

We are now in a position to write the equations of motion for the harmonically oscilling square
bi-atomic lattice,

ω̄2M̄1ū
(n,1) =

[
A0◦

1 ū(n,1) + B0◦
1 ū(n,2)

]
+

[
A90◦

1 ū(n,1) + B90◦
1 ū(n−e1+e2,2)

]

+
[
A180◦

2 ū(n,1) + B180◦
2 ū(n−e1,2)

]
+

[
A270◦

2 ū(n,1) + B270◦
2 ū(n−e2,2)

]
,

ω̄2M̄2ū
(n,2) =

[
A0◦

2 ū(n,2) + B0◦
2 ū(n+e1,1)

]
+

[
A90◦

2 ū(n,2) + B90◦
2 ū(n+e2,1)

]

+
[
A180◦

1 ū(n,2) + B180◦
1 ū(n,1)

]
+

[
A270◦

1 ū(n,2) + B270◦
1 ū(n+e1−e2,1)

]
,

where M̄κ = diag{mκ/(ρls), mκ/(ρls), Jκ/(ρsl3)} and ω̄ = ωl/
√

E/ρ. Applying quasi-periodicity,
u(n+m,κ) = eik·Tmu(n,κ), we obtain

ω̄2M̄1ū
(n,1) =

[
A0◦

1 + A90◦
1 + A180◦

2 + A270◦
2

]
ū(n,1)

+
[
B0◦

1 + e−i(lk1−lk2)B90◦
1 + e−2ilk1B270◦

2 + e−i(lk1+lk2)B270◦
2

]
ū(n,2),

ω̄2M̄2ū
(n,2) =

[
A0◦

2 + A90◦
2 + A180◦

1 + A270◦
1

]
ū(n,2)

+
[
e2ilk1B0◦

2 + e−i(lk1+lk2)B90◦
2 + B270◦

1 + ei(lk1−lk2)B270◦
1

]
ū(n,1).

Setting M̄ = diag{M̄1, M̄2} we obtain the equation

σ(k)ū(n) = ω̄2M̄ū(n),

where the diagonal blocks of the 6× 6 matrix σ(k) are given by

σ11(k) =




c1 + c2 + d1 + d2 0 1
2(d2 − d1)

0 c1 + c2 + d1 + d2
1
2(d1 − d2)

1
2(d2 − d1) 1

2(d1 − d2) 2
3(d1 + d2)


 ,

σ22(k) =




c1 + c2 + d1 + d2 0 1
2(d1 − d2)

0 c1 + c2 + d1 + d2
1
2(d2 − d1)

1
2(d1 − d2) 1

2(d2 − d1) 2
3(d1 + d2)


 ,
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and the off-diagonal elements are given by

[σ12(k)]11 = − c1 − c2e
2ik1l − d1e

i(k1l−k2l) − d2e
i(k1l+k2l),

[σ12(k)]13 = − 1
2
d1e

i(k1l−k2l) +
1
2
d2e

i(k1l+k2l),

[σ12(k)]22 = − c1e
i(k1l−k2l) − c2e

i(k1l+k2l) − d1 − d2e
2ik1l,

[σ12(k)]23 =
1
2
d1 − 1

2
d2e

2ik1l,

[σ12(k)]31 =
1
2
d1e

i(k1l−k2l) − 1
2
d2e

i(k1l+k2l),

[σ12(k)]32 = − 1
2
d1 +

1
2
d2e

2ik1l,

[σ12(k)]33 =
1
6
d1(1 + ei(k1l−k2l)) +

1
6
d2(e2ik1l + ei(k1l−k2l)).

(E.2)

Note that σ21(k) = σ12(k)?.
In the main text, all variables are considered non-dimensionalized and the bars used in this

Appendix to denote such variables have been omitted.
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