
Preliminary Exam
Partial Differential Equations
9:00AM – 12:00PM, 22, Aug 2023

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Heat equation.

(a) (13 points) Consider the following initial boundary value problem on the annulus defined
by Ω ≡ {(r, θ) | r ∈ (1, 2) & θ ∈ [0, 2π)}:

ut = ∆u, (r, θ) ∈ Ω, t ∈ (0, ∞),
u(1, θ, t) = u(2, θ, t) = 1, θ ∈ [0, 2π), t ∈ (0, ∞),
u(r, θ, 0) = r2 − 3r + 3, r ∈ (1, 2), θ ∈ [0, 2π).

Assuming existence of a classical solution u(r, θ, t), show that u(r, θ, t) > 3
4 on Ω×{t > 0}.

Solution: The minimum on r = 1, 2 is u = 1 and on t = 0 is u(3/2, θ, t) = 3/4. Define

UT = {(r, θ, t) ∈ Ω × (0, T ]}, for any T ∈ (0, ∞)

The weak minimum principle implies minŪT
u ≡ 3/4. By the strong minimum principle,

if minUT
u ≡ 3/4 then u ≡ 3/4 on UT , but this cannot be since u(r, θ, 0) = r2 − 3r + 3, so

u > 3/4 for all UT and any T ∈ (0, ∞).
(b) (12 points) Show the solution of the system in part (a) is unique.

Solution: Assume two solutions u and v, then w = u − v satisfies

wt = ∆w, (r, θ) ∈ Ω, t ∈ (0, ∞),
w(1, θ, t) = w(2, θ, t) = 0, θ ∈ [0, 2π), t ∈ (0, ∞),
w(r, θ, 0) = 0, r ∈ (1, 2), θ ∈ [0, 2π).

The maximum and minimum principle ensure maxUT
w ≡ maxUT

w ≡ 0 for any UT as
defined in (a). Thus w ≡ 0 for any UT so u ≡ v.



2. Wave equation.

(a) (10 points) Consider the following initial boundary value problem

utt = ∆u, x ∈ Ω, t ∈ (0, ∞),
u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ Ω,

n̂ · ∇u + a(x)∂u

∂t
= 0, x ∈ ∂Ω,

where n̂·∇u is the normal derivative, Ω is a bounded domain in Rn, and a(x) ≥ 0. Assume
that u is a classical solution, and define the energy E(t) = 1

2

´
Ω u2

t + |∇u|2dx, and show
E(t) ≤ E(0) for t ≥ 0.
Solution: We prove this by showing the energy’s time derivative is non-positive

E ′(t) =
ˆ

Ω
(ututt + ∇u · ∇ut)dx =

ˆ
Ω

ututtdx +
ˆ

∂Ω
ut [n̂ · ∇u] ds −

ˆ
Ω

ut∆udx

=
ˆ

Ω
ut(utt − ∆u)dx −

ˆ
∂Ω

a(x)u2
t dx = −

ˆ
∂Ω

a(x)u2
t dx ≤ 0

where we have used Green’s first identity, the boundary condition, and the non-negativity
of a and u2

t (and thus their product).
(b) (15 points) With the aid of the energy E(t) defined in part (a), prove the uniqueness of

classical solutions to the initial boundary value problem.
Solution: Suppose u and v are two solutions of the IBVP and let w ≡ u − v, then

wtt = ∆w, x ∈ Ω, t ∈ (0, ∞),
w(x, 0) = wt(x, 0) = 0, x ∈ Ω,

∂w

∂n
+ a(x)∂w

∂t
= 0, x ∈ ∂Ω.

Then, we have Ew(0) = 1
2

´
Ω w2

t +|∇w|2dx = 0, and by our result in (a), Ew(t) ≤ Ew(0) = 0
but also Ew(t) ≥ 0 due to the non-negativity of the integrand. Thus, Ew(t) ≡ 0 for all
t ≥ 0, so wt ≡ 0 and ∂w

∂xj
= 0 for all j = 1, ..., n, so w(x, t) is constant but by the initial

conditions this constant is zero so u ≡ v.



3. Method of characteristics. Consider the PDE

xuux + yuuy = xy ,

on the domain Ω = {(x, y) : x ≥ 1, y ∈ R}, with the initial condition u(1, y) = tanh(y).

(a) Write out the characteristic equations for this PDE
(b) Solve these ODEs [Hint: You might find it helpful to rewrite the characteristic equations

for (y, u) as functions of x , i.e for dy/dx and du/dx].
(c) Find the expression for u(x, y). (Make sure you choose the proper sign for any square

roots!)
(d) Does this solution exist for all points in Ω?

Solution:

(a) The characteristic equations are
dx

dτ
= xu

dy

dτ
= yu

du

dτ
= xy

(b) Using x as the independent variable instead gives

dy

dx
=

dy
dτ
dx
dτ

= y

x

du

dx
= y

u

Solving these with the initial condition y(1) = s, and u(1) = tanh(s), gives

y = sx

u2 = s(x2 − 1) + tanh2(s)

(c) So we can solve for s = y/x and get

u(x, y) = sgn(y)
√

xy − y
x

+ tanh2( y
x
)

Note that we added a sign outside the square root to get the proper u(1, y) when y < 0.
(d) Note that if y > 0 and x ≥ 1 the argument of the √ is always positive. However, when

y < 0 there are problems when we hit the solutions of

y

x
= −tanh2(y/x)

x2 − 1
This transcendental equation does have solutions, which correspond to shocks in the PDE.



4. Poisson’s Equation/Green’s Functions.
(a) (10 points) State and prove the weak maximum principle for Laplace’s equation:

∆u = 0, x ∈ Ω,

u = g, x ∈ ∂Ω, u is bounded and C2(Ω) ∩ C(Ω̄).

Solution: Take maxx∈Ω̄\Ω u(x) =: M . Taking v(x) = u(x) + ϵ|x|2 for any ϵ > 0, if we assume
v(x) obtains a maximum at x0 ∈ Ω, then ∇v(x0) = 0 and ∆v(x0) < 0. However,

∆v(x) = ∆u(x) + 2nϵ > 0,

which is a contradiction, so v(x) = u(x) + ϵ|x|2 ≤ M + ϵC where C = maxx∈Ω |x|2. Since this
is true for any ϵ > 0, then u(x) ≤ maxx∈Ω̄\Ω u(x).
(b) (5 points) For u(r, θ) defined on Ω ≡ B(0, 1) ⊂ R2 and u(1, θ) = g(θ) = 2 + cos(θ) on
θ ∈ [0, 2π), determine u(0, θ). Justify your answer, stating any needed theorems.
(Hint: You need not solve the boundary value problem.)
Solution: Applying the mean value property

u(x) =
 

∂B(x,R)
u(y)dS(y).

Thus, if we draw a circle around the origin, right at the boundary, we have

u(0, θ) = 1
2π

ˆ 2π

0
2 + cos(θ)dθ = 2.

(c) (10 points) Consider Poisson’s equation on the half-disc:

∆u = f(x), x ∈ Ω ≡
{
x ∈ R2 | x1 > 0 & |x| < 1

}
,

u = 0, x ∈ ∂Ω, u is bounded and C2(Ω) ∩ C(Ω̄).

Determine the associated Green’s function GS(x, y) in terms of the fundamental solution to
the two-dimensional Laplace equation, Φ(x) = − 1

2π
log |x|, and write the solution to the above

boundary value problem, showing it satisfies u(x) = 0 on x ∈ ∂Ω.
Solution: Define x̃ = x/|x|2 and xH = (−x1, x2), then using method of images:

GS(x, y) = Φ(x − y) − Φ(xH − y) − Φ(|x|(x̃ − y)) + Φ(|x|(x̃H − y)),

where Φ is the fundamental solution to Laplace’s equation, such that ∆xΦ(x − y) = δ(x − y).
When x = (0, x2), then we have xH = x and x̃H = x̃, so

GS(x, y) = Φ(x − y) − Φ(x − y) − Φ(|x|(x̃ − y)) + Φ(|x|(x̃ − y)) = 0,

and when |x| = 1 with x ∈ ∂Ω, then x̃ = x and x̃H = xH and |xH | = 1, so

GS(x, y) = Φ(x − y) − Φ(xH − y) − Φ((x − y)) + Φ((x − y)) = 0.

The solution to the BVP is then

u(x) =
ˆ

Ω
GS(x, y)f(y)dy,

so when x ∈ ∂Ω then

u(x) =
ˆ

Ω
0 · f(y)dy = 0.



5. Separation of Variables. Solve the forced wave equation

utt = c2uxx + cos(x) cos(ct)

on the domain Ω = {(x, t) : t > 0 , x ∈ (−π, π)} with the initial conditions

u(x, 0) = 0, ut(x, 0) = 3 cos(2x)

and periodic boundary conditions

u(−π, t) = u(π, t) and ux(−π, t) = ux(π, t).

Solution: To accommodate the forcing let u(x, t) = ϕ(x, t) + f(t) cos(x), where ϕ solves the
unforced case, and we have the ODE

f ′′ = c2f + cos(ct)

This ODE has a resonance and can be solved by assuming f(t) = at sin(ct), which gives

f ′′ − c2f = 2ac cos(ct)

so we take a = 1/2c. Now we must simply solve ϕ′′ = −c2ϕ on the periodic domain. Using
ϕ(x, t) = X(x)T (t) gives the usual form

ϕ(x, t) = A0 +
∞∑

n=1
(An cos(nx) + Bn sin(nx))(Cn cos(cnt) + Dn sin(cnt))

We now have initial conditions

ϕ(x, 0) = u(x, 0) = 0,

ϕt(x, 0) = ut(x, 0) − ft(0) cos(x) = 3 cos(2x)

So we find that A2D2(2c) = 3 and the remaining coefficents are zero. Thus we have

u(x, t) = t

2c
cos(x) sin(ct) + 3

2c
cos(2x) sin(2ct)


