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The pseudospectral method: Comparisons with finite differences 

for the elastic wave equation 

Bengt Fornberg* 

ABSTRACT 

The pseudospectral (or Fourier) method has been 
used recently by several investigators for forward seis- 
mic modeling. The method is introduced here in two 
different ways: as a limit of finite differences of increas- 
ing orders, and by trigonometric interpolation. An argu- 
ment based on spectral analysis of a model equation 
shows that the pseudospectral method (for the accu- 
racies and integration times typical of forward elastic 
seismic modeling) may require, in each space dimension, 
as little as a quarter the number of grid points com- 
pared to a fourth-order finite-difference scheme and 
one-sixteenth the number of points as a second-order 
finite-difference scheme. For the total number of points 
in two dimensions, these factors become l/16 and l/256, 
respectively; in three dimensions, they become l/64 and 
114 096, repectively

In a series of test calculations on the two-dimensional 
elastic wave equation, only minor degradations are 
found in cases with variable coefficients and discontinu- 
ous interfaces. 

INTRODUCTION 

The pseudospectral method is an alternative to finite differ- 
ences and finite elements for some classes of partial differential 
equations. The pseudospectral method is more limited than 
these other approaches in several ways. If the problem is not 
naturally periodic, it has to be reformulated to a periodic 
setting. Also, grids have to be uniform and there are only 
limited possibilities of implementing special techniques such as 
upwinding, shock fitting, etc. On the positive side, in cases 
where the pseudospectral method works well [primarily for 
convective or wave-type phenomena which can be formulated 
as periodic initial-value problems (as opposed to initial- 
boundary value problems)], savings up to several orders of 
magnitude in computer memory and time can be realized. 

The pseudospectral method was first proposed by Kreiss 
and Oliger (1972). Additional basic theory for it can be found, 
for example, in Orszag (1972), Fornberg (1975), and Gottlieb 
and Orszag (1977). The understanding of the method is rather 
incomplete. The pseudospectral method performs in many im- 
portant situations far better than present theory would sug- 
gest, and it is now a leading technique in several fields (struc- 
tures in turbulence, nonlinear wave dynamics, weather fore- 
casting, etc.). Test calculations on forward seismic modeling 
have been performed for a few years (Kosloff and Baysal, 
1982; Kosloff et al., 1984; Johnson, 1984; Cerjan et al., 1985). 

The first explanation of the method given here describes it 
as a limit of finite-difference methods of increasing accuracies. 
The second, “traditional” explanation is more suitable for 
practical implementation; it is based on trigonometric inter- 
polation. The equivalence between the two descriptions is 
demonstrated in Appendix A. The discussion of the pseudo- 
spectral method as a limit of finite-difference methods is then 
refined to obtain estimates on how many grid points the dif- 
ferent methods require for comparable accuracies (in the case 
of constant coefficients). 

The next section of the paper describes the problem of 2-D 
elastic seismic modeling. (In the acoustic case, the governing 
equations take a special form which can be exploited by IOW- 
order finite-difference methods. The advantages of the pseudo- 
spectral method are then less than in the more general elastic 
case.) I then give a brief introduction to the test calculations 
reported in Appendix B. These tests were performed to assess 
how well the predictions about the methods would hold up 
under more realistic conditions (2-D structure, variable coef- 
ficients, interactions between P- and S-waves at interfaces, 
etc.). In the last section, I comment on how a pseudospectral 
production code might be designed and briefly summarize the 
main observations. 

TWO INTRODUCTIONS TO THE 
PSEUDOSPECTRAL METHOD 

Finite-difference methods of different orders 

Consider the problem of approximating du/dx at a grid 
point x = .x0 when u is defined only at equally spaced grid 
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points x0 + vh, v = .,.-2, - 1, 0, 1, 2, . An obvious ap- 
proximation is 

r u(xO + h) - u(xO - h) 1 I / 2h 
L AI 

t V/3! u”‘(Xa) + O(P). (I) = u/(x0) 

Substituting h for 2h gives 

i 
u(xa + 2h) - u(xO - 2h) I” 4h 

= u’(xa) + 4hZ/3! u”‘(&J + O(V). (2) 

A linear combination of equations (1) and (2) with weights 4/3 
and - l/3 gives 

1 -$4x,+2h)+qu(x,+h)-~u(x,-h)+$L(x0-2h) 2/l Ii = u’(x,) + 0(h4). (3) 

Equations (1) and (3) are the standard, centered finite- 
difference approximations to the first derivative of orders 2 
and 4, respectively. To study these and still more accurate 
approximations, the following operator notations are con- 
venient. 

D (True derivative): Du(x) = du(x)/dx 

I (Identity operator): lu(x) = u(x) 

E (Translation operator): ELI(X) = u(x + h) 

D, (Forward difference): D, u(x) = (E - 1)/h u(x) 

= 
[ 

u(x + h) - u(x) Ii h 

D_ (Backward difference): Dm u(x) = (I - E-‘)jh u(x) 

= u(x) - u(x - h) L 1 
lh 
I 

D, (Centered difference): D, u(x) = (E - Em ‘)/2/l u(x) 

= u(x+h)-U(X-h) 
L Ii 2h 

The second-order approximation (I) can now be written in 
either of the following ways: 

D=$&LE’. Pi.-, = -1, Pl.o=O? Pi.1 = I 

(4) 

or 

D x a,D,, a,= 1. (5) 

The fourth-order scheme can similarly be written 

D =; i Pz,vE”, (6) 
Y- 2 

or 

D x D,(a,I - a,h’D+ Dm), 
1 

a0 = 1, a, = -. 
6 

(7) 

For an arbitrary order of accuracy 2p, 

i 

B _ 2(p!)*(-l1)‘+’ _ 

Dz$ g Pp.“E” I’” v(t,+v)!(P--I! 
> v#O 

vm P Pp. 0 = 0 

or (8) 

p-1 

D z D, 1 (-i)“a,(h*D+ Dm)‘, 
(v!)2 

av=(2vf 
(9) 

“=O 

Equation (8) follows from the argument which led to equation 
(3): substitutions of h + 2h, h + 3h, . . . , h + ph give rise to a 
linear system which can be solved in closed form by Cramer’s 
rule. Equation (9) is derived in Fornberg (1975). 

The pseudospectral method as the limit of finite-difference 
methods of increasing orders 

The coefficients in the second- and fourth-order methods 
were (at successive grid points from left to right, with a factor 
1/2h omitted) 

Second order: -1 0 1; 

Fourth order: l/6 -413 0 413 - l/6, etc. 

The explicit formula (8) for B,,, y tells how this set of coef- 
ficients extends to higher orders. The right half of the array 
above is given in Table 1 for orders up to 26 (the significance 
of the right column of Table 1, “stability limit,” will be ex- 
plained later). From formula (8) it follows that each column in 
this table of coefficients converges as 

,(-,),+I 
lim B,, y = ~ v # 0. 
p-‘p v ’ (10) 

Thus, there exists a limit method which theoretically has infi- 
nite accuracy. If one considers a periodic problem, the infi- 
nitely wide difference stencil applied to the data and to the 
periodic repetitions becomes equivalent to a stencil, as wide as 
the period, with modified coefficients (derived in closed form 
in Appendix A). This limit method is the pseudospectral 
method. Applying the pseudospectral method amounts to per- 
forming a periodic discrete convolution, requiring two fast 
Fourier transforms. 

The pseudospectral method defined from trigonometric 
interpolation 

By one fast Fourier transform (FFT), one can obtain the 
coefficients of the interpolating trigonometric polynomial of 
minimal degree which passes through a set of equidistant data 
points. The analytic derivative of this polynomial is obtained 
by multiplying each Fourier coefficient by its wavenumber. 
These derivatives at all the grid points are recovered by a 
second FFT, returning from Fourier to physical space. This 
constitutes the pseudospectral method of finding derivativesat 
the grid points. The cost is again two FFTs. This second 
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definition is convenient for practical implementation since it 
explicitly gives the multipliers to use in Fourier space. The 
equivalent finite-difference coefficients are derived in Appendix 
A and are found to be identical to those derived from the limit 
of finite-difference methods. 

COMPARISON OF THE PSEUDOSPECTRAL METHOD TO 
FINITE-DIFFERENCE METHODS OF DIFFERENT 

ORDERS 

Model equation to study dispersion 

For elastic wave propagation in media with internal vari- 
ations, the two phenomena which give the largest contri- 
butions to the final errors (exact versus numerical solution) are 

(1) Dispersion (dissipation). Different Fourier modes, 
which should all travel with the same speed (no damp- 
ing), in numerical schemes travel at different speeds 
(undergo damping). In particular, solutions with sharp 
gradients (e.g., step functions or short pulses) develop a 
wavetrain, most commonly trailing the pulse. 

(2) Errors originating from variations in the medium. 
The simplest theory for the accuracy of numerical 
schemes requires the medium to be homogeneous. 
Rapid variations or sharp interfaces introduce complex 
interactions on incoming signals. Numerical schemes 
will typically suffer a loss in accuracy. 

Dispersion can be studied fully with the simple model equa- 
tion 

au au 
-f-=0 
at ax (11) 

on the (periodic) interval --7[ 5 x < 1~. The centered schemes 
considered here are energy conserving (no dissipation). I pres- 
ent two different arguments regarding the effects of dispersive 
errors. In the first, equation (9) is used to determine different 
mode speeds and what errors they produce. In the second 
argument, I show that high-order methods are superior even 
in cases of nonsmooth solutions, for example, step functions. 
(Although local truncation errors are then large, small global 
errors result from cancellations.) This second point of view is 
crucial in understanding what generalizations (to nonlinear 
hyperbolic or parabolic equations, to boundary conditions of 
different kinds, etc.) the pseudospectral method can handle 
well and which it cannot. 

The effect of solutions interacting with medium variations 
or discontinuities has not yet been analyzed satisfactorily. The 
few theoretical results available fail to predict the excellent 
results which emerge in test calculations such as the ones I 
present in Appendix B. 

The pseudospectral method versus finite-difference methods 
for smooth solutions 

Any (periodic) initial condition can be viewed as a super- 
position of Fourier modes. For the linear model [equation 
(1 i)], the modes can be studied individually. On a grid x, = x0 
+ vh, v = 0, 1, 2, . N - 1, the highest mode is eiomSXX, w,,, = 

rr/h, h = 274N. (At the grid points, any higher mode becomes 
indistinguishable from a lower one within this range.) Consid- 
er a mode o, -a,,,,, I w I o,,, Then 

whereas 

DeiWX = i(t)$OX, (12) 

D 
0 

@x - 

eim(x+h) _ @u(x-h) sin oh 
_ 

2h = i h e’wx. 
(13) 

Table 1. coefficients &V for difference approximations to d/dx. 

order Of 
P Coefficients for difference approximations to d/dx 

QtabilitY 

ElCC”raCY limit 

1 2 0.0 1.000 

2 4 0.0 1.333 -0.167 

3 6 0.0 1.500 -0.300 

4 8 0.0 1.600 -0.400 

5 10 0.0 1.667 -0.476 

6 12 0.0 1.714 -0.536 

1 14 0.0 1.750 -0.583 

8 16 0.0 1.778 -0.622 

3 18 0.0 1.800 -0.655 

10 20 0.0 1.818 -0.682 

11 22 0.0 1.833 -0.705 

12 24 0.0 lA46 -0.725 

13 26 0.0 1.857 -0.743 

60 120 0.0 1.967 -0.936 0.574 -0.3134 0.264 -0.184 0.127 -0.087 0.058 -0.038 0.024 -0.015 0.009 . . 

0.0 2.000 -1.000 0.667 -0.500 0.400 -0.333 0.286 -0.250 0.222 -0.200 0.182 -0.167 0.154 . 

0.033 

0.076 

0.119 

0.159 

0.194 

0.226 

0.255 

0.280 

0.302 

0.322 

0.340 

-0.007 

-0.020 

-0.036 

-0.053 

-0.071 

-0.088 

-0.105 

-0.121 

-0.136 

-0.150 

0.002 

0.005 

0.011 

0.017 

0.025 

0.034 

0.042 

0.051 

0.060 

-0.000 

-0.001 

-0.003 

-0.006 

-0.009 

-0.012 

-0.017 

-0.021 

0.000 

0.000 -0.000 

0.001 -0.000 0.000 

0.002 -0.000 0.000 -0.000 

0.003 -0.001 0.000 -0.000 0.000 

0.004 -0.001 0.000 -0.000 0.000 -0.000 

0.006 -0.002 0.000 -0.000 0.000 -0.000 0.000 

1.000 

0.729 

0.630 

0.578 

0.544 

0.521 

0.503 

0.489 

0.478 

0.468 

0.461 

0.454 

0.448 

0.376 

0.318 
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Omitting the imaginary unit i, the factors in front of eiox in the 
right-hand sides of equations (12) and (13) are displayed in 
Figure 1, together with the corresponding factors for the 
higher order difference methods. The convergence, for increas- 
ing orders, to the “ideal” line is slow. (It occurs in a way 
reminiscent of the convergence of a Taylor series; derivatives 
of successively higher orders match at the origin.) 

For the model equation (1 l), dividing each factor by iw 
gives the speed by which the corresponding Fourier mode 
translates as time progresses. In the exact solution, all modes 
travel with speed 1. With second-order finite differences, 
higher modes move more slowly, up to the highest one (with 
values 1, - 1, 1, - 1, 1, at consecutive grid points), which 
does not travel at all. 

A Fourier mode gives exactly the opposite contribution to 
what it should if its phase has drifted off by an angle of n. For 
the following analysis, I consider a mode to be accurate if its 
phase error is less than n/4. Then the number of modes (equal 
to the number of grid points) required when using different 
methods in space can be compared. I have chosen to consider 
the evolution over the time it takes a wave to travel once 
across the grid, i.e., over a time of 2rc. Note that this time is 
short in seismic applications where signals typically should 
have time to travel from the surface to the bottom and back 
again. The longer the time the more advantageous are the 
higher order (and the pseudospectral) methods (Kreiss and 
Oliger, 1972). 

Figure 1 shows how to read the phase error for each fre- 
quency component at the final time Thus, for the second- 
order method, the requirement becomes 

27c(D - Dg)eioX 
ieimx =+y)-f. (14) 

For example, choosing a grid with N = 100 points (h = n/SO), 
equation (14) is satisfied if 1 w 1 < 5.76. Only 11.5 percent of the 
frequencies (ranging from - 50 to + 50 in this example) have 
kept their accuracy; 88.5 percent are lost by the dispersion. 

’ Factor eiW’ Gets 
X/h -- Multiplled with 

Phase Error of Mode at T=2n 
with 2nd Order FD: 

2x w*- 
( 

sin w’h 

7) 

FIG. 1. The factor the Fourier mode eiwx is multiplied by when 
different approximations to d/dx are applied (displayed as 
functions of the frequency w; a factor of l/i is omitted). 

For the general method of order 2p, the corresponding in- 
equality follows from equation (9), 

?n[w -y ~~~a,,Zi’(sin y)‘“] <t. (15) 

The relationships in Figures 2, 3, and 4 are calculated from 
equation (15). For various numbers of grid points N,, Figure 
2 shows what proportion of all the modes on the grid gets lost. 
Figure 3 displays the same relationships in a different way. 
With N,V denoting the number of modes required to be accu- 
rate (phase error -C x/4) at the end, N, gives the number of 
grid points (equal to the total number of modes) required. In 
the range of N,V considered here, the relations shown in 
Figure 3 closely fit the formula 

N, = cp N$+ li+), (16) 

As an example of interpreting Figure 3, assume one wants to 
obtain a result with 32 correct modes. Following line 32 verti- 
cally until it intersects the lines for the pseudospectral method, 
fourth-. and second-order results shows that these methods 
would require approximately 32, 128, and 512 points, respec- 
tively (choosing the nearest power of two). In 2-D and 3-D 
applications, this argument applies in each direction. 

Figure 4 displays the same relations, but relates them to 
wavelengths and points per wavelength. The horizontal scale 
differs by a factor of two from the horizontal scale in Figure 3. 
In the example above, 32-mode accuracy corresponds to 16 
wavelengths across the grid. Following line 16 vertically until 
it intersects the lines for the different orders, one can find how 
many grid points are needed and alsc the corresponding 
number of points per wavelength. 

The pseudospectral method versus finite-difference 
methods for step functions 

Periodic, analytic initial data u(x) have Fourier repre- 
sentations with rapidly decreasing upper bounds for the coef- 
ficients: 1 f.?(w)) < c,e mc2~“‘~, This makes the Fourier analysis in 

0 1 
10 20 50 100 200 500 1000 NG 

Number of grid points 

FIG. 2. Proportion of Fourier modes which get lost due to 
dispersion. 

_----- me--120th Order 
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the last section appropriate for comparing different methods. 
On the other extreme are functions whose variation is local 
and whose spectrum consequently is very wide. The spec- 
trum of a step function has 1 C(w) 1 = 0(1/o) with derivative 
1 C’(w) 1 = 0( 1). For a discrete delta function, these coefficients 
vary as 0( 1) and O(w), respectively. The Fourier expansions do 
not even converge as N + ~3. Very rough data are better 
viewed as a superposition of step functions than of Fourier 
modes. For this reason, it is of interest to analyze how the 
different methods treat a step solution. 

The interpolation of a trigonometric polynomial to a dis- 
crete step function is subject to Gibbs phenomenon, an over- 
shoot of about 9 percent at each side of the jump. Oscillations 
die down only as 0(1/x) at a distance x from the jump. The 
pseudospectral method uses the derivative of this polynomial 
at the grid points, which will obviously lead to large errors 
even far from the jump. To obtain the derivative at a fixed 
time the pseudospectral method is not suitable. However, the 
present context is to solve equation (11) (or an equivalent 
equation) over a long time In the linear (or weakly nonlinear) 
hyperbolic case, the oscillatory errors cancel to give a very 

high accuracy because the solution is largely translating across 
the grid. 

A good way to measure the accuracy of a traveling step 
solution is to see how well it retains its slope over time Sup- 
pose 8,/5x in equation (11) is approximated by a difference 
operator D* of order 2p, 

au 
t + D*v = 0. (17) 

Then 

t t 
analytic 2pth order 
in time in space 

au au 
x + z + Ch2’ 

pp+ Iv 
dxz”+’ + 0(@+2) = 0. (18) 

The evolution of the slope of a step (traveling along a line 
x = t + constant) is then, to leading order, approximated by 
the slope at x = 0 (t increasing) for the equation 

+y + Ch2P 
a%+ lv 

---co 
ax2p+l ’ (19) 

NG 

10 000 

5000 

2 000 

1 000 

3 
.6 500 
E 
s 
b 
z 200 

b 
f 100 

1 

50 

20 

10 

, - 

, - 

i * 
10 20 50 100 200 500 1 000 N, 

Number of modes required to meet the 
tolerapce 1 phase error 1 < ~14 

FIG. 3. The number of grid points necessary with different methods as functions of the number of modes required to be 
accurate at final time
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with initial conditions, for example, 

v(x, 0) = 

i 

-% xto 

0, x=0 

% x>o 

The solution to equations (19) and (20) is 

“w I- 
u(x, t) = J 1 0 (cos chZPozp+‘t)(sin ox) 

-Cc 

+ (sin ~h*~ce*~+ ‘t)(cos wx) 1 do. 

The derivative at x = 0 at time t becomes 

au 
zxzo= -m I s m (cos ch*‘~~“+‘t) do = $@&. 

Fornberg 

(20) 

(21) 

(22) 

The slope, infinite at t = 0, decays for increasing t as t’1(2p+11. 
For the slope to decay by a factor of two, time for a second- 
order method (p = 1) has to increase by a factor of eight. For 
a tenth-order method, the corresponding factor in time is over 
2 000. The pseudospectral method is the limit for p+ CC. 

40 

35 

30 

c 
5 4 25 

g 
$ 
t 20 
a 
(I) 
I 
a 

15 

10 

5 

2 

A 

I 

Equation (22) suggests that the slope stays sharp forever, 
which is indeed the case. The pseudospectral method will 
“see” in the discrete data the interpolating trigonometric poly- 
nomial. All frequences in that polynomial, and hence in the 
whole polynomial, will translate exactly. The Gibbs phenome- 
non leads to a large local truncation error, but even so, there 
can be no growth of the error in time

Pseudospectral versus finite-difference methods 
for variable coefficients 

The aim of this paper has been to provide an intuitive 
understanding. Accurate theory for the pseudospectral method 
in less ideal situations (e.g., for smoothly variable coefficients 
or for coefficients with jumps, even in 1-D situations) is rather 
incomplete. For finite-difference methods, the standard pro- 
cedure to get global error estimates is to add local truncation 
errors (which typically are small). In the pseudospectral 
method, on the other hand, local errors can be large (Gibbs 
phenomenon at a discontinuity is a typical case). Still, global 
errors grow very little with time due to cancellations. In some 
early literature on the pseudospectral method, this was not 

. 
2 5 10 20 50 100 200 500 

Number of wavelengths withln computational Uomaln of 
highest wave mode which remains accurate at final die

FIG. 4. Number of grid points and number of points per wavelength required at different orders of finite differencing. 



The Pseudospectral Method 489 

appreciated and misleading results with large error bounds Table 2. Memory requirement and computer time for each 
were published. time step. 

Instead~ of trying to give the theor_y for_ variable coefficients 
(see Brown, 1984, for discontinuous coefficients), test calcula- 
tions were performed to illustrate the practical performance of 
the pseudospectral method (see Appendix B for the results). 

Ghd density 

Memory 
(M words) 

32*32 64*64 128*128 256*256 512*512 

PSEUDOSPECTRAL AND FINITE-DIFFERENCE METHODS 
APPLIED TO THE PROBLEM OF 2-D 

ELASTIC FORWARD MODELING 

,012 ,049 ,197 .786 3.15 

Consider a vertical slice into the earth. The 2-D elastic wave 
equation in this plane describes the linear response in the 
medium to a source. This equation can be formulated in sev- 
eral ways, including 

Method Times (in ms, CDC CYBER 205) 

Second-order 
finite-difference .24 .63 2.21 8.83 37.1 

Fourth-order 
finite-difference .50 1.16 3.82 15.7 

Pseudospectral 2.40 9.24 34.6 - 

PU, =f, + gpr 

Pa,=gr+h,, 

f, = (h + 2u)u, + hn,, (23) 

9, = W, + W,, , equations by setting p = 1, and have considered them on a 
periodic domain [0, l] x [0, 11. 

h, = hu, + (h + 2u)n,. 

u and u denote the horizontal and vertical velocities of materi- 
al particles. J g, and h (often denoted l-i, 1, r1 2, and l-a J 
are the three components of the (symmetric) stre$s tensor. The 
material parameters p, h, and P are (in forward modeling) 
assumed to be given. 

Many other formulations of the equation are possible. In 
particular, equation (23) can be recast into two second-order 
equations in displacements, or three second-order equations in 
siresses (Kosloff and Baysal, 1982; Cerjan et al., 1985). In 1-D 
elastic or 2-D acoustic (P = 0) cases, second-order formu- 
lations are advantageous since more compact (“staggered”) 
approximations can be used. Comparisons between finite- 
difference and pseudospectral methods in these cases can be 
misleading in the 2-D (or 3-D) elastic problem. Mixed deriva- 
tives are then present, requiring centered approximations of 
first derivatives. 

The Fortran codes have been implemented on a CDC 
Cyber 205 in half precision (32 bit floating point). Reasonable 
care was taken to obtain a well-vectorized code. In particular, 
for the finite-difference codes, single vectors were used along 
as many columns as possible [subject to the maximum vector 
length). Boundary conditions (periodic) were handled by 
GATHERS and SCATTERS. 

In the system (23), two major kinds of waves (denoted com- 
pressional waves and shear waves) are possible. Their veloci- 
ties are 

Table 2 shows the computer times required for one time
step with the various methods and grid sizes. Table 3 shows 
the sustained Mflop (million floating point operations per 
second) rates which correspond to the times in Table 2. For a 
two-pipe Cyber 205, the maximum theoretical speed in 32 bit 
is 400 Mflop if the linked triad structure (simultaneous add 
and multiply between two vectors and one scalar) can be em- 
ployed; otherwise, it is 200 Mflop. For the finite-difference 
codes (with X and u nonconstant), linked triads are only appli- 
cable to a limited extent. For the large grids, speeds reached 
up to 270 Mflop with second-order finite differences and up to 
220 Mflop with fourth-order finite differences. The FFTs in 
the pseudospectral method often require rather short vectors. 
Also, quite extensive rearranging of data is necessary (this 
operation takes time but involves no floating point oper- 
ations). Still, sustained rates of up to 170 Mflop were mea- 
sured. If p had also been allowed to vary, both the second- 
and fourth-order methods would have slowed to just under 
200 Mflop. The speed of the pseudospectral method would 
have remained virtually unaffected. 

[(X + 2u)/p]rii (P-wave) 

and (24) 

I 1 
112 

PIP (S-wave). 

(Interfacial waves can also occur. Rayleigh waves travel along 
the top surface and Stoneley waves travel along internal inter- 
faces. They both go slower than the S-waves, and they decay 
exponentially away from the interface they are following.) 

The present test codes were written only for a periodic 
geometry. This study is limited to comparing different meth- 
ods in space. Even so, some temporal integration method has 
to be employed. I have used standard, centered, second-order 
finite differences (Leap-Frog) with time steps sufficiently small 
so as not to influence the results. I have also normalized the 

Actual computer times for a complete test run will depend 
upon the time integration technique used. However, for the 
same accuracy, the relative times for different spatial methods 
can still be read directly from Table 2. 

Implementation of the finite-difference schemes is straight- 
forward, and speeds approach the theoretical maximum of the 
computer. For the pseudospectral method, on the other hand, 
I employed a direct vectorization (across the many simulta- 
neous transforms) of the original Cooley-Tukey algorithm 
(Cooley et al., 1969). Neither this algorithm nor the imple- 
mentation is optimal. The estimates I give for the pseudo- 
spectral method should be improved with a better FFT code. 
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Table 3. Sustained computational speeds (in Mflops, i.e., million floating point operations per second). 

Grid density 

Method 32~32 64~64 128 * 128 256 * 256 512*512 

Second-nrder finite-difference 150 230 270 270 250 
Fourth-order finite-difference 110 180 220 220 
Pseudosnectral 110 140 170 

INTRODUCTION TO THE TEST CASES 1N APPENDIX B COMMENTS ON PRACTICAL IMPLEMENTATIONS 

Appendix B contains brief descriptions and computational 
results for nine test cases. In all of them, the results obtained 
with the pseudospectral method are compared to the results 
from second- and fourth-order finite-difference methods on 
grids of different densities. The first two tests are idealized in 
several ways: (1) They were really 1-D problems (no horizon- 
tal variation); (2) only P-waves were present; (3) the medium 
was either constant or piecewise constant; (4) in test case 2, 
the interfaces were straight and aligned with the grid; and (5) 
incoming waves hit the interfaces at normal incidence. 

The first two cases are the only ones which have been run to 
a realistic time i.e., a time sufficient to allow the fastest wave 
to travel across the domain between two and three times. Test 
3 is identical to test 2 except that it is only run one-eighth as 
long. One (instead of 14) reflections have occurred. The rough 
equivalence in results between PS-32 x 32, fourth-order FD- 
128 x 128, and second-order FD-512 x 512 that is apparent 
in the full-length test 2 is not clear from a casual inspection of 
a shorter caiculaticm iike- testy 3. Keep this fact in minds when 
reviewing cases 4-9, which are all short-time tests of single 
interactions. 

Tests 4 and 5 show P- and S-waves, respectively, hitting a 
horizontal interface at a 45 degree angle. Tests 6 and 7 illus- 
trate reflection-transmission at acoustic-elastic interfaces. 
Tests 2-7 all had straight interfaces aligned with the grid; test 
8 is the only smoothly varying medium. Finally, test 9 includes 
a sharp interface not aligned with the grid. A degradation of 
the higher order methods is noticeable in this last case and is 
discussed below. 

In all cases, the initial pulse shape was of the form 
l/(c + x2)*, where c is a constant. Appendix B emphasizes how 
the pseudospectral method maintains the pulse integrity in 
grids so coarse that the exact pulse shape (and its spectral 
content) have lost their relevance (the pulse being limited to 
only one grid point in extent on the 32 x 32 grids). 

The results shown are all exactly as obtained from the nu- 
merical methods. In particular, no smoothings or any similar 
kinds of manipulations were performed. 

In the cases where reflection-transmission coefficients were 
monitored, the coefficients were found to converge to their 
correct values, similar to other displayed features. 

This paper deals exclusively with different methods for spa- 
tial discretization. Issues 1 have not discussed include (1) nu- 
merical stability, (2) time-stepping methods, (3) postprocessing, 
(4) boundary conditions, and (5) homogeneous versus hetero- 
geneous formulation. 

This stability of a scheme depends upon the time dis- 
cretization method as well as on the method in space. If Leap- 
Frog were used, the ratio of time steps divided by space steps 
would have to be less than 1 for model equation (11) with 
second-order finite-differences in space. The right column in 
Table 1 shows this critical ratio for Leap-Frog in time and 
finite-difference methods of different accuracies in space. The 
ratio decreases to l/n for the pseudospectral method. How- 
ever, since the higher order methods allow much larger steps 
in space, the time step will be limited by accuracy and not 
stability. Equivalent results hold for other time-stepping meth- 
ods. 

A large number of time-stepping methods are possible (e.g., 
Leap-Frog, Runge-Kutta, Adams-Bashforth, modified Euler, 
etc.). The choice of method will not significantly affect the 
relative performance of the various spatial methods. In this 
work, Leap-Frog was used because of its simplicity (with a 
time step so small that all noticeable errors were due to the 
spatial approximations). Note that the modified Euler method 
with operator splitting (Bayliss et al., 1986; Strang, 1968) re- 
quires only one time level in memory. This idea can be used 
with either finite-difference or pseudospectral methods (and 
represents a savings in memory of a factor of two over the 
Leap-Frog method used here). 

For second-order finite differences in space, some time- 
stepping methods (Leap-Frog is one) give higher than ex- 
pected accuracy for P-waves with very large time steps near 
the stability limit. Although useful when applicable, the accu- 
racy does not carry over to S-waves or to either wave type for 
higher order methods. It in no way invalidates the basic as- 
sumption in this work, i.e., that temporal and spatial errors 
can be treated (and minimized) separately. 

Recently. it has been noted that errors from a high-order 
calculation involving steps (shocks) possess a structure which 
makes it possible to remove most of the errors without affect- 
ing the correct parts of the solution (Gottlieb and Abarbanel, 
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Table 4. The potential of the fourth-order finite-difference 
method and the pseudospectral method compared to the stan- 
dard second-order finite-difference method for the elastic wave 
equation. 

Relative computer costs 
Number of 
grid points 2-D 3-D 

in each (measured) (estimated) 
spatial 

Method direction memory time memory time
-~- 

Second-order 16N 256 20 4 096 300 
finite-difference 

Fourth-order 4N 16 1.8 64 8 
finite-difference 

Pseudospectral N 1 1 1 1 
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CONCLUSIONS 

Fourth-order finite-difference methods are, in every respect 
I have considered, far superior to second-order finite- 
difference methods. The advantage of the pseudospectral 
method over fourth-order finite-difference methods lies pri- 
marily in memory and is most pronounced in three dimen- 
sions. 

Three-dimensional calculations could become feasible with 
the pseudospectral method. Even if a factor of two in both 
memory and speed were lost due to absorbing layers at the 
‘bourr&ari~, the pseudospectral method can be~expeeted to XR 
about 150 times faster and use less than l/2 000 of the 
memory required by second-order finite-difference methods. 

1985; Gottlieb and Tadmor, 1985). In low-order calculations, 
on the other hand, dispersion causes a genuine loss of data, 
making postrecovery impossible. This favoring of higher order 
methods has not been exploited in the present work. 

The pseudospectral method requires periodic boundaries. 
Other situations will somehow have to have a periodic setting 
simulated. Cerjan et al. (1985) describe one approach of damp- 
ing waves near boundaries. In spite of the good results quoted, 
the problem with absorbing boundary conditions requires fur- 
ther study. 

In the present test cases, the pattern of equivalent accuracies 
(PS-32 x 32; fourth-order, 128 x 128; second-order, 
512 x 512) did not quite hold up when interfaces were not 
aligned with the grid lines. This problem will occur whenever 
grids become so sparse that they do not contain sufficiently 
detailed information on locations of the interfaces. For finite- 
element methods, the grid would be adjusted to follow the 
interfaces. For finite-difference and pseudospectral schemes, 
alternative formulations of the governing equations (homoge- 
neous or heterogeneous) might be considered. 

Table 4 shows the potential of the fourth-order finite- 
difference method and the pseudospectral method compared 
to the standard second-order finite-differences method for the 
elastic wave equation. With current techniques regarding 
boundaries, etc., about one-half of the pseudospectral poten- 
tial should be possible in a carefully devised code. 
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APPENDIX A 

EQUIVALENCE OF TWO DEFINITIONS 
OF THE PSEUDOSPECTRAL METHOD 

Consider the periodic interval c--71, n], discretized equidis- 
tantly with N = 2p + 1 points. The step size is h = 2n/N. The 

The limit of finite differences of increasing orders 

finite-difference coefficients which correspond to the two dif- On an infinite interval, the limit method has the coefficients 
ferent definitions of the pseudospectral method are calculated [equation (IO)] 
below. Since the coefficients prove to be the same in the two 1... 
cases, the equivalence between the two definitions is verified (a \ I _$ f 4 -I 0 + _$ $ -2 .}/2J,, (A-1) 

similar equivalence holds for N even). On the periodic grid, this stencil collapses down to a stencil of 
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width N = 2p + 1 with coefficients 

{Y-P.P .” Y-l., Y0.a Yl,, 

where 

Y 
“,p=(_l)y+l f 2(- 

k=-a, Nk+v 

Yo,p = 0 

and 

Y y, P = -Y-V.p 

Ye, ,P> (A-2) 

Fornberg 

The derivative at x = vh becomes 

o<vsp, 

(A-3) 

--p<v<o. 

To evaluate y,, p in closed form, consider the following integral 
over a rectangle with corners --M - (l/2) - iM, 
M + (l/2) - iA4, M + (l/2) + iM, -M -(l/2) + iM, where 
M (an integer) tends to infinity : 

o= 

2x 

. N sin (xv/N) 
(A-4) 

t t 

Therefore, 

Sum of residues 
at the poles of 

x/sin (xz) 

Residue at the 
pole z = -v/N 

2x( - l)“+ ’ 
YV, p = 

N sin (w/N) 
--plVSP, V#O 

(A-5) 
Yo. p = 0. 

Difference scheme corresponding to Fourier 

interpolation 

Consider a function,f(kh), k = --p, . . , p, defined at the grid 
points. The interpolating trigonometric polynomial is 

f(X) = f: /(o)e’““, (‘4-6) 

where 

o= -p 

{(CD) = $- i f(kh)e-ihk”. 
k- I, 

(A-7) 

f’(vh) = i i wf(cO)eio”* 

P 

= ; C f(kh) i c,xioh’“- k). (A-8) 
k- P w=-P 

The corresponding finite-difference scheme over the 
N = 2p + 1 points therefore has the coefficients

IS-,., ... S-l,,, 6,,, F,,, ... S,,,I/2h, (A-9) 

where 

(A-10) 

To evaluate 6,. p in closed form, note that for x # 0, 

P 
i c f3K’“” = 2(sin x/2)* 

(A-11) 
o= -p 

Substituting x = hv = 2rrv/N gives, for v # 0, 

h,, = -2 z{psin[(p+1)2xv/N] 
N’(sin rcv/N) 

-(p + 1) sin (2xpv/N) (A-12) 

The expression inside the braces simplifies as follows: 

- sin 2pnvlN 

(- l),+ ’ sin W/N 

l-1)’ 

= (- 1)‘N sin xv/N. (A-13) 

Therefore, 

271( - l)“+ 1 

- N sin (xv/N) 

0. 

~Psv<p,v#o 

(A-14) 

Thus the two ways to introduce the pseudospectral method are 
equivalent. 
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APPENDIX B 

COMPARISONS BETWEEN SECOND- AND FOURTH-ORDER 
FINITE-DIFFERENCE METHODS AND THE PSEUDOSPECTRAL 

METHOD IN NINE TEST CASES 

Test case i-: Komogeneous medium @ = p = i-j. 

Figure B-l shows schematically the initial and the end 
states in this test. A P-wave pulse has traveled 24 periods 
down. Figure B-2 compares the numerical solutions (snap- 
shots over space at the final time) for the different methods 
and different grid densities. 

Test cases 2 and 3: Reflections at horizontal interfaces. 

The medium has two horizontal interfaces, one at the center 
and (because of periodicity) one at the top (or bottom). Figure 
B-3 schematically shows the initial cases and the end case in 
test 2. P-wave trajectories for both cases are shown in Figure 
B-4. P-waves hit interfaces 14 times in case 2, once in case 3. 
Results of the two test cases are shown in Figures B-5 and 
B-6. 

Test case 4: P-wave hitting an interface at 45 degrees. 

Figure B-7 schematically shows the initial and end states in 
this test. The actual runs were performed in a periodic square 
of double the size shown. In the display of the results (Figure 
B-8), “grid density” refers to the grid size within the central 
square. 

Test case 5: Swave hitting an interface at 45 degrees. 

Figure B-9 schematically shows the inital and end states. In 
this case, there is no reflected P-wave. The domain was ex- 
tended as in case 4. The computational time was increased by 
a factor of 3”’ (to compensate for the slower S-wave speed). 
This has caused disturbances from the left edge of the bottom 
medium time to penetrate to the interior of the displayed 
square. These disturbances are visible in Figure B-10, in par- 
ticular as an arc between the transmitted and reflected S- 
waves (i.e., they do not represent a flaw in any of the numeri- 
cal schemes). 

Test cases 6 at& 7 tm &waves hitting acoustic-elastics 
and elastic-acoustic interfaces at 45 degrees. 

In test case 6 the schematic initial and end states are the 
same as in Figure B-7, except that the top medium is acoustic 
(h = 3, p = 0) instead of elastic (h = p = 1) and the reflected 
S-wave is missing. In test case 7, the bottom medium is 
changed from elastic (I. = p = .5) to acoustic (h = 3/2, p = 0). 
Again, the directions of all outgoing waves remain the same; 
however, the transmitted S-wave is now missing. Figure B-11 
shows the same variable u at the end time for accurate solu- 
tions of the problems in three test cases 4, 6, and 7. This 
illustrates how the transmission-reflection coefficients differ. 
Results of the test cases 6 and 7 are given in Figures B-12 and 
B-13. 

Test case 8: Smoothly varying medium; 
focusing of the wave. 

The medium parameters (on the unit square) are 

h = p = 1 - .5 exp (x - l/2)’ + (y - l/2)’ II . (B-l) 

Contour curves are shown in Figure B-14 together with the 
scb~ernatic initial an& en-& &-atcs Tire slower bpmrh- of ihr 
signal near the center cause the incoming wave to focus and 
display a cusp-shaped front at the final time Results are 
shown in Figure B-l 5. 

Test case 9: P-wave hitting a curved interface; 
focusing of both reflected and transmitted waves. 

Figure B-16 shows schematic initial and end states. The 
computational time was chosen to bring the reflected P-wave 
exactly to its focus. Results are shown in Figure B-17. 
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4th order 
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P-Spectral 

END STATE 

FIG. B-l. Schematic initial and end states in test case 1. 

DENSITY 

32*32 64*64 128*128 256-256 512*512 

TEST CASE 1 

FIG. B-2. Results of test case 1. Variable u displayed. 
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BOTTOM MEDIUM X = p = .25 

INITIAL STATE 

lr P-WAVES lr 

L L 

t P-WAVES R 

L L 

t P-WAVES 'lk 

L JL 

END STATE IN 
TEST CASE 2 

FIG. B-3. Schematic initial states in test cases 2 and 3 and end 
state in test case 2. 

\ 
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2nd order 

FD 

4th order 

FD 

32*32 64*64 

(PERIODIC) TOP BOUNDARY 

-_ -.-- 
NITIAL @\ FINAL time IN (PERIODIC) BOTTOM FINAL TIME IP 
time \ TEST CASE 3 BOUNDARY CONDITION TEST CASE 2 

‘1 
=> time - 

FIG. B-4. P-wave trajectories in test cases 2 and 3. 

128*128 256-256 512+512 

TEST CASE 2 

FIG. B-5. Results of test case 2. Variable u displayed. 
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GRID DENSITY 

METHOD 32*32 64*64 128*128 256+256 512*512 

TEST CASE 3 

FIG. B-6. Results of test case 3. Variable u displayed. 

TOP MEDIUM 
k = p = 1. 

1 BOTTOM MEDIUM k q  p = .5 
~-- 

INITIAL STATE END STATE 

FIG. B-7. Schematic initial and end states in test case 4. 
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DENSITY 
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P--Spectral 

TEST CASE 4 

FIG. B-8. Results of test case 4. Variable g displayed. 

-.-___ 

BOTTOM MEDIUM \ = iI c .5 I 

497 

INITIAL STATE END STATE 

FIG. B-9. Schematic initial and end states in test case 5. 



498 Fornberg 

2nd order 

FD 

4th order 

FD 

P-Spectral 

DENSITY 

32-32 64.64 128&128 256*256 

TEST CASE 5 

FIG. B- 10. Results of test case 5. Variable u displayed. 

TEST CASE 4: 

ELASTIC OVER ELASTIC 

TEST CASE 6: 

ACOUSTIC OVER ELASTIC ____ 

TEST CASE 7: 

ELASTlC OVER ACOUSTIC 

FIG. B-l 1. Accurate pictures of the variable u at the end time in test cases 4,6, and 7. 
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FIG. B- 12. Results of test case 6. Variable u displayed. 

DENSITY 

32-32 64*64 128-128 256-256 

FIG. B- 13. Results of test case 7. Variable u displayed. 
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INITIAL STATE 

I 

END STATE 

FIG. B-14. Contour curves for the variable medium and schematic initial and end states in test case 8. 
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TEST CASE 8 

FIG. B-15. Results of test case 8. Variablefdisplayed. 
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_-_________ 
.l P-WAVE I 

TOPMEDIUH \=11=1. 

BOTTOM MEDIUM i = 1~ I 2. 

i._.._____ 

INITIAL STATE END STATE 

FIG. B-16. Schematic initial and end states in test case 9. 
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FIG. B-17. Results of test case 9. Variablefdisplayed. 


