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There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

1. Method of Characteristics. Solve
u,+2u, =1, t>0,
with data prescribed on the finite oblique segment
I': &,0H)=(G,1-y), 0<s<1,

by
u(s,1 — s) = sin(zxs).

(a) (8 points) Check the transversality condition for I'.
Solution: The characteristic equations are

di_yodx_y
dr dr

and the parameterized initial data are

(x(8), ty(8)) = (s, 1 — ), 0<s<1, u(xy(s), 1y(s)) = sin(zs).

The characteristic map is

(x,1) = (x(s,7), 1(5,7)) = (x((5) + 2(T — 1,(5)), T),

ox,1) <an 0Tx> — ( I 2>, J = det ox. 1) =3#0.

o(s,t)  \ O O -1 1 d(s,7)
Hence I satisfies the transversality condition forall 0 < s < 1.

(b) (10 points) Find the characteristic curves and compute u along them.
Solution: Taking = = ¢, we find the characteristics satisfy

x—=2t=0C,

and along each characteristic




To connect to the data on I', label characteristics by the intersection point
(xg,tg) = (s, 1 =), 0<s<1.

The characteristic through (s, 1 — s) has constant

C=xy—2tp=5-2(1-5)=35-2,
S0 it is

X —2t=3s5s-2.
On this curve, using u(s, 1 — s) = sin(zs) and u(t) = u(t,) + (t — ),
u(x,t) = sin(zs) + (t —(1 —s)) =1 -1+ s +sin(xs),

for points (x, 7) lying on the characteristic x — 2¢ = 35 — 2. We thus find

_x+i-1

u(x,t) = — + sin [w] .

(c) (7 points) Determine explicitly the region in the (x, #)-plane where the solution is uniquely defined,
and describe what fails outside this region.

Solution: Let (x, ) be a point whose backward characteristic meets I" at (x, 7,) = (s, 1 —s). Since
x — 2t is constant along characteristics,

x—=2t=xy—2ty=5—-2(1—5)=35-2,

SO
x—=2t+2
—
Thus the backward characteristic hits I" if and only if s € [0, 1], i.e.
nglgizsl — 2<x-2u<l

Moreover, we must be forward of the data point, i.e. t > ¢, = 1 — s, which becomes

121—# = t>1-x
Therefore the solution is uniquely determined on the region
R={(,t): 120, 2<x-2t<1,t>1-x}.

Outside R, the characteristic through (x, f) does not intersect the initial data I', so the given data
do not determine u(x, t) uniquely.

2. Heat Equation. Let u be a classical solution on the closure of Q = (0, 1) X (0, o) to the problem

U, =1u,, (x,1) € Q,
ux,0)=x(1-x), 0<x<1,
u0,t) =u(l,t)=0 t>0.



(a) (7 points) Prove that u is non-negative.
Solution: LetI';, = (0,1) X {t =0} U {x =0,1} X [0,T). By the minimum principle, we know
that
min u(x,t) > min u(x,t) >0
(x.0)€[0,1]X[0.T] (x,)Ely
for any T' > 0, and so it holds in €.

(b) (12 points) Determine the maximum range of positive a, b so that
u(x,t) < w(x,t) = ax(l — x)e™ .

Solution: Let v = w — u. Our goal is to find a, b such that we can apply the maximum principle
and get that v > 0 in Q. Note that if v, > then we can apply the maximum principle. Now,
we have that

XX’

w(x,0) = ax(1 — x), w,(x,t) = —abx(1 — x)e™” ,and w_ = —2ae™.

Moreover, thanks to linearity, we have

v — v = (W, — w,) — (U, —u.) = al2 - bx(1 — x)]le™ > a (2 _ 2) et (1

since the max of x(1—x) occurs at x = 1/2. Thus, we only need to figure out when a (2 - —) > 0.

This implies that we need a > 0 and 0 < b < 8. Now, we need to look at the boundary of the
parabolic domain. Note that
v(0,1)=0v(1,1) =0

and v(x, 0) = (a—1)x(1 —x), which is nonnegative if a > 1. In summary, we need that0) < b < 8
and a > 1.

(c) (6 points) Show that u — 0 uniformly in x as ¢t — oo.
Solution: Fix a = 1 and b = 8 we see that

u(x,t) < ie_gt

for all (x,7) € Q. For fixed x, taking the limit as t — oo we see that u(x,t) — 0 at a rate
independent of x. Thus, the convergence is uniform.

3. Separation of variables.
Consider the BVP

Au= f(x), x€Q,
S=g). x€oQ,

where f, g are smooth functions.

(a) (5 points) Find the compatability conditions on f and g for the possibility of a solution.
Solution: Integrate the equation to obtain that

/f(x) dx—/Au(x) dx—/ —dS _/ g(x)ds..
oQ



(b) (15 points) Solve the specific problem
u, = u,, + cos(x), x € (0,2x),
u (0,t) =u,2r,1)=0 t>0,
u(x,0) = cos(x) + cos(2x), x € [0,2x].

Solution: First we perform a change of variables, z = u — cos(x), and so z satisfied

Z,=Z,., x € (0,2x),
z,(0,1) =z, Q2r,t)=0 >0,
z(x,0) = cos(2x), x € [0,2x].

Now, let z(x, ) = V(x)W (t) and plug into the pde for z to obtain that
W't V'(x)

= =—A
w@®  V(x)

For 4 > 0 we get that
V(x) = a, cos(VAx) + b, sin(\/ Ax).

Taking the derivative, we have that

V'(x) = —a,\/ Asin(\/Ax) + b, /2 cos(V/ Ax)
Using the boundary conditons, we see that V/(0) = 0 implies that b, = 0. Moreover, V'(2x) =
2
a,\V A sin(2nﬂ) = 0 give the eigenvalues 4, = (g) and eigenfunctions V,(x) = cos(\ﬁ”x)
for n > 0. We can now solve for T for given 4, to get

n

T,(1) = cne_(E> "

Putting this all together, we have that

o]

z(x,1) = Z ¢, cos (%) e_(g)zt.

n=0
To find ¢, we use the initial condition,

o]

z(x,0) = Z ¢, COs (%) = cos(2x),

n=0

from which we can see that ¢, = 1 and ¢, = 0 for n # 4. Then, z(x,?) = cos(2x)e™* and
switching back to u, you obtain that

u(x,t) = cos (2x) e~¥ + cos(x).

(c) (5 points) Does there exist a solution to the equilibrium version of the problem in (b) if we change
its boundary conditions to
u (0,)=1 and u (2n,t)=0

Solution: We use the condition that we found in part (a):

2r
0= / cos(x) dx # —1 = u,|".
0

The compatibility condition is not satisfied, so there cannot be a solution.



4. Laplace’s equation.

(a) (4 points) State the mean-value property for subharmonic v.
Solution:

Theorem 1 (Mean-value property for subharmonic functions). Let U C R” be open and let
v € C*(U) be subharmonic, i.e. Av > 01in U. Fix X, € U and r > 0 such that B,(x,) C U.
Then

v(x,) < vdsS, ()

|0B, | 0B, (x,)

v(x,) < vdx. 3)

|B,| B,(x)
Here | B, | is the volume of B,(x,) and |dB,| is the surface area of dB,(x).

(b) (13 points) Assume that for every x, € U and every r > 0 such that B,(x,) C U,

1
v(x)) = —— vdS.
" 10B.] Jop )
Show that v is harmonicin U, i.e. Av = 0. Hint: Forv € C*(U) and X, € U, define the spherical
mean
M(r) := 1 vdS.
|0B,| B, (x)
You may want to use the identity
’ 1
M'(r) = Avdx.
|aB’| B, (xq)

Solution: Fix x, € U. Choose r, > 0 so that B, (x,) C U. For 0 < r < r,, define the spherical
mean M (r) as in the hint. By hypothesis, M (r) = v(x,) for all 0 < r < r,, hence M'(r) = 0.
On the other hand, the differentiation identity for spherical means that was provided in the hint
states that for u € C?,

1

M'(r) =
|aBr| B.(x()

Avdx,

implies that
/ Avdx =0 forall0 <r <r,.
B,.(xg)

Let f := Av, which is continuous on U. Divide by | B,| to obtain

1
|Br| Br(xo)

Letting » — 0% and using continuity of f (the average of a continuous function over shrinking
balls tends to its value at the center) yields

0 f(x)dx.

0= lim —— F)dx = f(xy) = Av(xy).

r—0t | Br | Br(XO)

Since x, € U was arbitrary, Av = 0 in U, so v is harmonic.



(c) (4 points) Let u € C?*(U) be a harmonic function in U C R” is open. Assume F € C*(R) is
convex and let w = F(u). Prove that w is subharmonic.
Solution: Aw = F"(u)|Vu|> + F'(u)Au = F"(u)|Vu|*> > 0.

(d) (4 points) Assume U = R" and u € L*(U) then prove u = 0.
Solution: Take x, € U and r > 0. Let F(s) = s2, a convex function, so by part (c) u?® is
subharmonic because u is assumed to be harmonic. Now, by part (a), we see that

i I N (1]
u-(xy) < — u dx <
|Br| Br(xO) |Br|
as r — oo. Since x,, as arbitrary, we conclude that u = 0.
5. Wave equation. Let u be a classical solution of
U, = U, O0<x<L,t>0,

with initial data u(x, 0) = f(x) and u,(x, 0) = g(x), and boundary conditions
u (L,t)+6u,(L,t) =0, u,(0,7) — au,(0,1t) = pu,(L,1), t >0,
where @ > 0, 6 > 0, and f € R are constants.

(a) (10 points) Define the energy

L
E@t) = % / (4, (x, 1) + u(x, 1)) dx.
0

Show that
E'(t)=-6u,(L,t)* — au,(0,)* — fu,(0,)u,(L,1).

Solution: Differentiate:

L
E'®) = / (uu, + uyuy) dx.
0

Using u,, = u,, and integrating by parts in x,

L L L L
/ uu, dx = / uu, dx = [utux] - / U, u, dx.
0 0 0 0

Hence the bulk terms cancel with fOL uu,, dx, yielding

E'(1) = [utux]j = w,(L, 0y (L, 1) — u,(0, ) (0, 1).
Using the boundary conditions
u (L,t) =—6u,(L,1), u,(0,7) = au,(0,7) + pu,(L,1),
we obtain

E'(t) = u(L,t)( — du,(L,1) — u,0,1)(au,0,1) + pu,(L,1))
= —6u,(L,1)* — au,0,1)* — fu,(0,)u,(L,1).



(b) (8 points) Use (a) to prove uniqueness of classical solutions in the case f = 0 (with 6 > 0 fixed).

Solution: Let u and v be two classical solutions with the same data and set w = u — v. Then
w, =w,,, w(-,0)=0,w,,0) =0, and when f = 0 the boundary conditions reduce to

w, (L, 1)+ 6w, (L,t) =0, w, (0,1) — aw,(0,1) = 0.
Applying the energy identity from part (a) to w yields
E () =—-5w,(L,1)* —aw,0,)* <O0.

Since E () > 0 and E,(0) = 0, it follows that E,(f) = 0 for all # > 0. Hence w, =0 and w, =0
on (0, L) X (0, 00), so w is constant in both x and 7. Using w(-,0) = 0, we conclude that w = 0,
and therefore u = v.

(¢) (7 points) Assume g # 0 (and 6 > 0). Using the formula for E’(¢) from part (a), show that if
p* < 4as,
then the energy is nonincreasing:

E't<0 forall r > 0.

Solution: From part (a),
E'(t)=—6u,(L,t)* — au,(0,)* — fu,(0,)u,(L,1).
Leta=u,0,7) and b = u,(L, ). Then
E'(t) = —aa® — 6b*> — fab.

Complete the square:

ad® — 5B — fab = — 2N\ (-2 p
aa” — 6b° — fab = a<a+2ab> <5 4>b.

a

If 2 < 4aé, then § — f%/(4a) > 0, so both terms on the right-hand side are < 0. Hence E'(f) < 0
forall t > 0.



