Python for Math and Stat Fall 2024
Final Exam

Assume that all necessary packages have been imported.
1. (9 pts) For the following 3 problems, write down what each code block would display if executed in a Jupyter

cell. If the code generates an error or infinite loop, write Exrror.

(a) arr = np.array([[3, 14, 10, 6],
[8, 2, 12, 11,
[9, 13, 7, 511)
arr[:2, ::2]

(b) go = "gobuffs’
£’ {go[-1]}go’

(¢) (lambda x: 2xx) ("go’)

Solution:
(@ array ([[3, 107,
[8, 12]11])
(b) "sgo’
(c) "gogo’
2. (13 pts)

(a) Write a recursive function omit _end8 (nums) that takes a list of positive integers and returns a copy
of the list, excluding all numbers that end with 8 as the ones digit.
Examples:
omit_end8 ([5, 18, 4, 800]) returns [5, 4, 800].
omit_end8 ([18]) returns [].

(b) Write another version of the same function omit_end8 (arr) that takes a numpy array as input and
uses vectorization (without looping) to return the same result as before but as an array.

Solution:

(a) def omit_end8 (nums) :
if len(nums) == O:
return []

if nums[0] % 10 ==
return omit_end8 (nums[1l:])
else:
return [nums[0]] + omit_end8(nums[1l:])
(b) def omit_end8 (arr) :
return arr[arr % 10 != 8]

3. (24 pts) A robot is moving around a coordinate plane. Its position 2
is always a lattice point (z,y) with = and y integers. The robot can
move in any of § directions (N, NE, E, SE, S, SW, W, or NW) to
reach a neighboring lattice point. Assume that the positive y-axis
points North and the positive z-axis points East.

Example: If a robot starts at position (3,0) and is given the com-
mands ['N’, 'SE’, ’S’], it will move to (3,1), then (4,0),

South «— North
]

then (4, —1). -2 . :
2 3 4 5
West «— East
(a) Write a function robot_one_move (pos, cmd) that takes a robot’s [x, y] position and a single

(b)

(©

cmd corresponding to one of the 8 directions. It returns the robot’s new position. The function uses the
already defined dir_dict, a dictionary with the 8 directions as keys and their corresponding changes
in x, y coordinates as the values.

dir_dict = {
'N’:. [0, 11, 'Ng': [1., 11, 'E’: [1,01, 'SE": [1,-11,
rs’:. [0,-11, 'Sw": [-1,-1]1, 'wW’': [-1,0], 'NW’: [-1, 1] }

Example: robot_onemove ([3, 0], ’'N’) returns [3, 1].

Write a function robot moves (pos, cmds) that takes a robot’s [x, y] position and a list of
cmds (directions) as input. It returns a list of all the positions visited by the robot, including the start-
ing position. The function calls robot_one_move ().

Example: robot moves ([3, 0], ['N’, 'SE’, ’S’]) returns
(3, o1, 3, 11, (4, 0], [4, -11].

Write a function robot _path (pos, cmds) that takes a robot’s [x, y] position and a list of cmds
(directions) as input. The function calls robot _moves (), then displays the robot’s path. (See the
sample plot on the previous page. It is not necessary to add axis descriptions or adjust the plot size.)

Solution:

(a) def robot_one_move (pos, cmd) :
dir_dict = {
IN,:

X, Yy = pos
xchg, ychg = dir_dict[cmd]

return [x + xchg, y + ychg]

(b) def robot_moves (pos, cmds) :
pts = [pos]

for cmd in cmds:
pts.append (robot_one_move (pts([-11],

return pts

(¢) def robot_path(pos, cmds):
pts = robot_moves (pos, cmds)
xvals, yvals = zip (*pts)

plt.plot (xvals, yvals)
plt.show ()

[0, 1], 'NE’: [1, 1], 'E’: [
’s’: [0,-1], 'SW': [-1,-1], "W : [-

cmd))

4. (17 pts) Create a class called Robot. Each instance of the class corresponds to one robot and has one

attribute:

» pos: the robot’s current position stored as [x, v].

Example: vars (Robot ([3, 0])) returns {’pos’: [3,

The class includes these methods:

* moves (cmds) : calls robot _moves () to move the robot based on a list of commands. It updates
the robot’s pos to correspond to the final position.

Example: Robot ([3, 0]) .moves (['N’, 'SE’,

737 1) will change posto [4, -1].

* teleport (): chooses a random lattice point to move the robot to, updating pos to the new position.
The maximum change for each coordinate is 10 units in either the positive or negative direction.

(The random move may leave the robot in the same position.)

Example: Robot ([100, -20]) .teleport () might change posto [95,

Solution:

class Robot:

def

def

def

__init_ (self, pos):

self.pos = pos

moves (self, cmds) :
pts = robot_moves(self.pos, cmds)
self.pos = pts[-1]

teleport (self) :

x, y = self.pos

newx = random.randint (x-10, x+10)
newy random.randint (y-10, y+10)
self.pos = [newx, newy]

-12].

5. (12 pts) The DataFrame dfrobot contains specifications for more than 50 robots in a research lab. The
DataFrame has an index column Name and columns for the color, motion type, and height (in inches) for
each robot.

Color Motion Hgt

Name
RoboBee Silver Fly 1
R2-D2 White Roll 43
C-3PO Gold Walk 69

Write code to do the following:

(a) Determine the number of robots in df robot that have a height of 1 inch.
(b) Select the names of all white, rolling robots. The result should be a pandas index or a list of strings.
(c) Among the walking robots, one is the shortest. Identify the name of that robot as a string.

(d) A yellow 40-inch rolling robot named WALL~-E has just arrived. Add its information to df robot.

Solution:
(a) len (dfrobot [(dfrobot.Hgt == 1)]) OR (dfrobot.Hgt == 1) .sum()
(b) dfrobot [(dfrobot .Motion == 'Roll’) & (dfrobot.Color == ’'White’)].index
(c) dfrobot [(dfrobot.Motion == 'Walk’)].Hgt.idxmin ()

(d) dfrobot.loc['WALL-E’] = [’Yellow’, ’'Roll’, 40]

