Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2022

Instructions:

Do two of three problems in each section (Stat and Prob).
Place an \mathbf{X} on the lines next to the problem numbers
that you are NOT submitting for grading.

Please do not write your name anywhere on this exam.
Prob

1. \qquad
2. \qquad
3. \qquad

You will be identified only by your student number.
4.

Stat
Write this number on each page submitted for grading.
5.
\qquad
Show all relevant work.
6. \qquad
Total \qquad

Student Number \qquad

Probability Section

1. Probability: Problem 1

Consider a random vector (X, Y) taking values in $(0, \infty) \times(0, \infty)$ with the joint probability density function

$$
f(x, y)=e^{-(x+y)}\left[1+\alpha\left(2 e^{-x}-1\right)\left(2 e^{-y}-1\right)\right],
$$

where $\alpha \in[-1,1]$ is a given constant.
(a) What is the probability density function of Y ?
(b) What is the probability density function of X given Y ?
(c) Are X and Y independent?
(d) Compute the correlation coefficient between X and Y.
2. Probability: Problem 2

A continuous-time Markov chain X_{t} is used to model the state of a financial market, which alternates between "bull" (the good state) and "bear" (the bad state). A statistical analysis shows that "bull" turns into "bear" with a rate $\lambda>0$, while "bear" turns into "bull" with a different rate $\eta>0$. Suppose that $X_{0}=$ bull.
(a) Write down the infinitesimal generator (or rate matrix) of the continuous-time Markov chain.
(b) Let T be the time spent for the market to change to bear and go back to bull. Find the probability density function of T.

A passively managed mutual fund adjusts its portfolio only when the market state changes. It charges a management fee Z_{i} in the event of the $i^{t h}$ market state change, where $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ are i.i.d. Uniform $(0,100)$ that are independent of the Markov chain X.
(c) For any $t>0$, let N_{t} denote the total number of state changes of the market up to time t and C_{t} denote the total management fee accumulated up to time t. Show that $\mathbb{E}\left[C_{t}\right]=\mathbb{E}\left[Z_{1}\right] \mathbb{E}\left[N_{t}\right]$.
(d) For any $t>0$, compute $\mathbb{E}\left[C_{t} \mid X_{t}=\right.$ bull $]$.

3. Probability: Problem 3

Let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{P}\left(X_{i}=1\right)=p$ and $\mathbb{P}\left(X_{i}=-1\right)=1-p$ for some $p \in(0,1)$. Consider a discrete-time process M defined by

$$
M_{0}:=0 \quad \text { and } \quad M_{t}:=\sum_{i=1}^{t} X_{i} \quad \forall t \in \mathbb{N}
$$

Let τ be the first time M reaches either -1 or 3 .
(a) If we only focus on the process M up to time τ, we may assume without loss of generality that $M_{s}:=M_{\tau}$ for $s \geq \tau$. Then, the evolution of M up to time τ can be described using a Markov chain with finite states. Write down the transition matrix P of this Markov chain. Which states are recurrent? Which states are transient?
(b) Find $\mathbb{E}[\tau]$.
(c) Your answer in (b) should be a finite number. Hence, we can apply Wald's equation and get $\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau]$. From this, find the probability that M reaches 3 before it reaches -1.
(d) In the case where $\mathbb{E}\left[M_{\tau}\right]=0$, we re-scale the process M as follows: for any $n \in \mathbb{N}$, define

$$
W_{t}^{(n)}:=\frac{1}{\sqrt{2^{n}}} M_{2^{n} t}, \quad \forall t \in \mathcal{D}_{n}:=\left\{\frac{k}{2^{n}}: k \in \mathbb{N} \cup\{0\}\right\}
$$

Assume that the limiting process

$$
W_{t}:=\lim _{n \rightarrow \infty} W_{t}^{(n)}, \quad \forall t \in \bigcup_{n \in \mathbb{N}} \mathcal{D}_{n}=\left\{\frac{k}{2^{m}}: k \in \mathbb{N} \cup\{0\}, m \in \mathbb{N}\right\}
$$

is well-defined. For any fixed $t \in \bigcup_{n \in \mathbb{N}} \mathcal{D}_{n}$, find the distribution of W_{t}.
(Comment: A Brownian motion emerges as the continuous extension of W_{t} to all $t \geq 0$).

Statistics Section

4. Statistics: Problem 4

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Uniform}(\theta, 2 \theta)$ distribution, where $\theta>0$.
(a) Find the method of moments (MOM) estimator of $\theta, \hat{\theta}_{M O M}$. (Recall that MOM estimators are obtained by equating the sample moments with theoretical moments, and solving for θ).
(b) Find the MLE of $\theta, \hat{\theta}_{M L E}$, and find a constant k such that $E_{\theta}\left(k \hat{\theta}_{M L E}\right)=\theta$
(c) Which of these two estimators can be improved using sufficiency, and how?
5. Statistics: Problem 5

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the continuous distribution with probability density function (pdf)

$$
f(x ; \theta)=\frac{2 \theta(1-x)}{\left(2 x-x^{2}\right)^{1-\theta}} I_{(0,1)}(x) .
$$

Here, $\theta>0$ and $I_{(0,1)}(x)$ is the indicator function that takes on the value 1 when $0<x<1$ and is 0 otherwise.
(a) Find the distribution of $Y_{i}=-\ln \left(2 X_{i}-X_{i}^{2}\right)$.
(b) Find the maximum likelihood estimator (MLE) for θ. Show that it is an asymptotically unbiased estimator for θ.
(c) Find the uniformly minimum variance unbiased estimator (UMVUE) for θ.
(d) Is the UMVUE an efficient estimator of θ ? Justify.
6. Statistics: Problem 6

Let $T_{1}, T_{2}, \ldots, T_{n}$ be iid, continuous, non-negative random variables (representing lifetimes for example) from a distribution with pdf $f(t)=f(t ; \theta)$ and $\operatorname{cdf} F(t)=F(t ; \theta)$. Let $C_{1}, C_{2}, \ldots, C_{n}$ be iid continuous random variables from a distribution with $\operatorname{pdf} g(t)$ and $\operatorname{cdf} G(t)$, with fixed, known parameters. Suppose we observe $\left(X_{1}, \Delta_{1}\right),\left(X_{2}, \Delta_{2}\right), \ldots,\left(X_{n}, \Delta_{n}\right)$ where

$$
X_{i}=\min \left(T_{i}, C_{i}\right), \quad \text { for } i=1,2, \ldots, n,
$$

and Δ_{i} is the indicator random variable taking the value 1 if $T_{i} \leq C_{i}$ and is 0 otherwise.
Assume that the X_{i} and C_{i} are independent, for each i.
(a) Write down $h(\vec{X}, \vec{\Delta})$, the joint density of $\left\{\left(X_{1}, \Delta_{1}\right),\left(X_{2}, \Delta_{2}\right), \ldots,\left(X_{n}, \Delta_{n}\right)\right\}$.
(b) The "hazard function" is defined as:

$$
h(t)=\lim _{u \rightarrow 0} \frac{P(t \leq T<t+u \mid T \geq t)}{u}=\frac{f(t)}{1-F(t)} .
$$

Consider the "joint" hazard function,

$$
h(x, \delta)=\lim _{u \rightarrow 0} \frac{P(x \leq X<x+u, \Delta=\delta \mid X \geq x)}{u} .
$$

Give an interpretation of this function specifically when $\delta=1$.
(c) Suppose now that the lifetimes $T_{1}, T_{2}, \ldots, T_{n}$ are iid exponential random variables with rate λ. Find the MLE (maximum likelihood estimator) of λ based on the observations $\left(X_{1}, \Delta_{1}\right),\left(X_{2}, \Delta_{2}\right), \ldots,\left(X_{n}, \Delta_{n}\right)$.
(d) Estimate the Cramér-Rao lower bound for the variance of all unbiased estimators of λ based on $\left(X_{1}, \Delta_{1}\right),\left(X_{2}, \Delta_{2}\right), \ldots,\left(X_{n}, \Delta_{n}\right)$.

