

1. (16 pts) The following problems are unrelated.

(a) Give the full partial fraction decomposition for the rational function

$$\frac{1}{(x-2)(x^4-16)(x^2+x+5)^2}$$

You do NOT need to solve for the unknown constants.

(b) Assume that $a(x)$ and $b(x)$ are two continuous functions such that $0 \leq a(x) \leq b(x)$. If you say yes to the following questions, explain why and state any theorems you use. If you say no, give appropriate examples of functions $a(x)$ and $b(x)$.

i. Suppose that $\int_1^\infty b(x) dx$ converges. Must $\int_1^\infty a(x) dx$ converge too?

ii. Suppose instead that $\int_1^\infty b(x) dx$ diverges. Must $\int_1^\infty a(x) dx$ diverge too?

Solution:

(a)

$$\frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{Dx+E}{x^2+4} + \frac{Fx+G}{x^2+x+5} + \frac{Hx+I}{(x^2+x+5)^2}$$

(b) i. Yes; this is a consequence of the Direct Comparison Test.

ii. No; notice that $\frac{1}{x^2} \leq \frac{1}{x}$ on $[1, \infty)$ and $\int_1^\infty \frac{1}{x} dx$ diverges, but $\int_1^\infty \frac{1}{x^2} dx$ converges.

2. (36 pts) Evaluate the following expressions.

(a) $\int \frac{3x-2}{x^2-2x+1} dx$

(b) $\int \frac{x^2}{(1-x^2)^{5/2}} dx$ (hint: recall that $\int \sec^2(x) dx = \tan(x)$).

(c) $\int e^x \sin(kx) dx$, where k is a constant.

Solution:

(a) Using partial fraction decomposition, we have

$$\frac{3x-2}{x^2-2x+1} = \frac{3x-2}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}.$$

Multiplying by $x^2 - 2x + 1$ yields

$$3x-2 = A(x-1) + B = Ax + (B-A).$$

Comparing coefficients, we see that $A = 3$ and $-2 = B - A$. Plugging $A = 3$ into the latter equation yields $B = 1$. This allows us to rewrite the integral:

$$\begin{aligned} \int \frac{3x-2}{x^2-2x+1} dx &= \int \left(\frac{3}{x-1} + \frac{1}{(x-1)^2} \right) dx \\ &= \int \frac{3}{x-1} dx + \int \frac{1}{(x-1)^2} dx \\ &= 3 \ln|x-1| - \frac{1}{x-1} + C. \end{aligned}$$

(b) Using the substitution $x = \sin \theta$, $dx = \cos \theta d\theta$, we get

$$\begin{aligned} \int \frac{x^2}{(1-x^2)^{5/2}} dx &= \int \frac{\sin^2 \theta}{(1-\sin^2 \theta)^{5/2}} \cos \theta d\theta \\ &= \int \frac{\sin^2 \theta \cos \theta}{\cos^5 \theta} d\theta \\ &= \int \frac{\sin^2 \theta}{\cos^4 \theta} d\theta \\ &= \int \frac{\sin^2 \theta}{\cos^2 \theta} \cdot \frac{1}{\cos^2 \theta} d\theta \\ &= \int \tan^2 \theta \sec^2 \theta d\theta \end{aligned}$$

Using the u -substitution $u = \tan \theta$ and $du = \sec^2 \theta$, we get

$$\begin{aligned} &= \int u^2 du \\ &= \frac{1}{3} u^3 + C \\ &= \frac{1}{3} \tan^3 \theta + C. \end{aligned}$$

From the reference triangle for $x = \sin \theta$, we know that

$$\tan \theta = \frac{x}{\sqrt{1-x^2}} dx.$$

Hence,

$$\int \frac{x^2}{(1-x^2)^{5/2}} dx = \frac{1}{3} \left(\frac{x}{\sqrt{1-x^2}} \right)^3 + C.$$

(c) This will require two applications of integration by parts. First, set $u = \sin(kx)$ and $dv = e^x dx$. Then $du = k \cos(kx)$ and $v = e^x$, so

$$\int e^x \sin(kx) dx = e^x \sin(kx) - k \int e^x \cos(kx) dx.$$

Applying IBP again with $u = \cos(kx)$, $du = -k \sin(kx)$, $dv = e^x dx$, and $v = e^x$ yields

$$\begin{aligned} \int e^x \sin(kx) dx &= e^x \sin(kx) - k \int e^x \cos(kx) dx \\ &= e^x \sin(kx) - k \left(e^x \cos(kx) + k \int e^x \sin(kx) dx \right) \\ &= e^x \sin(kx) - k e^x \cos(kx) - k^2 \int e^x \sin(kx) dx \end{aligned}$$

Combining the like terms gives

$$\begin{aligned} \int e^x \sin(kx) dx + k^2 \int e^x \sin(kx) dx &= e^x \sin(kx) - k e^x \cos(kx) \\ (1+k^2) \int e^x \sin(kx) dx &= e^x \sin(kx) - k e^x \cos(kx) \end{aligned}$$

Dividing through by $(1+k^2)$ gives the result:

$$\int e^x \sin(kx) dx = \frac{e^x \sin(kx) - k e^x \cos(kx)}{1+k^2} + C.$$

3. (24 pts) Evaluate each expression below. If an integral converges, determine its value. If an integral diverges, justify why.

$$(a) \int_0^\infty \frac{dt}{(1+t^2)(1+\arctan(t))^2}$$

$$(b) \int_0^3 \frac{x-1}{x^{4/3}} dx$$

Solution:

(a) Setting $u = 1 + \arctan(t)$ and $du = \frac{1}{1+t^2} dt$, we get

$$\begin{aligned} \int_0^\infty \frac{dt}{(1+t^2)(1+\arctan(t))^2} &= \lim_{r \rightarrow \infty} \int_1^{1+\arctan(r)} \frac{1}{u^2} du \\ &= -\lim_{r \rightarrow \infty} \frac{1}{u} \Big|_1^{1+\arctan(r)} \\ &= -\lim_{r \rightarrow \infty} \left(\frac{1}{1+\arctan(r)} - 1 \right) \\ &= -\left(\frac{1}{1+\pi/2} - 1 \right) = 1 - \frac{2}{2+\pi} = \frac{\pi}{2+\pi}. \end{aligned}$$

This problem can also be done using the substitution $t = \tan(x)$.

(b) This function has a discontinuity at $x = 0$, so we evaluate the limit

$$\begin{aligned} \lim_{t \rightarrow 0^+} \int_t^3 \frac{x-1}{x^{4/3}} dx &= \lim_{t \rightarrow 0^+} \int_t^3 (x^{-1/3} - x^{-4/3}) dx \\ &= \lim_{t \rightarrow 0^+} \left(\frac{3}{2}x^{2/3} + 3x^{-1/3} \right) \Big|_t^3 \\ &= \lim_{t \rightarrow 0^+} \left(\frac{3}{2}3^{3/2} + 3 \cdot 3^{-1/3} - \frac{3}{2}t^{3/2} - 3t^{-1/3} \right) \\ &= \frac{3}{2}3^{3/2} - 3 \cdot 3^{-1/3} - \infty \\ &= -\infty \end{aligned}$$

So this integral diverges.

4. (12 pts) The table below records the velocity $v(t)$ in meters per second of a car at time t (measured in seconds):

t	0	2	4	6	8	10	12
$v(t)$	0	5.1	10.9	16.8	22.8	28.9	35.1

(a) Give an approximation for the distance the car travels over the first 12 seconds using the trapezoidal rule with $n = 3$ (You do NOT need to simplify your expression, but you should give an expression which could be easily entered into a calculator).

(b) Sort the values L_3 , R_3 , and T_3 in order from least to greatest. *Remember that these are the left-sided, right-sided, and trapezoidal approximations with $n = 3$.*

Solution:

(a) For $n = 3$, $\Delta t = (12 - 0)/3 = 4$. So the the trapezoidal approximation is

$$T_3 = \frac{4}{2} \cdot (0 + 2(10.9) + 2(22.8) + 35.1).$$

(b) Since the values in the table are increasing, $L_3 \leq R_3$. Since $T_3 = \frac{1}{2}(L_3 + R_3)$, we know that the approximations L_3, T_3, R_3 are ordered from least to greatest.

5. (12 pts) The function $f(x)$ has a second derivative given by

$$f''(x) = \frac{x \sin(x) - \cos^2(x)}{1 + x^3}.$$

Determine how large n should be so that the midpoint approximation M_n for the integral $\int_2^3 f(x) dx$ is within 10^{-3} of the true value. *You should solve for n , but you do not need to simplify your answer.*

Solution: First, we find an upper bound on $|f''(x)|$:

$$|f''(x)| \leq \left| \frac{x \sin(x) - \cos(x)}{1 + x^3} \right| \leq \frac{|x| \cdot |\sin(x)| + |\cos(x)|}{|1 + x^3|} \leq \frac{(3)(1) + 1}{1 + 8} = \frac{4}{9}.$$

We can estimate the error $|E_M|$ by

$$|E_M| \leq \frac{(4/9)(3 - 2)^3}{24n^2} = \frac{1}{54n^2} \leq 10^{-3}.$$

Rearranging the final inequality and solving for n , we find that choosing

$$n > \sqrt{\frac{1000}{54}}$$

will guarantee an error less than 10^{-3} for the Midpoint Rule.