
Applied Analysis Preliminary Exam
9:00-12:00 January 6, 2022

Instructions: You have three hours to complete this exam. Work all five problems; each is worth
20 points. Please start each problem on a new page. Please clearly indicate any work that you do
not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you
may use any major theorem on the syllabus or discussed in class, unless you are being asked to
prove such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name.

Problem 1:

(a) Show that

A = lim
n→∞

n∑
k=1

kek/n

n2

exists. For extra credit, what is A?
(b) Let f = (f1, f2) : R2 → R2 be given by f1(x) = ex1 cos(x2), f2(x) = ex1 sin(x2) where

x = (x1, x2). Use the Inverse Function theorem to show that f is locally invertible.
(c) Is f given in (b) globally invertible? Explain.
(d) Suppose that g : R→ R is differentiable and g′(x) 6= 0 for all x ∈ R. Show that g is globally

invertible on its range.

Solution/Hint :[problem 1]

(a) Note that kek/n ≤ ke whenever k ≤ n, and so the sum of positive terms is ≤ e(n)(n+ 1)/2,
and thus A ≤ e/2 and since the partial sums are monotone increasing and bounded they
converge. To compute the limit we write

An =
d

dα

∣∣∣∣
α=1

1

n

n∑
k=1

eαk/n =
d

dα

∣∣∣∣
α=1

1

n

eα/n(1− eα)

1− eα/n

Differentiating and setting α = 1 then eventually gives limn→∞An = 1.
(b) Note that f is C1 and at an arbitrary point in R2, the Jacobian

Df =

(
ex1 cosx2 −ex1 sinx2
ex1 sinx2 ex1 cosx2

)
so that detDf = ex1 > 0. Thus since f is smooth the Inverse Function Theorem implies
there is an open neighbhorhood U of (x1, x2) and V of f(x1, x2) so that there is a unique
inverse f−1 : V → U .

(c) No, since f is not injective, e.g. f(1, 0) = f(1, 2π).
(d) Since g′ 6= 0, then g is monotone, and thus is injective by the intermediate value theorem.

Moreover, g is surjective on g(R), so g : R→ g(R) is bijective.

Problem 2:

(a) Consider the nonlinear integral equation

f(x)− 1

10

∫ 1

0
(x+ y2)f2(y) dy =

1

3
.

Show that there is a unique continuous solution f : [0, 1] → R of this equation with the
property that 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1].

(b) Consider the function f : R6 → R2, with variables (u, v, w, x, y, z) defined by

f1 = u2 + v2 + w2,

f2 = xu2 − yv2 + zw2.

(1) Find Df .



(2) Consider the point (1, 1, 1, 2, 1,−1) ∈ R6. Let f(1, 1, 1, 2, 1,−1) = f0. Show that there
exist two functions

u : R4 → R, v : R4 → R,
of the four variables (w, x, y, z) that are continuously differentiable on some ball B cen-
tered at the point (w, x, y, z) = (1, 2, 1,−1), such that u(1, 2, 1,−1) = 1, v(1, 2, 1,−1) =
1, and the equations f(u, v, w, x, y, z)− f0 = 0 both hold for all (w, x, y, z) ∈ B.

(3) Can the implicit function theorem be applied at the same point to find functions (v, w)
of the variables (u, x, y, z) that satisfy f − f0 = 0? Why or why not?

Solution/Hint :

(a) We rewrite this problem as a fixed-point problem. Consider

Tf =
1

3
+

1

10

∫ 1

0
(x+ y2)f2(y) dy.

• We first note that T : C([0, 1]) → C([0, 1]). Indeed, since k(x, y) = (x + y2) is a
continuous function on [0, 1]× [0, 1] we obtain that for ε > 0 there exists a δ > 0 such
that

|k(x1, y1)− k(x2, y2)| < ε if ‖(x1, y1)− (x2, y2)‖1 < δ.

Let g(x) =
∫ 1
0 k(x, y) dy then g is continuous:

|g(x1)− g(x2)| =
∫ 1

0
|k(x1, y)− k(x2, y)| dy < ε

provided |x1 − x2| < δ Thus, if f ∈ C([0, 1]) then we have that Tf ∈ C([0, 1]).
• The problem hints that we should look at the set

X = {f ∈ C([0, 1] : 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]}.

Let us now prove that T : X → X. We can see that Tf ≥ 1
3 , moreover, we can see that

if 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1] then

T (f) ≤ 1

3
+

1

10

∫ 1

0
(x+ y2) dy =

1

3
+

1

10

[
xy +

1

3
y3
]1
0

≤ 7

15
.

Thus, T : X → X.
• We now show that T is a contraction. Indeed, we have that

|T (f)− T (g)| ≤ 1

10

∫ 1

0
(x+ y2)(f2(y)− g2(y)) dy

≤ 2
1

10

∫ 1

0
(x+ y2) dy‖f − g‖∞

=
1

15
‖f − g‖∞.

Hence, T is a contraction.
• X is a closed subset of a complete metric space, thus it is a complete metric space and

by the CMT we see that there exists a unique f that solve our integral equation.
(b) Let p = (1, 1, 1, 2, 1,−1). Note that f(p) = (3, 0) = f0.

(1) Df =

(
2u 2v 2w 0 0 0

2xu −2yv 2zw u2 −v2 w2

)
(2) If we think of (u, v) as the variables then

Du,vf |p =

(
2 2
4 −2

)
which is nonsingular. Thus the implicit function theorem applies to give (u, v) : R4 →
R2 on a ball B(1,2,1,−1) in R4 satisfying f(u(w, x, y, z), v(w, x, y, z);w, x, y, z) = (3, 0)
with the restriction that at (1, 2, 1,−1), u = 1 and v = 1



(3) The implicit function theorem does not apply to find v(u, x, y, z) and w(u, x, y, z) be-
cause the Jacobian

Dv,wf |p =

(
2 2
−2 −2

)
is singular.

Problem 3: Let X and Y be Hilbert spaces and T : X → Y be a bounded linear operator. Prove
that if T is compact then its adjoint T ∗ : Y ∗ → X∗ is also compact.

Solution/Hint : Let {y∗n}n≥1 be a sequence in Y ∗ with ‖y∗n‖ ≤ 1. We want to show that the sequence
{T ∗y∗n}n≥1 has a convergent subsequence. Let B1 be the closed unit ball in X, since T is compact

we know that E := T (B1) ⊂ Y is compact.

Now, by definition y∗n is a bounded linear functional from Y → R. Let fn : E → R be the restriction
of y∗n to E. We will show that {fn}n≥1 satisfies the hypothesis of the Arezela-Ascoli Theorem. We
first show that they are uniformly Lipschitz continuous. Indeed, note that:∣∣fn(y)− fn(y′)

∣∣ ≤ ‖y∗n‖‖y − y′‖ ≤ ‖y − y′‖,
for all y, y′ ∈ E. Thus, the sequence is equicontinuous. Also, note that

sup
y∈E
‖y‖ = sup

‖x‖≤1
‖Tx‖ = ‖T‖

thus;

|fn(y)| ≤ ‖y∗n‖‖y‖ ≤ ‖T‖.
Hence, the sequence |fn(y)| are uniformly bounded. Applying Arezela-Ascoli we see that there
exists a subsequence {fnj}j≥1, which converges uniformly to a function f ∈ E.

To finish the proof observe that

‖T ∗y∗ni
− T ∗y∗nj

‖ = sup
‖x‖≤1

∣∣∣(T ∗y∗ni
− T ∗y∗nj

, x
)∣∣∣

= sup
‖x‖≤1

∣∣∣(y∗ni
− y∗nj

, Tx
)∣∣∣

= sup
‖x‖≤1

‖fni(Tx)− fnj (Tx)‖.

However, the right hand side of the above inequality approaches zero as i, j → ∞. Thus, the se-
quence is Cauchy and converges to an element x∗ ∈ X∗. Thus, we can conclude that T ∗ is compact.

Problem 4: Let D be a countable set. Prove that any sequence of functions fn : D → E such that
the set {fn(d)}∞n=1 is precompact for each d ∈ D has a subsequence which is point-wise convergent
in D.

Solution/Hint : Let D = {d1, d2, · · · }. Note that the set {fn(d1)}n≥1 is precompact in E. Thus there
is a convergent subsequence {fn(d1)}n∈N1 , where N1 ⊂ N, call its limit f(d1). Again {fn(d2)}n∈N1

is precompact in E and there is a convergent subsequence {fn(d2)}n∈N2 , where N2 ⊂ N1, call its
limit f(d2).

Proceeding in this fashion we know that {fn(dk)}n∈Nk−1
is precompact in E and there exists a

convergent subsequence {fn(dk)}n∈Nk
, where Nk ⊂ Nk−1, call its limit f(dk). Let the set N ⊂ N1

whose jth element is the jth element of Nj . The sequence {fn(di)}n∈N converges to f(di) for all
i ∈ N. For full credit, prove the last claim rigorously.

Problem 5: Let f : [a, b] → R be an absolutely continuous function. Prove that f maps sets of
Lebesgue measure zero to sets of Lebesgue measure zero.



Solution/Hint : Let A ⊂ [a, b] be an arbitrary set of Lebesgue measure zero. Our goal is to show
that for arbitrary ε > 0 we have µ(f(A)) < ε, where µ represents the Lebesgue measure. To prove
this we use the absolute continuity of f . That is, choose δ > 0 such that for any finite family of
intervals [ai, bi] with total length is less than δ, i.e

∑N
i=1(bi − ai) < δ, we have that

N∑
i=1

|f(bi)− f(ai)| < ε.

Now, given that µ(A) = 0 there exists an open set A ⊂ U such that µ(U) < δ. Since U is an open
subset of R, we can express it as a countable union of disjoint open intervals U = ∪i≥1(ci, di). Now
we can obtain an upper bound:

µ(f(A)) ≤ µ(f(V )) ≤ sup
n

n∑
k=1

µ(f([ck, dk])) = sup
n

n∑
k=1

|f(Mk)− f(mk)| ,

where f attains its maximum and minimum in the interval [ck, dk] on Mk and mk respectively.
However, we have that

n∑
k=1

|Mk −mk| ≤
n∑
k=1

(dk − ck) < δ

and thus we can conclude that
µ(f(A)) < ε.


