Preliminary Exam
 Partial Differential Equations
 9:00AM - 12:00PM, 22, Aug 2023

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.

$\#$	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

A sheet of convenient formulae is provided.

1. Heat equation.

(a) (13 points) Consider the following initial boundary value problem on the annulus defined by $\Omega \equiv\{(r, \theta) \mid r \in(1,2) \& \theta \in[0,2 \pi)\}$:

$$
\begin{array}{rlrl}
u_{t} & =\Delta u, & (r, \theta) & \in \Omega, \\
& & t \in(0, \infty), \\
u(1, \theta, t) & =u(2, \theta, t)=1, & & \theta \in[0,2 \pi), \\
& t \in(0, \infty), \\
u(r, \theta, 0) & =r^{2}-3 r+3, & & r \in(1,2), \\
& \theta \in[0,2 \pi) .
\end{array}
$$

Assuming existence of a classical solution $u(r, \theta, t)$, show that $u(r, \theta, t)>\frac{3}{4}$ on $\Omega \times\{t>0\}$. Solution: The minimum on $r=1,2$ is $u=1$ and on $t=0$ is $u(3 / 2, \theta, t)=3 / 4$. Define

$$
U_{T}=\{(r, \theta, t) \in \Omega \times(0, T]\}, \text { for any } T \in(0, \infty)
$$

The weak minimum principle implies $\min _{\bar{U}_{T}} u \equiv 3 / 4$. By the strong minimum principle, if $\min _{U_{T}} u \equiv 3 / 4$ then $u \equiv 3 / 4$ on U_{T}, but this cannot be since $u(r, \theta, 0)=r^{2}-3 r+3$, so $u>3 / 4$ for all U_{T} and any $T \in(0, \infty)$.
(b) (12 points) Show the solution of the system in part (a) is unique.

Solution: Assume two solutions u and v, then $w=u-v$ satisfies

$$
\begin{array}{rlrl}
w_{t} & =\Delta w, & & (r, \theta) \\
w(1, \theta, t) & =w(2, \theta, t)=0, & & \\
w(r, \theta, 0) & =0, & & \in[0,2 \pi), \infty) \\
w(0, \infty), \\
& & t \in(1,2), & \\
\theta \in[0,2 \pi) .
\end{array}
$$

The maximum and minimum principle ensure $\max _{U_{T}} w \equiv \max _{U_{T}} w \equiv 0$ for any U_{T} as defined in (a). Thus $w \equiv 0$ for any U_{T} so $u \equiv v$.

2. Wave equation.

(a) (10 points) Consider the following initial boundary value problem

$$
\begin{aligned}
u_{t t} & =\Delta u, & & \mathbf{x} \in \Omega, \quad t \in(0, \infty), \\
u(\mathbf{x}, 0) & =f(\mathbf{x}), \quad u_{t}(\mathbf{x}, 0)=g(\mathbf{x}), & & \mathbf{x} \in \Omega, \\
\hat{n} \cdot \nabla u+a(\mathbf{x}) \frac{\partial u}{\partial t} & =0, & & \mathbf{x} \in \partial \Omega,
\end{aligned}
$$

where $\hat{n} \cdot \nabla u$ is the normal derivative, Ω is a bounded domain in \mathbb{R}^{n}, and $a(\mathbf{x}) \geq 0$. Assume that u is a classical solution, and define the energy $E(t)=\frac{1}{2} \int_{\Omega} u_{t}^{2}+|\nabla u|^{2} d \mathbf{x}$, and show $E(t) \leq E(0)$ for $t \geq 0$.
Solution: We prove this by showing the energy's time derivative is non-positive

$$
\begin{aligned}
E^{\prime}(t) & =\int_{\Omega}\left(u_{t} u_{t t}+\nabla u \cdot \nabla u_{t}\right) d \mathbf{x}=\int_{\Omega} u_{t} u_{t t} d \mathbf{x}+\int_{\partial \Omega} u_{t}[\hat{n} \cdot \nabla u] d s-\int_{\Omega} u_{t} \Delta u d \mathbf{x} \\
& =\int_{\Omega} u_{t}\left(u_{t t}-\Delta u\right) d \mathbf{x}-\int_{\partial \Omega} a(\mathbf{x}) u_{t}^{2} d \mathbf{x}=-\int_{\partial \Omega} a(\mathbf{x}) u_{t}^{2} d \mathbf{x} \leq 0
\end{aligned}
$$

where we have used Green's first identity, the boundary condition, and the non-negativity of a and u_{t}^{2} (and thus their product).
(b) (15 points) With the aid of the energy $E(t)$ defined in part (a), prove the uniqueness of classical solutions to the initial boundary value problem.
Solution: Suppose u and v are two solutions of the IBVP and let $w \equiv u-v$, then

$$
\begin{aligned}
w_{t t} & =\Delta w, & & \mathbf{x} \in \Omega, \quad t \in(0, \infty), \\
w(\mathbf{x}, 0) & =w_{t}(\mathbf{x}, 0)=0, & & \mathbf{x} \in \Omega, \\
\frac{\partial w}{\partial n}+a(\mathbf{x}) \frac{\partial w}{\partial t} & =0, & & \mathbf{x} \in \partial \Omega .
\end{aligned}
$$

Then, we have $E_{w}(0)=\frac{1}{2} \int_{\Omega} w_{t}^{2}+|\nabla w|^{2} d \mathbf{x}=0$, and by our result in (a), $E_{w}(t) \leq E_{w}(0)=0$ but also $E_{w}(t) \geq 0$ due to the non-negativity of the integrand. Thus, $E_{w}(t) \equiv 0$ for all $t \geq 0$, so $w_{t} \equiv 0$ and $\frac{\partial w}{\partial x_{j}}=0$ for all $j=1, \ldots, n$, so $w(\mathbf{x}, t)$ is constant but by the initial conditions this constant is zero so $u \equiv v$.
3. Method of characteristics. Consider the PDE

$$
x u u_{x}+y u u_{y}=x y,
$$

on the domain $\Omega=\{(x, y): x \geq 1, y \in \mathbb{R}\}$, with the initial condition $u(1, y)=\tanh (y)$.
(a) Write out the characteristic equations for this PDE
(b) Solve these ODEs [Hint: You might find it helpful to rewrite the characteristic equations for (y, u) as functions of x, i.e for $d y / d x$ and $d u / d x]$.
(c) Find the expression for $u(x, y)$. (Make sure you choose the proper sign for any square roots!)
(d) Does this solution exist for all points in Ω ?

Solution:

(a) The characteristic equations are

$$
\begin{aligned}
& \frac{d x}{d \tau}=x u \\
& \frac{d y}{d \tau}=y u \\
& \frac{d u}{d \tau}=x y
\end{aligned}
$$

(b) Using x as the independent variable instead gives

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \tau}}{\frac{d x}{d \tau}}=\frac{y}{x} \\
\frac{d u}{d x} & =\frac{y}{u}
\end{aligned}
$$

Solving these with the initial condition $y(1)=s$, and $u(1)=\tanh (s)$, gives

$$
\begin{aligned}
y & =s x \\
u^{2} & =s\left(x^{2}-1\right)+\tanh ^{2}(s)
\end{aligned}
$$

(c) So we can solve for $s=y / x$ and get

$$
u(x, y)=\operatorname{sgn}(y) \sqrt{x y-\frac{y}{x}+\tanh ^{2}\left(\frac{y}{x}\right)}
$$

Note that we added a sign outside the square root to get the proper $u(1, y)$ when $y<0$.
(d) Note that if $y>0$ and $x \geq 1$ the argument of the $\sqrt{ }$ is always positive. However, when $y<0$ there are problems when we hit the solutions of

$$
\frac{y}{x}=-\frac{\tanh ^{2}(y / x)}{x^{2}-1}
$$

This transcendental equation does have solutions, which correspond to shocks in the PDE.

4. Poisson's Equation/Green's Functions.

(a) (10 points) State and prove the weak maximum principle for Laplace's equation:

$$
\begin{aligned}
& \Delta u=0, \quad \mathbf{x} \in \Omega, \\
& u=g, \quad \mathrm{x} \in \partial \Omega, \quad u \text { is bounded and } C^{2}(\Omega) \cap C(\bar{\Omega}) .
\end{aligned}
$$

Solution: Take $\max _{\mathbf{x} \in \bar{\Omega} \backslash \Omega} u(\mathbf{x})=: M$. Taking $v(\mathbf{x})=u(\mathbf{x})+\epsilon|\mathbf{x}|^{2}$ for any $\epsilon>0$, if we assume $v(\mathbf{x})$ obtains a maximum at $\mathbf{x}_{0} \in \Omega$, then $\nabla v\left(\mathbf{x}_{0}\right)=0$ and $\Delta v\left(\mathbf{x}_{0}\right)<0$. However,

$$
\Delta v(\mathbf{x})=\Delta u(\mathbf{x})+2 n \epsilon>0
$$

which is a contradiction, so $v(\mathbf{x})=u(\mathbf{x})+\epsilon|\mathbf{x}|^{2} \leq M+\epsilon C$ where $C=\max _{\mathbf{x} \in \Omega}|\mathbf{x}|^{2}$. Since this is true for any $\epsilon>0$, then $u(\mathbf{x}) \leq \max _{\mathbf{x} \in \bar{\Omega} \backslash \Omega} u(\mathbf{x})$.
(b) (5 points) For $u(r, \theta)$ defined on $\Omega \equiv B(0,1) \subset \mathbb{R}^{2}$ and $u(1, \theta)=g(\theta)=2+\cos (\theta)$ on $\theta \in[0,2 \pi)$, determine $u(0, \theta)$. Justify your answer, stating any needed theorems.
(Hint: You need not solve the boundary value problem.)
Solution: Applying the mean value property

$$
u(\mathbf{x})=f_{\partial B(\mathbf{x}, R)} u(\mathbf{y}) \mathrm{d} S(\mathbf{y})
$$

Thus, if we draw a circle around the origin, right at the boundary, we have

$$
u(0, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} 2+\cos (\theta) d \theta=2
$$

(c) (10 points) Consider Poisson's equation on the half-disc:

$$
\begin{aligned}
\Delta u & =f(\mathbf{x}), & \mathbf{x} \in \Omega \equiv\left\{\mathbf{x} \in \mathbb{R}^{2}\left|x_{1}>0 \&\right| \mathbf{x} \mid<1\right\} \\
u & =0, & \mathbf{x} \in \partial \Omega, \quad u \text { is bounded and } C^{2}(\Omega) \cap C(\bar{\Omega})
\end{aligned}
$$

Determine the associated Green's function $G_{S}(\mathbf{x}, \mathbf{y})$ in terms of the fundamental solution to the two-dimensional Laplace equation, $\Phi(\mathbf{x})=-\frac{1}{2 \pi} \log |\mathbf{x}|$, and write the solution to the above boundary value problem, showing it satisfies $u(\mathbf{x})=0$ on $\mathbf{x} \in \partial \Omega$.
Solution: Define $\tilde{\mathbf{x}}=\mathbf{x} /|\mathbf{x}|^{2}$ and $\mathbf{x}_{H}=\left(-x_{1}, x_{2}\right)$, then using method of images:

$$
G_{S}(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{x}-\mathbf{y})-\Phi\left(\mathbf{x}_{H}-\mathbf{y}\right)-\Phi(|\mathbf{x}|(\tilde{\mathbf{x}}-\mathbf{y}))+\Phi\left(|\mathbf{x}|\left(\tilde{\mathbf{x}}_{H}-\mathbf{y}\right)\right)
$$

where Φ is the fundamental solution to Laplace's equation, such that $\Delta_{\mathbf{x}} \Phi(\mathbf{x}-\mathbf{y})=\delta(\mathbf{x}-\mathbf{y})$. When $\mathbf{x}=\left(0, x_{2}\right)$, then we have $\mathbf{x}_{H}=\mathbf{x}$ and $\tilde{\mathbf{x}}_{H}=\tilde{\mathbf{x}}$, so

$$
G_{S}(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{x}-\mathbf{y})-\Phi(\mathbf{x}-\mathbf{y})-\Phi(|\mathbf{x}|(\tilde{\mathbf{x}}-\mathbf{y}))+\Phi(|\mathbf{x}|(\tilde{\mathbf{x}}-\mathbf{y}))=0
$$

and when $|\mathbf{x}|=1$ with $\mathbf{x} \in \partial \Omega$, then $\tilde{\mathbf{x}}=\mathbf{x}$ and $\tilde{\mathbf{x}}_{H}=\mathbf{x}_{H}$ and $\left|\mathbf{x}_{H}\right|=1$, so

$$
G_{S}(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{x}-\mathbf{y})-\Phi\left(\mathbf{x}_{H}-\mathbf{y}\right)-\Phi((\mathbf{x}-\mathbf{y}))+\Phi((\mathbf{x}-\mathbf{y}))=0
$$

The solution to the BVP is then

$$
u(\mathbf{x})=\int_{\Omega} G_{S}(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

so when $\mathbf{x} \in \partial \Omega$ then

$$
u(\mathbf{x})=\int_{\Omega} 0 \cdot f(\mathbf{y}) d \mathbf{y}=0
$$

5. Separation of Variables. Solve the forced wave equation

$$
u_{t t}=c^{2} u_{x x}+\cos (x) \cos (c t)
$$

on the domain $\Omega=\{(x, t): t>0, x \in(-\pi, \pi)\}$ with the initial conditions

$$
u(x, 0)=0, \quad u_{t}(x, 0)=3 \cos (2 x)
$$

and periodic boundary conditions

$$
u(-\pi, t)=u(\pi, t) \quad \text { and } \quad u_{x}(-\pi, t)=u_{x}(\pi, t)
$$

Solution: To accommodate the forcing let $u(x, t)=\phi(x, t)+f(t) \cos (x)$, where ϕ solves the unforced case, and we have the ODE

$$
f^{\prime \prime}=c^{2} f+\cos (c t)
$$

This ODE has a resonance and can be solved by assuming $f(t)=$ at $\sin (c t)$, which gives

$$
f^{\prime \prime}-c^{2} f=2 a c \cos (c t)
$$

so we take $a=1 / 2 c$. Now we must simply solve $\phi^{\prime \prime}=-c^{2} \phi$ on the periodic domain. Using $\phi(x, t)=X(x) T(t)$ gives the usual form

$$
\phi(x, t)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right)\left(C_{n} \cos (c n t)+D_{n} \sin (c n t)\right)
$$

We now have initial conditions

$$
\begin{aligned}
\phi(x, 0) & =u(x, 0)=0 \\
\phi_{t}(x, 0) & =u_{t}(x, 0)-f_{t}(0) \cos (x)=3 \cos (2 x)
\end{aligned}
$$

So we find that $A_{2} D_{2}(2 c)=3$ and the remaining coefficents are zero. Thus we have

$$
u(x, t)=\frac{t}{2 c} \cos (x) \sin (c t)+\frac{3}{2 c} \cos (2 x) \sin (2 c t)
$$

