1.  N. Rodrguez and M. Winkler, On the global existence and qualitative behaviorof one-dimensional solutions to a model for urban crime, to appear in EJAM, 37 pages (2021).

  2. A. B. T. Barbaro, N. Rodriguez, H. Yoldas, N. and Zamponi, Analysis of a cross-diffusion model for rival gangs interaction in a city, to appear in Comm. Math. Sci., (2021). 

  3. E. Ellefsen and N. Rodriguez, Efficiently finding steady states of nonlocal territorial models in ecology, to appear in Journal of Applied Anal. and Comp. (2021). 

  4. M. Bakhshi, A. Ghazaryan, V. Manukian, and N. Rodriguez, Traveling wave solutions in a model for social outbursts in a tension-inhibitive regime, accepted in Studies in Applied Mathematics, (2021).

  5. N. Rodriguez, Q. Wang, L. Zhang, Understanding the effects of on- and off-hotspot policing: Evidence of hotspot, oscillating and chaotic  activities, accepted SIAM Dynamical Systems, (2021).

  6. C. Cosner and N. Rodriguez, The Effect of Chemotactic Movement on the Allee Effect, SIAM Applied Math, Vol 81 (2), pg. 404-433 (2021).

  7. E. Ellefsen and N. Rodriguez, On some theory of monostable and bistable pure birth-jump integro-differential equations, Ecol. Compl., Vol 45, 100892, (2020). 

  8. C. Yang and N. Rodriguez, Existence and Stability Traveling Wave Solutions for a System of Social Outbursts, Journal of Math. Analysis & Appl., 494(1) 124583, (2021).

  9. N. Rodriguez and M. Winkler, Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, M3AS, 30(11):2105-2137, (2020).

  10. A. Hassan, N. Rodriguez, and L. Wong, Transport and concentration of wealth: modeling an amenities-based theory, Chaos, Vol 30, 053110 (2020).

  11. C. Topaz, M.-V. Ciocanel, P. Cohen, M. Ott, and N. Rodriguez, Institute for the Quantitative Study of Inclusion, Diversity, and Equity (QSIDE), Notices of the AMS, (Feb 2020): 223-227.

  12. N. Rodriguez and Y. Hu, On the Steady-states of a two-species non-local cross-diffusion model, Journal of Applied Analysis, Vol 26(1), pg. 1--19 (2020).

  13. C. Yang and N. Rodriguez, A Numerical Perspective on Traveling Wave Solutions in a System for Rioting Activity, Appl. Math. and Comp., Vol 364 (2020).

  14. G. Malanson and N. Rodriguez, Traveling waves and spatial patterns from dispersal on homogeneous and gradient habitats, Ecological Complexity, Vol. 33, pg. 57-65 (2018). 

  15. N. Rodriguez and G. Malanson, Plant dynamics, birth-jump processes and sharp traveling waves, Bulletin of Math Biology, Vol. 80, pg. 1655--1687 (2018).

  16. L. Bonnasse-Gahot, H. Berestycki, M-A. Depuiset, M. B. Gordon, S. Roche, and N.  Rodriguez, J-P. Nadal,  Epidemiological modelling of the 2005 French riots: a spreading wave and the role of contagion, Scientific Reports, online publication 10.1038/s41598-017-18093-4 (2018). 

  17. H. Berestycki,  N. Rodriguez, and L. Rossi,  Periodic cycles of social outburst, Journal of Differential Equations, Vol. 264, pg. 163-196 (2018).

  18. H. Berestycki and N. Rodriguez, Non-local reaction-diffusion equations with a gap, Discrete and Continuous Dynamical Systems-A, Vol. 27(2), pg. 685-723 (2017).

  19. H. Berestycki and N. Rodriguez, Analysis of a heterogeneous model for riot dynamics: the effect of censorship of information, European Journal of Applied Mathematics, Vol. 27, Special Issue 03, pg. 554-582, (2016).

  20. N. Rodriguez and L. Ryzhik, The effect of social preference, mobility, and the environment on segregation, Communications in Mathematical Sciences, Vol. 14, No. 2, pg. 363-387, (2016).

  21. H. Berestycki, J-P. Nadal and N. Rodriguez, A model of riots dynamics: shocks, diffusion and thresholds, Networks and Heterogeneous Media, Vol. 10, No. 3, pg. 443-475, (2015).

  22. N. Rodriguez, Recent advances in mathematical criminology, comment on ``Statistical physics of crime: A review, by M.R. D'Orsogna and M. Perc", Physics of Life Review, Vol. 12, pg. 38-39, (2015). 

  23. N. Rodriguez, On an Integro-differential model for pest control in a heterogeneous environment,  Journal of Math. Biology, Vol 70, No. 5, pg. 1177--1206 (2015).

  24. J. Bedrossian and N. Rodriguez,  Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in R^d, Discrete and Continuous Dynamical Systems-B, Vol. 19, No. 24, pg. 1279--1309 (2014).

  25. N. Rodriguez, On the global well-posedness theory for a class of PDE models for criminal activity, Physica D: Nonlinear Phenomena, pg. 191-200, (2013). 

  26. H. Berestycki, N. Rodriguez and L. Ryzhik,  Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Modeling and Simulations, Vol. 11, Issue 4, pg. 1097-1126, (2013). 

  27. J. Bedrossian, N. Rodriguez and A. Bertozzi,  Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, Vol. 24, No. 6, pg. 1683-1714, (2011).

  28. N. Rodriguez and A. Bertozzi,  Local existence and uniqueness of solutions to a PDE model for criminal behavior, M3AS, special issue on Math. and Complexity in Human and Life Sci., Vol 20, Issue supp01, pg. 1425--1457, (2010).

  29. A.P. Velo, G.A. Gazonas, E. Bruder and N. Rodriguez, Recursive dispersion relations in one-dimensional periodic elastic media, SIAM Journal on Applied Math- ematics, Vol. 69, No. 3, pg. 670–689, (2007).