

Department of Applied Mathematics
MATHEMATICAL STATISTICS PRELIMINARY EXAMINATION
January 2026

Instructions:

- Do four of the five problems.
- Place an **X** on the line next to the problem number you are **NOT** submitting for grading.
- Do not write your name anywhere on this exam.
- Write your student number on each page submitted for grading.
- Show all relevant work – correct answers without adequate justification will receive no credit!

1. _____ 2. _____ 3. _____ 4. _____ 5. _____ Total _____

Student Number _____

Problem 1. (25 points)

Let X_1, \dots, X_n be iid $f(x; \theta) = (2\theta)^{-1}e^{-|x|/\theta}$ for all $x \in \mathbb{R}$.

- Show $\mathbb{E}|X| = \theta$ and $\mathbb{E}(X^2) = 2\theta^2$.
- Show $\frac{1}{n} \sum_{i=1}^n |X_i|$ is unbiased for θ .
- Find the Fisher information for θ based on one sample, and based on n samples.
- Determine whether your estimator from (b) attains the Cramér-Rao lower bound.

Problem 2. (25 points)

Suppose Z_1, Z_2 and Z_3 are iid $N(0, 1)$ random variables. Define

$$X_1 = 2Z_1 + Z_2 - 3, \quad X_2 = aZ_1 + bZ_2 + cZ_3, \quad X_3 = Z_1 - Z_2 + Z_3 + 3$$

for some constants a, b, c .

- Explicitly write the joint pdf for (X_1, X_2, X_3) .
- Determine conditions on a, b, c such that X_1 and X_2 are independent.
- Find the distribution of the random vector (Y_1, Y_2) where

$$Y_1 = X_1 - X_2, \quad Y_2 = X_1 + X_3.$$

Problem 3. (25 points)

- (a) Carefully define what it means for a sequence $\{X_n\}_{n=1}^{\infty}$ to be bounded in probability.
- (b) Prove that $X_n = O_P(1)$ if there is a $p > 0$ such that $\mathbb{E}(|X_n|^p)$ is bounded for $n \geq 1$.

Problem 4. (25 points)

Let X_1, \dots, X_n be iid $N(\theta, 1)$ random variables.

- (a) Show that the joint distribution of X_1, \dots, X_n is a member of the exponential family.
- (b) Find the unique UMVUE for θ .
- (c) Find the joint distribution of \bar{X} and $X_1 - \bar{X}$.
- (d) Find the unique UMVUE, $\hat{\tau}_n(\theta)$, for $\tau(\theta) = P(X_1 < c)$ where c is a constant.
(Hint: recall that $\mathbb{1}_{[X_1 < c]}$ is unbiased for $\tau(\theta)$).
- (e) Write $\hat{\tau}_n(\theta)$ in terms of Φ , the cdf of a $N(0, 1)$.

Problem 5. (25 points)

Suppose X_1, X_2, \dots, X_n are iid $Exp(rate = \lambda)$.

- (a) Find the distribution of $X_{(1)}$, the sample minimum.
- (b) Based on $X_{(1)}$, find the exact 95% confidence interval for λ , whose lower bound is zero.
- (c) Find the UMP test for $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda > \lambda_0$ at significance level α . Explicitly write the rejection region in terms of a known cdf or quantile function.
