
Numerical Analysis Preliminary Exam
9 AM to 12 Noon, January 5, 2022

Instructions. You have three hours to complete this exam. Submit solutions to four (and no
more) of the following six problems. Please start each problem on a new page. You MUST prove
your conclusions or show a counter-example for all problems unless otherwise noted. Write your
Student ID on your exam; do not write your name on your exam.

Problem 1: Rootfinding

Consider a 2D fixed point iteration of the form

xk+1 = f(xk, yk)

yk+1 = g(xk, yk)

Assume that the vector-valued function ~h(x, y) = (f(x, y), g(x, y))T is continuously-differentiable,
and the infinity norm of the Jacobian matrix is less than 1 at a unique fixed point (x∞, y∞).

Now consider the “nonlinear Gauss-Seidel” version of the iteration:

xk+1 = f(xk, yk)

yk+1 = g(xk+1, yk)

Prove that the “nonlinear Gauss-Seidel” version is convergent, to the same fixed point, for initial
conditions sufficiently close to the fixed point.

Problem 2: Interpolation & Approximation

Let the ordinary Legendre polynomial of degree k be denoted Pk(x) for k ≥ 0. The associated
Legendre polynomials are

Pm
k (x) = (−1)m(1− x2)m/2 dm

dxm
Pk(x), m > 0, k ≥ m.

(Note that despite the name, for odd m they are not actually polynomials.)

(a) Consider the interpolation problem of finding coefficients ak such that

N∑
k=1

akP
1
k (xi) = yi, i = 1, . . . , N.

Prove that this linear system of equations for the unknown coefficients ak is nonsingular whenever
the set of interpolation points xi does not include ±1, and does not include duplicates.

(b) Consider the approximation problem of finding coefficients ak to minimize the squared approx-
imation error ∥∥∥∥∥f(x)−

N∑
k=1

akP
1
k (x)

∥∥∥∥∥
2

2

where the L2 norm is over x ∈ [−1, 1]. Write down a linear system for the unknown coefficients ak
and explain why it is nonsingular. You should give an explicit integral expression for the entries of
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the coefficient matrix and right hand side, but the expression does not need to be simplified.

(c) Let M be the coefficient matrix from (b). Prove that Mk,j = 0 when k + j is odd.

Problem 3: Quadrature

The quadrature formula ∫ h

0
f(x)dx ≈ 3h

4
f

(
h

3

)
+
h

4
f(h)

integrates polynomials of degree ≤ 2 exactly. Derive an error bound of the form Ch4 for this
quadrature rule, where C is a constant independent of h, assuming that f ∈ C3[0, h]. Hint: Use the
Peano kernel theorem.

Problem 4: Numerical Linear Algebra

For all parts of this problem, assume all matrices and vectors are real.

(a) Write down the steepest descent method for solving Ax = b, where A is symmetric and positive
definite.

(b) Explain how the formulas from (a) can break down if A is symmetric, but only non-negative
definite (also called positive semi-definite).

(c) Suppose that A is symmetric but only non-negative definite. Show that if b is in the range of
A, then the steepest-descent method will still converge to a solution. You may assume that the
steepest-descent method converges whenever A is symmetric and positive definite.

Problem 5: Ordinary Differential Equations

Consider a system of two ODEs of the form

dx

dt
= f(x, y),

dy

dt
= g(x, y).

Suppose that it is more computationally expensive to evaluate g than to evaluate f .

(a) Prove that the multi-rate explicit Euler method defined by

xk+1/2 = xk +
∆

2
f(xk, yk)

xk+1 = xk+1/2 +
∆

2
f(xk+1/2, yk)

yk+1 = yk + ∆g(xk, yk)

is locally second order, where ∆ is the size of the time step. (Only consider the order at integer
time subscripts.)

(b) Consider applying the method from (a) to the following linear problem:

dx

dt
= −x+ y,

dy

dt
= −y.
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Under what conditions on the time step ∆ > 0 will the discrete solution remain stable, i.e. satisfying
limk→∞ xk = limk→∞ yk = 0 for any initial condition?

Problem 6: Partial Differential Equations

Consider following discretization

un+1
j = unj +

κ∆t

∆x2
(unj+1 − 2unj + unj−1)

of the heat equation
∂u

∂t
= κ

∂2u

∂x2

on a periodic 1D domain. Assume that the spatial grid is equispaced with size ∆x.

(a) Show that the discretization is first-order accurate in time and second-order accurate in space.

(b) Show that if the time step is chosen to be ∆t = ∆x2/(6κ), then the discretization becomes
second-order accurate in time.
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