Preliminary Exam Partial Differential Equations 9:00AM – 12:00PM, 22, Aug 2023

Student ID (do NOT write your name):

#	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

There are five problems. Solve four of the five problems. Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. Heat equation.

(a) (13 points) Consider the following initial boundary value problem on the annulus defined by $\Omega \equiv \{(r, \theta) \mid r \in (1, 2) \& \theta \in [0, 2\pi)\}$:

$u_t = \Delta u,$	$(r, \theta) \in \Omega,$	$t\in(0,\infty),$
$u(1,\theta,t) = u(2,\theta,t) = 1,$	$\theta \in [0, 2\pi),$	$t \in (0,\infty),$
$u(r,\theta,0) = r^2 - 3r + 3,$	$r \in (1,2),$	$\theta \in [0, 2\pi).$

Assuming existence of a classical solution $u(r, \theta, t)$, show that $u(r, \theta, t) > \frac{3}{4}$ on $\Omega \times \{t > 0\}$. Solution: The minimum on r = 1, 2 is u = 1 and on t = 0 is $u(3/2, \theta, t) = 3/4$. Define

$$U_T = \{ (r, \theta, t) \in \Omega \times (0, T] \}, \text{ for any } T \in (0, \infty) \}$$

The weak minimum principle implies $\min_{\bar{U}_T} u \equiv 3/4$. By the strong minimum principle, if $\min_{U_T} u \equiv 3/4$ then $u \equiv 3/4$ on U_T , but this cannot be since $u(r, \theta, 0) = r^2 - 3r + 3$, so u > 3/4 for all U_T and any $T \in (0, \infty)$.

(b) (12 points) Show the solution of the system in part (a) is unique. Solution: Assume two solutions u and v, then w = u - v satisfies

$w_t = \Delta w,$	$(r, \theta) \in \Omega,$	$t \in (0, \infty),$
$w(1,\theta,t) = w(2,\theta,t) = 0,$	$\theta \in [0, 2\pi),$	$t \in (0, \infty),$
$w(r,\theta,0) = 0,$	$r \in (1,2),$	$\theta \in [0, 2\pi).$

The maximum and minimum principle ensure $\max_{U_T} w \equiv \max_{U_T} w \equiv 0$ for any U_T as defined in (a). Thus $w \equiv 0$ for any U_T so $u \equiv v$.

2. Wave equation.

(a) (10 points) Consider the following initial boundary value problem

$$u_{tt} = \Delta u, \qquad \mathbf{x} \in \Omega, \quad t \in (0, \infty),$$
$$u(\mathbf{x}, 0) = f(\mathbf{x}), \quad u_t(\mathbf{x}, 0) = g(\mathbf{x}), \qquad \mathbf{x} \in \Omega,$$
$$\hat{n} \cdot \nabla u + a(\mathbf{x}) \frac{\partial u}{\partial t} = 0, \qquad \mathbf{x} \in \partial\Omega,$$

where $\hat{n} \cdot \nabla u$ is the normal derivative, Ω is a bounded domain in \mathbb{R}^n , and $a(\mathbf{x}) \ge 0$. Assume that u is a classical solution, and define the energy $E(t) = \frac{1}{2} \int_{\Omega} u_t^2 + |\nabla u|^2 d\mathbf{x}$, and show $E(t) \le E(0)$ for $t \ge 0$.

Solution: We prove this by showing the energy's time derivative is non-positive

$$E'(t) = \int_{\Omega} (u_t u_{tt} + \nabla u \cdot \nabla u_t) d\mathbf{x} = \int_{\Omega} u_t u_{tt} d\mathbf{x} + \int_{\partial \Omega} u_t \left[\hat{n} \cdot \nabla u \right] ds - \int_{\Omega} u_t \Delta u d\mathbf{x}$$
$$= \int_{\Omega} u_t (u_{tt} - \Delta u) d\mathbf{x} - \int_{\partial \Omega} a(\mathbf{x}) u_t^2 d\mathbf{x} = -\int_{\partial \Omega} a(\mathbf{x}) u_t^2 d\mathbf{x} \le 0$$

where we have used Green's first identity, the boundary condition, and the non-negativity of a and u_t^2 (and thus their product).

(b) (15 points) With the aid of the energy E(t) defined in part (a), prove the uniqueness of classical solutions to the initial boundary value problem.

Solution: Suppose u and v are two solutions of the IBVP and let $w \equiv u - v$, then

$$w_{tt} = \Delta w, \qquad \mathbf{x} \in \Omega, \quad t \in (0, \infty),$$
$$w(\mathbf{x}, 0) = w_t(\mathbf{x}, 0) = 0, \qquad \mathbf{x} \in \Omega,$$
$$\frac{\partial w}{\partial n} + a(\mathbf{x})\frac{\partial w}{\partial t} = 0, \qquad \mathbf{x} \in \partial\Omega.$$

Then, we have $E_w(0) = \frac{1}{2} \int_{\Omega} w_t^2 + |\nabla w|^2 d\mathbf{x} = 0$, and by our result in (a), $E_w(t) \leq E_w(0) = 0$ but also $E_w(t) \geq 0$ due to the non-negativity of the integrand. Thus, $E_w(t) \equiv 0$ for all $t \geq 0$, so $w_t \equiv 0$ and $\frac{\partial w}{\partial x_j} = 0$ for all j = 1, ..., n, so $w(\mathbf{x}, t)$ is constant but by the initial conditions this constant is zero so $u \equiv v$.

3. Method of characteristics. Consider the PDE

$$xuu_x + yuu_y = xy$$

on the domain $\Omega = \{(x, y) : x \ge 1, y \in \mathbb{R}\}$, with the initial condition $u(1, y) = \tanh(y)$.

- (a) Write out the characteristic equations for this PDE
- (b) Solve these ODEs [Hint: You might find it helpful to rewrite the characteristic equations for (y, u) as functions of x, i.e for dy/dx and du/dx].
- (c) Find the expression for u(x, y). (Make sure you choose the proper sign for any square roots!)
- (d) Does this solution exist for all points in Ω ?

Solution:

(a) The characteristic equations are

$$\frac{dx}{d\tau} = xu$$
$$\frac{dy}{d\tau} = yu$$
$$\frac{du}{d\tau} = xy$$

(b) Using x as the independent variable instead gives

$$\frac{dy}{dx} = \frac{\frac{dy}{d\tau}}{\frac{dx}{d\tau}} = \frac{y}{x}$$
$$\frac{du}{dx} = \frac{y}{u}$$

Solving these with the initial condition y(1) = s, and $u(1) = \tanh(s)$, gives

$$y = sx$$
$$u2 = s(x2 - 1) + \tanh^{2}(s)$$

(c) So we can solve for s = y/x and get

$$u(x,y) = \operatorname{sgn}(y)\sqrt{xy - \frac{y}{x}} + \operatorname{tanh}^2(\frac{y}{x})$$

Note that we added a sign outside the square root to get the proper u(1, y) when y < 0.

(d) Note that if y > 0 and $x \ge 1$ the argument of the $\sqrt{}$ is always positive. However, when y < 0 there are problems when we hit the solutions of

$$\frac{y}{x} = -\frac{\tanh^2(y/x)}{x^2 - 1}$$

This transcendental equation does have solutions, which correspond to shocks in the PDE.

4. Poisson's Equation/Green's Functions.

(a) (10 points) State and prove the weak maximum principle for Laplace's equation:

$$\Delta u = 0, \qquad \mathbf{x} \in \Omega,$$

$$u = g, \qquad \mathbf{x} \in \partial\Omega, \qquad u \text{ is bounded and } C^2(\Omega) \cap C(\overline{\Omega}).$$

Solution: Take $\max_{\mathbf{x}\in\bar{\Omega}\setminus\Omega} u(\mathbf{x}) =: M$. Taking $v(\mathbf{x}) = u(\mathbf{x}) + \epsilon |\mathbf{x}|^2$ for any $\epsilon > 0$, if we assume $v(\mathbf{x})$ obtains a maximum at $\mathbf{x}_0 \in \Omega$, then $\nabla v(\mathbf{x}_0) = 0$ and $\Delta v(\mathbf{x}_0) < 0$. However,

$$\Delta v(\mathbf{x}) = \Delta u(\mathbf{x}) + 2n\epsilon > 0,$$

which is a contradiction, so $v(\mathbf{x}) = u(\mathbf{x}) + \epsilon |\mathbf{x}|^2 \leq M + \epsilon C$ where $C = \max_{\mathbf{x} \in \Omega} |\mathbf{x}|^2$. Since this is true for any $\epsilon > 0$, then $u(\mathbf{x}) \leq \max_{\mathbf{x} \in \overline{\Omega} \setminus \Omega} u(\mathbf{x})$.

(b) (5 points) For $u(r,\theta)$ defined on $\Omega \equiv B(0,1) \subset \mathbb{R}^2$ and $u(1,\theta) = g(\theta) = 2 + \cos(\theta)$ on $\theta \in [0, 2\pi)$, determine $u(0,\theta)$. Justify your answer, stating any needed theorems.

(Hint: You need not solve the boundary value problem.)

Solution: Applying the mean value property

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},R)} u(\mathbf{y}) \mathrm{d}S(\mathbf{y}).$$

Thus, if we draw a circle around the origin, right at the boundary, we have

$$u(0,\theta) = \frac{1}{2\pi} \int_0^{2\pi} 2 + \cos(\theta) d\theta = 2.$$

(c) (10 points) Consider Poisson's equation on the half-disc:

$$\Delta u = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega \equiv \left\{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 > 0 \& |\mathbf{x}| < 1 \right\}, \\ u = 0, \qquad \mathbf{x} \in \partial\Omega, \qquad u \text{ is bounded and } C^2(\Omega) \cap C(\bar{\Omega}).$$

Determine the associated Green's function $G_S(\mathbf{x}, \mathbf{y})$ in terms of the fundamental solution to the two-dimensional Laplace equation, $\Phi(\mathbf{x}) = -\frac{1}{2\pi} \log |\mathbf{x}|$, and write the solution to the above boundary value problem, showing it satisfies $u(\mathbf{x}) = 0$ on $\mathbf{x} \in \partial \Omega$.

Solution: Define $\tilde{\mathbf{x}} = \mathbf{x}/|\mathbf{x}|^2$ and $\mathbf{x}_H = (-x_1, x_2)$, then using method of images:

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x}_H - \mathbf{y}) - \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) + \Phi(|\mathbf{x}|(\tilde{\mathbf{x}}_H - \mathbf{y})),$$

where Φ is the fundamental solution to Laplace's equation, such that $\Delta_{\mathbf{x}} \Phi(\mathbf{x} - \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y})$. When $\mathbf{x} = (0, x_2)$, then we have $\mathbf{x}_H = \mathbf{x}$ and $\tilde{\mathbf{x}}_H = \tilde{\mathbf{x}}$, so

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x} - \mathbf{y}) - \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) + \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) = 0,$$

and when $|\mathbf{x}| = 1$ with $\mathbf{x} \in \partial \Omega$, then $\tilde{\mathbf{x}} = \mathbf{x}$ and $\tilde{\mathbf{x}}_H = \mathbf{x}_H$ and $|\mathbf{x}_H| = 1$, so

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x}_H - \mathbf{y}) - \Phi((\mathbf{x} - \mathbf{y})) + \Phi((\mathbf{x} - \mathbf{y})) = 0.$$

The solution to the BVP is then

$$u(\mathbf{x}) = \int_{\Omega} G_S(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

so when $\mathbf{x} \in \partial \Omega$ then

$$u(\mathbf{x}) = \int_{\Omega} 0 \cdot f(\mathbf{y}) d\mathbf{y} = 0$$

5. Separation of Variables. Solve the forced wave equation

$$u_{tt} = c^2 u_{xx} + \cos(x)\cos(ct)$$

on the domain $\Omega = \{(x,t) : t > 0, x \in (-\pi,\pi)\}$ with the initial conditions

$$u(x,0) = 0, \quad u_t(x,0) = 3\cos(2x)$$

and periodic boundary conditions

$$u(-\pi, t) = u(\pi, t)$$
 and $u_x(-\pi, t) = u_x(\pi, t).$

Solution: To accommodate the forcing let $u(x,t) = \phi(x,t) + f(t)\cos(x)$, where ϕ solves the unforced case, and we have the ODE

$$f'' = c^2 f + \cos(ct)$$

This ODE has a resonance and can be solved by assuming $f(t) = at \sin(ct)$, which gives

$$f'' - c^2 f = 2ac\cos(ct)$$

so we take a = 1/2c. Now we must simply solve $\phi'' = -c^2 \phi$ on the periodic domain. Using $\phi(x,t) = X(x)T(t)$ gives the usual form

$$\phi(x,t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(nx) + B_n \sin(nx))(C_n \cos(cnt) + D_n \sin(cnt))$$

We now have initial conditions

$$\phi(x,0) = u(x,0) = 0,$$

$$\phi_t(x,0) = u_t(x,0) - f_t(0)\cos(x) = 3\cos(2x)$$

So we find that $A_2D_2(2c) = 3$ and the remaining coefficients are zero. Thus we have

$$u(x,t) = \frac{t}{2c}\cos(x)\sin(ct) + \frac{3}{2c}\cos(2x)\sin(2ct)$$