
Preliminary Exam
Partial Differential Equations
1:00 - 4:00 PM, Wednesday, Jan. 5, 2022
Remotely

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Quasilinear first order equations.

(a) (15 points) Obtain an implicit solution to the following initial value problem (IVP):

ut + u2ux = 0, x ∈ (−∞,∞), t > 0,
u(x, 0) = g(x) = 1 − e−|x|.

Remember to check existence and uniqueness near the initial condition. Also, sketch the
characteristics of the associated nonlinear wave solution in the (x, t) plane.
Solution: Begin by parameterizing the variables, generating set of ODEs

dx

dτ
= z2, x0(s) = s,

dt

dτ
= 1, t0(s) = 0,

dz

dτ
= 0, z0(s) = g(s).

Locally, a unique solution exists since the Jacobian is nonzero along the initial curve

J =
∣∣∣∣∣ 1 g(s)2

0 1

∣∣∣∣∣ = 1.

Now, we can solve the ODE system sequentially: t = τ ; z = g(s); so characteristics passing
through (x, t) = (s, 0) are x = g(s)2t+ s. Thus

u(x, t) = g(x− u2t).

We sketch characteristics in the (x, t) plane, along which u = g(s) is constant.
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(b) (10 points) Determine at what (x, t) a shock first forms in the solution from (a).
Solution: A shock occurs where ux diverges, so differentiate the implicit solution

ux = g′(s)(1 − 2uuxt) ⇒ ux = g′(s)
1 + 2g(s)g′(s)t .

The spatial derivative may thus diverge for −2g(s)g′(s) > 0 large enough. First, note
g(s) > 0 and g′(s) > 0 for s > 0, so no shocks will occur in that region. However, when
s < 0, we have g(s) > 0 and g′(s) < 0, so −2g(s)g′(s) > 0, so we need only check there
for a maximum of −g(s)g′(s) > 0:

d

ds
g(s)g′(s) = − d

ds
[es(1 − es)] = es [2es − 1] = 0 ⇒ s = − log 2

is a critical point. Note the second derivative there is

− d

ds
es [2es − 1]

∣∣∣
s=− log 2

= −1
2 [0] − 1

2 · 21
2 = −1

2 < 0,

so it is a max. Thus, the shock occurs at x = − log 2 and

t = − 1
2g(− log 2)g′(− log 2) = − 1

2(1/2)(−1/2) = 2.



2. Heat Equation.
Consider the heat equation ∂tu = ∂xxu in the strip Ω = {(x, t) : 0 < x < L, t > 0}.

(a) (10 points) State the weak maximum and minimum principles for this equation with
boundary conditions

u(x, 0) = f(x), u(0, t) = g(t), u(L, t) = h(t).

Solution: Take any T < ∞ and Ω̄T ≡ {(x, t) ∈ [0, L] × [0, T ]} and ΓT ≡ {(x, t)|(x =
0 or L, t ∈ [0, T ]) ∪ (x ∈ [0, L], t = 0)}. The maximum principle states

max
(x,t)∈Ω̄T

u(x, t) = max
(x,t)∈ΓT

u(x, t) = max
[

max
0≤x≤L

f(x), max
0≤t≤T

g(x), max
0≤t≤T

h(x)
]
.

The minimum principle states that

min
(x,t)∈ΩT

u(x, t) = min
(x,t)∈ΓT

u(x, t) = min
[

min
0≤x≤L

f(x), min
0≤t≤T

g(x), min
0≤t≤T

h(x)
]
.

(b) (15 points) Consider two solutions u1 and u2 to the same equation with two different
boundary conditions:

∂tu1 = ∂xxu1, u1(x, 0) = f1(x), u1(0, t) = g1(t), u1(L, t) = h1(t),
∂tu2 = ∂xxu2, u2(x, 0) = f2(x), u2(0, t) = g2(t), u2(L, t) = h2(t).

Prove that if max
0<x<L

|f1(x)−f2(x)| < ϵ, max
t>0

|g1(t)−g2(t)| < ϵ, max
t>0

|h1(t)−h2(t)| < ϵ, then
max

(x,t)∈Ω̄
|u1(x, t) − u2(x, t)| < ϵ for Ω̄ ≡ {(x, t) : 0 ≤ x ≤ L, t ≥ 0}.

Solution: The difference w = u1 − u2 satisfies

∂tw = ∂xxw, w(x, 0) = f1(x) − f2(x),
w(0, t) = g1(t) − g2(t), w(L, t) = h1(t) − h2(t).

Applying the maximum and minimum principles from (a), we have

− max
x∈ΓT

|w| ≤ − max
x∈ΓT

(−w) = min
x∈ΓT

w = min
x∈Ω̄T

w ≤ max
x∈Ω̄T

w = max
x∈ΓT

w ≤ max
x∈ΓT

|w|,

and so

max
x∈Ω̄T

|u1 − u2| = max
x∈Ω̄T

|w| ≤ max
x∈ΓT

|w| < ϵ

is true for any T < ∞, so max
(x,t)∈Ω

|u1(x, t) − u2(x, t)| < ϵ.



3. Wave Equation. Consider the initial boundary value problem (IBVP) on the quarter plane:

utt = c2uxx, c > 0, c ̸= 1, x > 0, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0,
ut(0, t) = ux(0, t), t > 0, α ̸= c,

where ϕ, ψ ∈ C2 for x > 0 and limx→0+ ϕ(x) = limx→0+ ψ(x) = 0.
(a) (15 points) Find the solution of the IBVP by first assuming u(x, t) = F (x− ct) +G(x+ ct)
and using the initial and boundary conditions to specify F (x) and G(x) when x > 0 and x < 0.
Solution: Initial conditions imply that on x > 0:

ϕ(x) = F (x) +G(x), and 0 = F (0) +G(0)
ψ(x) = −cF ′(x) + cG′(x), and 0 = −cF ′(0) + cG′(0)

1
c

∫ x

0
ψ(y)dy = −F (x) +G(x) + A, and 0 = −F (0) +G(0) + A → A = 2F (0)

F (x) = 1
2ϕ(x) − 1

2c

∫ x

0
ψ(y)dy + A

2
G(x) = 1

2ϕ(x) + 1
2c

∫ x

0
ψ(y)dy − A

2
so on x > ct,

u(x, t) = 1
2 [ϕ(x− ct) + ϕ(x+ ct)] + 1

2c

∫ x+ct

x−ct
ψ(y)dy.

To obtain expressions for F (x) and G(x) when x < 0, use the boundary condition:

−cF ′(−ct) + cG′(ct) = F ′(−ct) +G′(ct)

and then integrate with respect to t to obtain

F (−ct) − F (0) +G(ct) −G(0) = −1
c

[F (−ct) − F (0)] + 1
c

[G(ct) −G(0)]

and applying F (0) +G(0) = 0 and setting x = −ct, we have for x < 0

F (x) +G(−x) = −1
c

[F (x) −G(−x)] + 2
c
F (0)

F (x) = −c− 1
c+ 1G(−x) + 1

c+ 1A

= −c− 1
c+ 1

[
ϕ(−x)

2 + 1
2c

∫ −x

0
ψ(y)dy − A

2

]
+ 1
c+ 1A

= −c− 1
c+ 1

[
ϕ(−x)

2 + 1
2c

∫ −x

0
ψ(y)dy

]
+ A

2

so that when x < ct, we have that

F (x− ct) = −c− 1
c+ 1

[
ϕ(ct− x)

2 + 1
2c

∫ ct−x

0
ψ(y)dy

]
+ A

2 ,



so when 0 < x < ct, we have

u(x, t) = 1
2

[
ϕ(x+ ct) − c− 1

c+ 1ϕ(ct− x)
]

− c− 1
c+ 1

1
2c

∫ ct−x

0
ψ(y)dy + 1

2c

∫ x+ct

0
ψ(y)dy.

(b) (10 points) Use an energy argument to prove solutions to the IBVP are unique.
Solution: Define the energy functional for the wave equation E(t) = 1

2
∫∞

0 u2
t + u2

xdx and note
that any two solutions u1 and u2 to the IBVP have difference v = u1 − u2 that satisfies

vtt = c2vxx, x, t > 0; v(x, 0) ≡ vt(x, 0) ≡ 0, x > 0; vt(0, t) = vx(0, t), t > 0.

By definition, any solution v to this IBVP satisfies vtt − c2vxx ≡ 0 for all x > 0 and t ≥ 0, so
for any t ≥ 0

0 =
∫ ∞

0
vt ·

[
vtt − c2vxx

]
dx = d

dt

∫ ∞

0

v2
t

2 dx+ c2
∫ ∞

0
vxtvxdx− c2vtvx

∣∣∣∞
0

= d

dt

1
2

∫ ∞

0

[
v2

t + c2v2
x

]
dx+ c2v2

x(0, t) = E ′(t) + c2v2
x(0, t) → E ′(t) = −c2v2

x(0, t),

so E ′(t) ≤ 0 and E(t) ≥ 0, since its integrand is nonnegative. Thus, since

E(0) = 1
2

∫ ∞

0
02 + c202dx = 0

and E ′(t) ≤ 0 and E(t) ≥ 0 then E(t) ≡ 0, so vx ≡ vt ≡ 0 and since v(x, 0) ≡ 0, then v(x, t) ≡ 0
for all x > 0 and t ≥ 0, so u1 ≡ u2, so we can be sure solutions to the IBVP are unique.



4. Poisson’s Equation/Green’s Functions.
(a) (8 points) Consider the general Neumann problem for the Poisson equation:

−∆u(x) = f(x), x ∈ Ω ⊂ Rn,

−∂u

∂n
(x) = g(x), x ∈ ∂Ω.

Determine a condition relating f(x) and g(x) required for the boundary value problem (BVP)
to have a solution.
Solution: ∫

Ω
f(x)dx = −

∫
Ω

∆u(x)dx = −
∫

∂Ω

∂u

∂n
(x)dSx =

∫
∂Ω
g(x)dSx.

(b) (7 points) The Green’s function associated with the BVP in (a) satisfies the BVP

−∆G(x,y) = δ(x − y) + C, x,y ∈ Ω,

−∂G

∂n
(x,y) = 0, x ∈ ∂Ω, y ∈ Ω.

Show that it follows that C = −1/
∫

Ω dx.
Solution: Assuming x,y ∈ Ω, applying the divergence theorem shows:

C
∫

Ω
dx + 1 =

∫
Ω
C + δ(x − y)dx = −

∫
Ω

∆G(x,y)dx = −
∫

∂Ω

∂G

∂n
(x)dSx = 0 ⇒ C = −1/

∫
Ω
dx.

(c) (10 points) Use Green’s second identity and the result from part (b) to derive the general
solution to the BVP in (a) in terms of the Green’s function. Specify the additive constant by
requiring the mean of the solution over the domain Ω to be zero: ū =

∫
Ω u(x)dx/

∫
Ω dx ≡ 0.

Solution: Apply Green’s Theorem to G and u to find∫
Ω
(G∆u−u∆G)dx =

∫
∂Ω

(G∂u
∂n

− u
∂G

∂n
)dSx ⇒

∫
Ω
(−Gf + u(δ(x − y) + C))dx =

∫
∂Ω

(−Gg − u · 0)dSx

⇒ u(x) =
∫

Ω
G(x,y)f(y)dy −

∫
∂Ω
G(x,y)g(y)dy + ū =

∫
Ω
G(x,y)f(y)dy −

∫
∂Ω
G(x,y)g(y)dy,

where the last step follows from requiring ū ≡ 0.

5. Separation of Variables.
Consider the initial value problem

a(x)∂u
∂t

= +a(x)k(t)u+ ∂

∂x

(
b(x)∂u

∂x

)
+ c(x)u, x ∈ (0, L), t > 0

with the boundary conditions

u(0, t) = u(L, t) = 0, u(x, 0) = f(x),

where a(x), b(x) > 0 for all x in (0, L) and a, b, c, f are C1 on [0, L].



(a) (10 points) Write down a formal solution to the initial value problem in terms of the
eigenfunctions ϕn(x) and eigenvalues λn of the associated Sturm-Liouville problem in the
x variable. You can leave your answer in terms of ϕn, λn, and integrals of k(t).
Solution: Assuming a solution of the form u(x, t) = X(x)T (t) we obtain

aX
∂T

∂t
= akXT + T

∂

∂x

(
b(x)∂X

∂x

)
+ c(x)XT. (1)

Dividing by aXT we get

1
T

∂T

∂t
− k(t) = 1

a(x)X
∂

∂x

(
b(x)∂X

∂x

)
+ c(x)
a(x) . (2)

Since the left hand side only depends on t and the right hand side only depends on x, they
are equal to a constant −λ, so we get

∂T

∂t
= [k(t) − λ]T, (3)

∂

∂x

(
b(x)∂X

∂x

)
+ c(x)X = −λa(x)X. (4)

Solving for T (t) using separation of variables we get

T (t) = T (0) exp
(∫ t

0
k(s)ds− λt

)
. (5)

Eq. (4) with the boundary conditions X(0) = 0, X(L) = 0 is a regular, self-adjoint Sturm-
Liouville problem, so there is a complete set of eigenfunctions ϕn(x) with eigenvalues
λ1 < λ2 < . . . , with lim

n→∞
λn = ∞. The general solution of the initial value problem is

then given by a linear combination of the modes

u(x, t) =
∞∑

n=1
αn exp

(∫ t

0
k(s)ds− λnt

)
ϕn(x). (6)

To satisfy the initial conditions, we must choose the coefficients {αn} so that

u(x, 0) = f(x) =
∞∑

n=1
αnϕn(x). (7)

Since the eigenfunctions ϕn(x) are orthogonal under the inner product ⟨u, v⟩ =
∫ L

0 a(x)u(x)v(x)dx,
one finds

αn =
∫ L

0 a(x)f(x)ϕn(x)dx∫ L
0 a(x)ϕn(x)2dx

. (8)

(b) (15 points) Show that if
∫∞

0 k(s)ds < ∞ and c(x) < 0 for all x in (0, L), then
limt→∞ ∥u∥2 = 0, where ∥·∥ is the norm associated with the Sturm-Liouville inner product.
Hint: Show the eigenvalues are positive using the Rayleigh quotient ⟨Lϕn, ϕn⟩/⟨ϕn, ϕn⟩.



Solution: To understand the behavior of the solution as t → ∞, we need to study the
eigenvalues. Using the Rayleigh quotient, we have

λn = λn
⟨ϕn, ϕn⟩
⟨ϕn, ϕn⟩

= ⟨Lϕn, ϕn⟩
⟨ϕn, ϕn⟩

= −b(x)ϕn(x)ϕ′
n(x)|L0 +

∫ L
0 [b(x)|ϕ′

n(x)|2 − c(x)|ϕn(x)|2]dx∫ L
0 a(x)|ϕn(x)|2]dx

=
∫ L

0 [b(x)|ϕ′
n(x)|2 − c(x)|ϕn(x)|2]dx∫ L

0 a(x)|ϕn(x)|2]dx
,

which is positive if c(x) < 0 in (0, L), i.e., λn ≥ 0.
We have

∥u∥2 = ⟨u(x, t), u(x, t)⟩

=
〈 ∞∑

n=1
αn exp

(∫ t

0
k(s)ds− λnt

)
ϕn(x),

∞∑
m=1

αm exp
(∫ t

0
k(s)ds− λmt

)
ϕm(x)

〉
=

∞∑
n=1

α2
n∥ϕn∥2 exp

(
2
∫ t

0
k(s)ds− 2λnt

)

≤ exp
(

2
∫ t

0
k(s)ds− 2λ1t

) ∞∑
n=1

α2
n∥ϕn∥2

= exp
(

2
∫ t

0
k(s)ds− 2λ1t

)
∥f∥2.

Since a and f are C1 on [0, L], then ∥f∥2 =
∫ L

0 a(x)f 2(x)dx < ∞. If
∫∞

0 k(s)ds < ∞ then,
since λ1 > 0, the exponential term has zero limit as t → ∞ and lim

t→∞
∥u∥2 = 0.


