Department of Applied M athematics
 Preliminary Examination in Numerical Analysis

January 11, 2021, 9 am- 12 noon.
Submit solutions to four (and no more) of the following six problems. Show all your work, and justify all your answers. Start each problem on a new page, and write on one side only. No calculators allowed. Do not write your name on your exam. Instead, write your student number on each page.

1. Root finding

Consider Newton's method for solving the equation $\sin x=0$ in the interval $(-\pi / 2, \pi / 2)$ starting with the initial approximation x_{0} such that $\tan x_{0}=2 x_{0}$ (nb. $x_{0} \approx \pm 1.1656$).
a. What is the result of this iteration?
b. What is the result of the iteration if the initial approximation \tilde{x}_{0} satisfies $\left|\tilde{x}_{0}\right|<\left|x_{0}\right|$?
c. What is the result of the iteration if the initial approximation \tilde{x}_{0} satisfies $\left|\tilde{x}_{0}\right|>\left|x_{0}\right|$?

2. Quadrature

a. What is the largest step size that makes the trapezoidal rule exact for trigonometric polynomials of the form

$$
\sum_{n=-N}^{N} c_{n} e^{i n t}, \quad t \in[0,2 \pi) .
$$

b. Show that the formula

$$
\int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-1 / 2} d x=\frac{\pi}{N} \sum_{n=1}^{N} f\left(\cos \left(\frac{2 n-1}{2 N} \pi\right)\right)
$$

is exact for all polynomials f of degree $2 N-1$.

3. Linear Algebra

a. Define what is meant by a matric being Hermitian, and show that such a matrix has only real eigenvalues.
b. A matrix A is called circulant if its elements $a_{i, j}$ are all the same whenever $(i-j) \bmod N$ is the same. In other words, each row is the same as the row above shifted periodically one step to the right. Show that such a matrix can be diagonalized by similarity transforming it using the DFT (Discrete Fourier Transform) matrix, as given by

$$
U=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]
$$

where ω is the $N^{\text {th }}$ root of unity.
c. The matrix $A=\left[\begin{array}{ccccc}-2 & 1 & & & 1 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2\end{array}\right]$ is both Hermitian and circulant.

Determine all its eigenvalues.

4. Interpolation / Approximation

The figure below illustrates a cubic B-spline on a unit-spaced grid, uniquely defined when using its standard normalization.

a. Tell what the defining property is of a B-spline (as opposed to any other spline). Also tell what is the customary normalization of any B-spline.
b. Verify that the B-spline in the figure can be written explicitly as

$$
\begin{equation*}
B(x)=\frac{1}{12}\left(1 \cdot|x+2|^{3}-4 \cdot|x+1|^{3}+6 \cdot|x|^{3}-4 \cdot|x-1|^{3}+1 \cdot|x-2|^{3}\right) . \tag{1}
\end{equation*}
$$

c. Translates of B-splines form an excellent set of basis functions for representing a general spline. Consider the nodes $x_{i}=i, i=0,1,2, \ldots, N$ with matching function values y_{i}, and let $B_{i}(x)$ denote the B-spline centered at $x=i, i=-1,0,1,2, \ldots, N+1$. Write out the linear system that needs to be solved for obtaining the B-spline coefficients for the natural cubic spline that obeys this data.

Hint: For the B-spline (as given in (1)), $B "(x)$ takes the values $\{1,-2,1\}$ at $x=\{-1,0,1\}$.

5. Numerical ODEs

a. Define what is meant by the stability domain of an ODE solver.
b. Determine the stability domains for the Forward Euler (FE) and Backward Euler (BE) methods (first order Adams-Bashforth and Adams-Moulton methods, respectively).
c. Suppose one uses FE as a predictor and BE as a corrector. What is the order of accuracy of the resulting method? Either derive it, or quote a specific, more general theorem.
d. Give an equation for the stability domain of the FE - BE predictor corrector method. Determine what (if any) intervals along the real and imaginary axes fall within this domain.

6. Numerical PDEs

Consider the Crank-Nicolson method

$$
u_{j}^{(n+1)}-u_{j}^{(n)}=\frac{1}{2} \frac{k}{h^{2}}\left(\left(u_{j-1}^{(n+1)}-2 u_{j}^{(n+1)}+u_{j+1}^{(n+1)}\right)+\left(u_{j-1}^{(n)}-2 u_{j}^{(n)}+u_{j+1}^{(n)}\right)\right)
$$

for the heat equation

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}, t \geq 0, x \in[0,2 \pi] \\
u(x, 0)=u_{0}(x) \\
u(x+2 \pi, t)=u(x, t), t \geq 0
\end{array} .\right.
$$

a. Show that the scheme is unconditionally stable.
b. Show that it is second order accurate in both space and time.

