Preliminary Exam #__| possible | score
Partial Differential Equations 1 25
9AM - 12PM, Thursday, Jan 9, 2025 § §§
Student ID (do NOT write your name): 4 25
5 25
Total 100
There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.
1. Method of Characteristics.
(a) (16 points) Solve the Cauchy problem
t@,u+(x—t)0xu:u2, t>1, xeR,
u(x,1) = x, x € R.

You may reference the provided table of ODEs to determine solutions of any that arise.
Solution: We parameterize the initial conditions of (x(z; s), #(z; s), u(t; 5)) as

x(0;8)=s, t0;5)=1, u(0;s)=s, s €R.

The characteristic equations are then

dt

— =1, t O, = 1,
Is (05 5)
Z—:zx—t, x(0;5) =s,
% = 72, z(0;5) = s.

Before solving, check for transversality. At 7 = 0, we have

ax Jat
-~ - s—1 1

'j ﬁ'= 1 0‘=_1#Q
ds ds

guaranteeing a solution around the initial data.
Now we solve the characteristic equations. The first equation gives

t(r,s) =e".
The second equation becomes dx/dt = x — €7, a linear non-homogeneous equation. The
homogeneous solution is x, = Ce", while a particular solution is x, = —ze’. Thus we get

x(z,s) = Ce® — re’. Requiring x(0, s) = s, we get

x(z,s) = se’ —re’.



Finally, solving for z(z, s) we get
s

z(t,s) = T—or

Combining the equations for x and ¢ we find that
x = st —tIn(?),
so s = x/t + In(¢). Therefore

x/t + In(r) _ x + tIn(?)

u(x, 1) = 2(20x, 0, 5060) = 2(0.8) = T o T~ 7= x 1) — 112

(b) (9 points) Determine the region (x,7) € R where your solution in part (a) is classical.
Solution: Note first, the solution satisfies the initial condition since lim,_,, u(x,1) = x.
It is also valid for  — x In(t) — ¢ In(#)> > 0 or —co < x < ¢ - [1 — In(t)?] / In(?).
The solution is sufficiently differentiable where u, and u, can be define where

_t—x+x*/t+2xIn(t) + tIn(1)? 3 t
T S xIn() — () E T U xIn@) — (22

The condition on differentiability is thus the same as continuity. Moreover, notice

_ X2+ 2xtIn(t) + 2 In(®)*

tu, + (x — Hu, [t — xIn(z) — tIn(?)?]?

9

as expected. Thus, we require (x,7) € R = {(x,1) € R?|x <t [1 —In(®)*| /In(r) & t > 1}.

ODE General Solution

2a2e—abd+b2c
b3

bt
ax' +bx =c+dt+et’, b#0 + O 4 22 4 Keo

ax' + bx = e, ¢ +# —b/a

bt
ax' + bx = e, ¢=-b/a Ke o + 1te™a
a

bt
a

ac sin(ct)+b cos(ct) +Ke™

!
ax’ + bx = cos(ct
+ (ct) a’c?+b?

bt
a

ac cos(ct)—bsin(ct) -
_gecoslenbsin(en 4 pro
a’c?+b?

ax’ + bx = sin(ct)

Table 1: Some first-order linear non-homogeneous ODEs with constant coefficients.



2. Heat Equation. Consider the forced heat equation in one dimension,
ou=0,.u+ f(x,1), >0, xeR,
u(x,0) =0, x €R.
(a) (9 points) Determine u(x, t) in terms of an integral involving f(x, ?).

Solution: Using Duhamel’s principle, we transform the forced problem into the family of un-
forced initial value problems

0,i(x,t;5) = 0, 0(x,1;5), (D
i(x,s;5) = f(x,5). 2)
Each one of these can be solved using the fundamental solution, giving

e
e f(y, 5)dy. 3)

a(x,t;s) = / . S
-0 \/4x(t —5)
Following Duhamel’s principle, the solution to the forced problem is obtained by

—(x—y)?

t t [« 1
( ,t)=/ i(x, 1, 8)d =// ——————e “ f(y,8)dyds. “)
ux . u(x s)as . i 4”(t_s)e y,s)ayas

(b) (8 points) Calculate the integral for u(x, f) when f(x,t) = x.
Solution: From (a), we have

_ap?

e 49 y’dyds.

u(x,t)z/ /w;
0 J-o \/Ar(t —5)

Focusing on the inner integral, we make the change of variables z = (y — x)/(24/t — s), so then
y=x+2yt—szanddy =24/t — sdz so

=92 ©
e prome ydy = / Le“"z [x2 + 4\t —sxz+4(t — s)zz] dz

oo T

® 1
~/—oo vV dr(t — s)

=x>+2(t—y5)

using the formulas from the sheet. Finally, integrating we obtain
t
u(x, 1) = / [x* +2(1 — $)lds = 1x* + 1*.
0

(c) (8 points) Suppose 0 < | f(x,1)| £ F € R*if x € [—¢,c] and f(x,?) = 0if |x| > ¢. Show that
lu(x, )| < KFet'/?,
for some constant K > O and all > 0, x € R.
Solution: From part (a) and the fact that f(y, s) is zero for |y| > ¢, we have

—(—y)?

e > f(y,s)dyds.

~(x—y)?
e s f(y,s)dyds =

t c 1
~/0 [c \/4—7[(f - S)

—(x—y)

u(x,t):/ /m;
0 —co\/m

(x=y)?
Now using the triangle inequality and the fact that e -9 <1 for s < ¢, we get

t
|f (v, s)|dyds < 2¢F /(I—S)‘l/zdS= 4 _Fe,
4z JO

|u<x,r>|s//c;
0 J-c \/4x(t —s) \/_ \/E

which is what we wanted to show.




3. Wave Equation. Consider the radially symmetric initial value problem in R*:
u, (X, 1) = Au(x, 1), X = (X, Xy, X3) € R?, t>0,

ux,0)= ¢(Ix)),  wx0)=w(x). xeR, |x]=1/x3+x3+x

(a) (12 points) Determine the solution u(x, t) = v(r, t)/r by exploiting radial symmetry (r = |x| > 0).
Solution: We assume u(x,?) = v(r,t)/r where r = |x| > 0 and lim,_, v = 0 as well as the
formula for the Laplacian in radial coordinates in R?,

lv —li[r2i<£>]— 14 [rv —v] lv = v =0
rt T 2de D odr \r )1 T 2dr r ' i T

The problem then becomes an initial boundary value problem on r > 0 and ¢ > 0,

v,(r.t)=v,/(r1), r>0,1t>0,
(r,0) =re(r), v,(r,0)=ry), r>0,
v(0,1) =0, t>0,

which can be solved using odd reflection of d’Alembert’s solution. That is, for » > ¢, we have

v(r,t) = % [(r+Hepr+t)+(Fr—tepr—1]+ % / sy(s)ds,

—t

whereas for 0 < r < t, we have

r+t
u(r,t) = % [(rFr+)p(r+1t)— (@ —rpit—r]+ % / sy(s)ds,

—-r
which we can rewrite using |x| = r and convert to u = v/r, so

[x]+1

1 { (IXI + D(x| + 1) + (IX| = DP(x| =) + [ sw(s)ds,  |x] > 1,

DT I\ (il 0]+ 1) = (= It =[x+ [ sw(s)ds, 0<Ix] <

(b) (8 points) Assume ¢ > 0 only for |x| € (1,2) and y = 0. Determine the support of u at t = 2.

Solution: Examining the solution in (a): for |x| > 2, we have support where |x| € (3,4) and for
|x|] € (0,2), we have support where |x| € (0, 1), so supp[u] = {|x] € (0,1) U(3,4)}.

(¢) (5 points) Find the limit limy,_ o u(x,#) = u(0,7) and a condition so u(0,#) = 0 for all 7 > 0.
Solution: Define r = |x| as before, and require u(0, ¢) = 0 in the limit:
(r +)p(r+t)+ @ —1)p(t — r)

r+t
l 1) = l d
1m u(x,t) = > 2”/zr sy(s)ds

= ¢>(t) +td' O+ =0 = PO =-w@).




4. Laplace’s equation. Suppose u € C?(Q) is harmonic (Au(x) = 0) on x € Q C R” bounded.

(a) (10 points) Prove u satisfies the mean value property for any ball B(x, r) C €Q:

= f uwas, = uyay,
0B(x,r) B(x.r)

Solution: Since u is harmonic, then for any B(x, r) C Q,

0= / Au(y)dy = / Ay, = / Vuty)- =24, 5)
B(x,r) dB(x,r) on 0B(x,r) r

Now define ¢(r) = J[a Bxr) u(y)d Sy, and lety = x + rz with z € B(0, 1) and calculate

&' (r) = di ][ Wx + rz)dS, = ][ Vu(x + rz) - 2d S, = ][ Vuy)- T=2ds, = 0
r JaB©,1) dB(0,1) 0B(X,r) r

by Eq. (5). Thus, ¢(r) is constant, so ¢(r) = lim_ . ¢(s) = u(x). Furthermore,

1 r
u(y)dy = / / u(y)dSydp = u(x).
]{a(x,r) | B(x, )| Jo dB(x,p) Y Y

(b) (8 points) Consider the boundary value problem (BVP) on the unit ball:

Au(x) = 0, x € B(0,1) c R?,
u(x) = g(x), x € 0B(0,1).

Write the BVP for the Green’s function G(x,y) and use ®(|x — y|) the associated fundamental
solution to construct the Green’s function G(X,y), checking all necessary conditions.

Solution: The BVP for G(x, y) has form

-AG(x,y) =6(x—Y), X,y € B(0,1),
G(x,y) =0, x €0B(0,1), ye B(0,1).
We take G(x,y) = ®(|x — y|) — ®(|x| - |X — y|) where X = x/|x|?, so clearly X & B(0, 1) if
x € B(0, 1) and if |x| = 1 then |x| - |[X —y| = |x — ¥[, so G(x,y) = 0.

(c) (7 points) Prove that the solution to the BVP in (b) has the form:

oG
u(x) = — / a—g(y)d Sy
0B(0,1) 0Ny
Solution: Note by the Divergence theorem, we can write

on

/ [Au(y)G(x,y) — A, Gx, Y)u(y)] dy = / [ﬂ(y)G(X,y) - E(X, y)u(y)] ds,,
B(O.1) aB(0.1) L 9"y on,

and since Au = 0 and —A,G(x,y) =6(x—Y) and boundary conditions, we have

/ 5(x — Yu(y)dy = u(x) = / [ﬂ(m 0- %, y)g(y)] ds, = - ][ 9 o (y)ds,.
B(0,1) 0B(0,1) hy )

0ny 0 B0.1) any



5. Separation of Variables. Consider the initial boundary value problem (IBVP) on the unit interval:

u(x,t) +ulx,t) =u,(x,1)+1, xe0,1), t>0,
u(0,1) =0, u(l,t)y=e’, t>0,
u(x,0) = f(x), x € (0,1).
(a) (5 points) Find the steady-state solution i(x) = lim,_,  u(x,1).

Solution: The steady-state ODE —&i”" + &t = 1 has general solution &t = 1 + Ae* + Be™™, so with
boundary conditions #(0) = 0 and i#/(1) = e~!, we find i#i(x) = 1 — ™.

(b) (10 points) Formulate the IBVP for v(x, ) = u(x,t) — u(x). Solve for v(x, t) using separation of
variables. Then formulate u(x, t) = v(x, t) + a(x).

Solution:
v,(x, 1) +v(x,1) = v, (x,1), xe(,1), t>0,
v(0,1) =0, v,(1,1) =0, t>0,
v(x,0)= f(x)+e™* -1, x € (0,1).

Separable solutions then satisfy

T'"H)+T@)  X"(x) B
T®  X(x)

soT'(t) = —(A+ DT () and X" (x) + A X (x) = 0 with X(0) = X'(1) = 0.

Note: The factor of one could also end up in the X BVP but it is messier.

X0)T' O+ X0)T @) =X")T@E) =

b

First solve the X eigenvalue problem. If 4 < 0, BCs always force X = 0.
Ifa,= Mﬁ >0, X,(x) = a,cos(u,x) + b, sin(u,x) and X,(0) = O forces a, = 0, while Xr/,(l) =

2
b,u,cos(u,) =0or u, = % +nxforn=0,1,2,..,50 4, = [g + nn] .Noten = —-1,-2,-3, ...
are redundant as they would merely change the sign of the sin.

We thus have T,(f) = eV’ and we can write a general solution to the original IBVP as

oo 1
u(x,t)=1—-e>+ Z b,e” "t sin(u, x), b, =2 / sin(u,x)(f(x) +e™* = dx, n=0,1,2,...
n=0 0

(c) (10 points) Use an energy method to show that any classical solution u to the IBVP is unique.

Solution: Consider the energy E[u](t) = % fol u(x,1)*>dx, so then if both u and w solve the
IBVP, then z(x,t) = u(x,t) — w(x, t) satisfies the homogenized IBVP from (b) with z(x,0) =0
for x € (0, 1). We then compute

1 1 1
iE[z](t) =/ z,(x,0)z(x,)dx =/ Z,.,.(x, 1)z(x, t)a’x—/ z(x, 1)’ dx
dt 0 0 0

1 1
= [z,(x, Dz(x, t)]i:) —~ / z (x, 1) + z(x, 1)’ dx = — / z (x, 1) + z(x, t)*dx.
0 0
Boundary terms vanish due to the IBVP, so ‘Z—’f[z] < 0. Thus, E[z](t) = 0fort > Osince E[z] > 0
and E[z](0) = 0 due to the IBVP. Then by continuity we know z = 0 so u(x, ) = w(x, ) for all
x€(0,1)and > 0.



