
Preliminary Exam
Partial Differential Equations
9:00 AM - 12:00 PM, Aug. 20, 2024
Newton Lab, ECCR 257

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points. A sheet of formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Method of characteristics Two of the following three problems cannot be solved as stated:

(a) ∂xu + ∂yu = u2 with initial data x = s, y = −s, u = s, s ∈ R.
(b) ∂xu + ∂yu = u with initial data x = s, y = s, u = 1, s ∈ R.
(c) x∂xu + y∂yu = u with initial data x = s, y = −s, u = s, s ∈ R.

(7 points) Identify the unsolvable problems, and explain why they are unsolvable.
For the remaining problem:

(i) (3 points) Do the characteristics cross? If so, where?
(ii) (5 points) Find the solution and evaluate it (i.e., give a numerical value) at (x, y) = (2, 3).
(iii) (5 points) The solution of this problem is singular somewhere in the (x, y) plane (including

possibly at infinity). Where is it singular? What is the nature of the singularity (e.g.,
|u| → ∞, |∂xu| → ∞, etc)?

(iv) (5 points) Sketch the characteristics, the curve where initial data is specified, and the
curve where the solution is singular in the (x, y) plane.

Solution: For (b), there is only one characteristic curve, x(τ) = τ + s and y(τ) = τ + s for
each s ∈ R, i.e., x = y. The curve where initial data is specified is the same, x = y. Therefore,
it is not possible to flow off of the initial data curve and the Inverse Function Theorem can’t
be applied to find (x, y) as a function of (s, τ) and the method of characteristics fails. For (c),
again there is just one characteristic curve, x(τ) = seτ and y(τ) = −seτ for each s ∈ R, i.e.,
x = −y, which also coincides with the initial data curve. Thus (b) and (c) do not satisfy the
transversality condition on the initial data so are therefore unsolvable.
For (a), we set up the equations

dx

dτ
= 1, x(0, s) = s, (1)

dy

dτ
= 1, y(0, s) = −s, (2)

dz

dτ
= z2, z(0, s) = s, (3)



HE
Figure 1: Characteristic plane for problem 1a with initial data (red), characteristic curves (blue),
and the singular curve (black).

with solution

x(τ, s) = τ + s, (4)
y(τ, s) = τ − s, (5)

z(τ, s) = s

1 − τs
. (6)

(i) The characteristics are given by y = x − 2s, so they never cross.
(ii) We have τ = (x + y)/2 and s = (x − y)/2, so

u(x, y) = z(τ(x, y), s(x, y)) = (x − y)/2
1 − (x − y)(x + y)/4 = 2(x − y)

4 − (x2 − y2) .

Then, u(2, 3) = −2
9 .

(iii) The solution is singular (|u| → ∞) on the hyperbola x2 − y2 = 4.
(iv) The initial data (red), characteristic curves (blue), and the singular curve (black) are

shown in Fig. 1.

2. Heat Equation Consider Green’s function G(x, t) satisfying

Gt = Gxx − ∞ < x < ∞, t > 0, (7)
G(x, 0) = δ(x), (8)

where δ(x) is the Dirac delta distribution.

(a) (9 points) Use Fourier transforms to establish that

G(x, t) = 1
2π

∫ ∞

−∞
eikx−k2tdk.

Solution: Let
Ĝ(k, t) =

∫ ∞

−∞
e−ikxG(x, t)dx

be the Fourier transform of G(x, t), so that

G(x, t) = 1
2π

∫ ∞

−∞
Ĝ(k, t)eikxdk.

Taking the Fourier transform of Gt = Gxx and using properties of Fourier transforms,

Ĝt = −k2Ĝ.



Integrating this ODE in t yields

Ĝ(k, t) = Ĝ(k, 0)e−k2t.

To obtain the initial condition, we compute the Fourier transform of the delta distribution

δ̂(k) = (δ(·), e−ik·) =
∫ ∞

−∞
e−ikxδ(x)dx = 1 ⇒ Ĝ(k, 0) = 1.

Then Ĝ(k, t) = e−k2t. Taking the inverse Fourier transform provides the desired result

G(x, t) = 1
2π

∫ ∞

−∞
Ĝ(k, t)eikxdk = 1

2π

∫ ∞

−∞
eikx−k2tdk.

(b) (9 points) Show that the above integral can be evaluated in closed form and find

G(x, t) = 1√
4πt

exp
(

−x2

4t

)
.

Solution: Completing the square

ikx − k2t = −t
(

k − ix

2t

)2
− x2

4t
,

the integral can be expressed

G(x, t) = 1
2π

e−x2/(4t)
∫ ∞

−∞
e−t(k−ix/(2t))2

dk.

Making the change of variable y =
√

t(k − ix/(2t)), then dk = dy/
√

t and

G(x, t) = 1
2π

e−x2/(4t)
∫ ∞

−∞
e−y2

dy/
√

t.

To integrate the Gaussian, we use the polar coordinate trick∫ ∞

−∞
e−y2

dy =
(∫ ∞

−∞
e−y2

1 dy1

∫ ∞

−∞
e−y2

2 dy2

)1/2
=
(∫ ∞

−∞

∫ ∞

−∞
e−(y2

1+y2
2)dy1dy2

)1/2
(9)

=
(∫ 2π

0

∫ ∞

0
e−r2

rdrdθ
)1/2

=
(∫ 2π

0

(
−1

2e−r2
∣∣∣∣∞
r=0

)
dθ
)1/2

(10)

=
√

π. (11)

Putting this together, we obtain the fundamental solution of the heat equation or heat
kernel

G(x, t) = 1√
4πt

exp
(

−x2

4t

)
.

(c) (3 points) Use Green’s function to construct the solution to the initial value problem

ut = uxx − ∞ < x < ∞, t > 0 (12)
u(x, 0) = h(x), (13)

Solution: Use the convolution in x

u(x, t) = G ∗ h = 1√
4πt

∫ ∞

−∞
h(y)e−(x−y)2/(4t)dy.



(d) (4 points) Suppose the non-negative, continuous function h(x) has compact support and
h(0) = 1, i.e., there is L > 0 such that h(x) = 0 for |x| > L. Thus u(2L, 0) = 0. Find the
smallest time such that u(2L, t) ̸= 0.
Solution: There is no earliest time. By continuity of h, there exists δ > 0 such that
h(y) > 1/2 for all |y| < δ. Then,

u(2L, t) = 1√
4πt

∫ ∞

−∞
h(y)e−(2L−y)2/(4t)dy (14)

≥ 1√
4πt

∫ δ

−δ
h(y)e−(2L−y)2/(4t)dy (15)

>
1√
4πt

∫ δ

−δ

1
2e−(2L+y)2/(4t)dy (16)

>
δ√
4πt

e−(2L+δ)2/(4t)dy > 0, (17)

for all t > 0. This represents infinite speed of propagation.

3. Wave Equation
Consider

utt − c2uxx + aut + a2

4 u = 0, 0 ≤ x ≤ L, t > 0, (18)

u(x, 0) = f(x), ut(x, 0) = g(x), u(0, t) = u(L, t) = 0,

where f(x), g(x) are integrable and c > 0 and a > 0 are real constants.

(a) (15 points)
Obtain a formal series solution to the above initial boundary value problem.
Solution: Substituting u(x, t) = e− a

2 tw(x, t) into (18) gives wtt − c2wxx = 0.
Using separation of variables w(x, t) = X(x)T (t), gives T ′′(t)/T (t) = c2X ′′(x)/X(x) =
−k2, where k2 ≥ 0. Then, standard methods give the formal solution

u(x, t) = e− a
2 t

∞∑
n=1

sin
(

πnx

L

) [
An cos

(
πnct

L

)
+ Bn sin

(
πnct

L

)]

The Fourier coefficients are defined by

An = 2
L

∫ L

0
f(x) sin

(
πnx

L

)
dx

and
Bn = L

πnc

(
2
L

∫ L

0

[
g(x) + a

2f(x)
]

sin
(

πnx

L

)
dx

)

(b) (5 points)
Derive the energy relation

dE

dt
= −2a

∫ L

0
u2

t dx, (19)

E(t) =
∫ L

0

[
u2

t + c2u2
x + a2

4 u2
]

dx



What physical effect do the additional terms aut and a2u/4 in (18) represent?
Solution: Multiply (18) by ut and integrate over the interval [0, L]. This gives

∫ L

0

(
1
2
(
u2

t

)
t
− c2utuxx + au2

t + a2

8 (u2)t

)
dx = 0.

The boundary conditions u(0, t) = u(L, t) = 0 imply ut(0, t) = ut(L, t) = 0. Performing
integration-by-parts on the second term and applying these boundary conditions yields
the desired energy relation

1
2

d

dt

∫ L

0

(
u2

t + c2u2
x + a2

4 u2
)

dx = −a
∫ L

0
u2

t dx .

The non-negative definite energy E(t) is non-increasing in time, i.e. E(t2) ≤ E(t1) for
t2 > t1, indicating some dissipative force (e.g. friction, vibration) is modeled by the terms
aut and a2u/4.

(c) (5 points)
Using the energy relation (19), prove that the solution found in part (a) is unique.
Solution: Suppose (18) has two distinct solutions: u1(x, t) and u2(x, t). Define ũ ≡ u1 −
u2, which satisfies the equation ũtt−c2ũxx+aũt+ a2

4 ũ = 0 and initial conditions ũ(x, 0) = 0,
ũx(x, 0) = 0, ũt(x, 0) = 0. As a result, the energy relation (19) satisfies 0 ≤ E(t) ≤ E(0) =
0. This implies that E(t) = 0 for all t > 0, or E(t) =

∫ L
0

[
ũ2

t + u2
x + a2

4 ũ2
]

dx = 0. Since ũ

is smooth, this means that ũ2
t + ũ2

x + a2

4 ũ2 = 0. Since these are all non-negative quantities
this implies that ũt = ũx = ũ = 0, or equivalently u1(x, t) = u2(x, t).

4. Fourier Series and Convergence Let f(x) be a piecewise smooth, 2L-periodic function. Let
an and bn be the Fourier coefficients corresponding to the cosine and sine terms, respectively
of f and αn and βn be the Fourier coefficients corresponding to the cosine and sine terms,
respectively of f ′.

(a) (15 points) Prove that an is O(n−1).
Solution: The Fourier coefficient for the cos term is defined as

an = 1
L

∫ L

−L
f(x) cos(nπx/L)dx .

Since f(x) is piecewise smooth, by defintion, f(x) and f ′(x) are piecewise continuous.
Thus integration by parts yields

an = f(x)
nπ

sin(nπx/L)
∣∣∣∣∣
L

−L︸ ︷︷ ︸
=0

− 1
nπ

∫ L

−L
f ′(x) sin(nπx/L)dx .

Since f ′ is piecewise continuous, we can conclude that |f ′| ≤ M for 0 ≤ M ∈ R and thus

|an| ≤ M

nπ

∫ L

−L
dx = 2LM

nπ
= O(1/n) .



(b) (10 points) If limx↘−L f(x) = limx↗L f(x), then prove that an → 0 faster than O(n−1),
i.e., an = o(n−1).
Solution:
Note that the Fourier coefficient of the sin term for f ′ is

βn = 1
L

∫ L

−L
f ′(x) sin(nπx/L)dx .

Consider the fact that f ′ is piecewise continuous on [−L, L] except possibly for a fi-
nite number of points. Thus we can conclude that

∫ L
−L |f ′(x)|dx < ∞ and therefore the

Riemann-Lebesgue Lemma applies, which yields

lim
n→∞

∫ L

−L
f ′(x) sin(nπx/L)dx = 0 .

From part a), we can observe that an = −(L/nπ)βn and thus an = o(1/n).

5. Separation of Variables Consider the initial boundary value problem

ut = 4uxx + e−2t, 0 < x < 1, t > 0, (20)
ux(0, t) = ux(1, t) = 0, t > 0, (21)
u(x, 0) = ϕ(x), 0 < x < 1. (22)

(a) (6 points) Interpret each one of the equations and conditions above in terms of heat flow.
Solution: The PDE models Fourier’s law of heat conduction—u(x, t) is the tempera-
ture at location x and time t—along a one-dimensional rod of unit length with (non-
dimensional) thermal conductivity 4 subject to a spatially independent cooling e−2t, e.g.,
a cooling bath. The boundary conditions correspond to no heat flux through the bound-
aries, i.e., the rod ends are insulated. The initial condition corresponds to the initial
temperature distribution.

(b) (12 points) Use separation of variables to construct a formal series solution. Assuming
convergence of the series, what is the limit limt→∞ u(x, t)?
Solution: Let u(x, t) = −1

2e−2t + w(x, t), then w satisfies the homogeneous heat equation
wt = 4wxx subject to wx(0, t) = wx(1, t) = 0 and w(x, 0) = ϕ(x) + 1

2 . Separated solutions
are wn(x, t) = cos(nπx)e−(2nπ)2t, n = 0, 1, 2, . . .. Introducing the formal series solution

w(x, t) = a0 +
∞∑

n=1
an cos(nπx)e−(2nπ)2t,

we use w(x, 0) = 1
2 + ϕ(x) to obtain the Fourier coefficients

a0 = 1
2 +

∫ 1

0
ϕ(x)dx, an = 2

∫ 1

0
ϕ(x) cos(nπx)dx, n = 1, 2, . . . .

Then, the formal series solution for u(x, t) is

u(x, t) = 1
2(1 − e−2t) +

∫ 1

0
ϕ(y)dy +

∞∑
n=1

an cos(nπx)e−(2nπ)2t.

Evaluating the limit term-by-term, we obtain

lim
t→∞

u(x, t) = a0 = 1
2 +

∫ 1

0
ϕ(x)dx.



(c) (7 points) Determine sufficient non-trivial conditions on ϕ(x) so that the formal solution
is a classical solution and prove it.
Solution: If ϕ(x) is bounded and integrable on 0 ≤ x ≤ 1, say |ϕ(x)| < M . Then,
|an| ≤ 2M and the series can be differentiated term by term. For example, the terms
obtained by term-by-term differentiation uxx(x, t) are bounded as

|(nπ)2an cos(nπx)e−(2nπ)2t| ≤ 2M(nπ)2e−(2nπ)2t,

so that the series for uxx(x, t) converges by the ratio test and the Weierstrass M -test
guarantees its uniform convergence when t > 0 and x ∈ [0, 1]. Thus, the PDE is satisfied
for t > 0 and x ∈ [0, 1]. Similarly, term by term differentiation compels ux(0, t) =
ux(1, t) = 0 for t > 0. In order to guarantee that the series satisfies the initial condition,
we further assume that ϕ′′(x) is continuous on [0, 1] so that performing integration by
parts twice we have

an = 2
(nπ)2 ((−1)nϕ′(1) − ϕ′(0)) − 2

(nπ)2

∫ 1

0
ϕ′′(x) cos(nπx)dx,

so that |an| ≤ 4M ′/(nπ)2 + 2M ′′/(nπ)2 for |ϕ′(x)| ≤ M ′ and |ϕ′′(x)| ≤ M ′′. Consequently∑∞
n=1 |an| ≤ ∑∞

n=1 C/n2 < ∞ where C = 2(2M ′ + M ′′)/π2 and the series for u(x, 0)
converges to the initial condition uniformly by the ratio and Weierstrass M -test for x ∈
(0, 1).

♢ ♠ END ♡ ♣


