
Preliminary Exam
Partial Differential Equations
9AM - 12PM, Wed Jan 7, 2026

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Method of Characteristics. Solve

𝑢𝑡 + 2𝑢𝑥 = 1, 𝑡 > 0,

with data prescribed on the finite oblique segment

Γ ∶ (𝑥, 𝑡) = (𝑠, 1 − 𝑠), 0 ≤ 𝑠 ≤ 1,

by
𝑢(𝑠, 1 − 𝑠) = sin(𝜋𝑠).

(a) (8 points) Check the transversality condition for Γ.
Solution: The characteristic equations are

𝑑𝑡
𝑑𝜏

= 1, 𝑑𝑥
𝑑𝜏

= 2,

and the parameterized initial data are

(𝑥0(𝑠), 𝑡0(𝑠)) = (𝑠, 1 − 𝑠), 0 ≤ 𝑠 ≤ 1, 𝑢(𝑥0(𝑠), 𝑡0(𝑠)) = sin(𝜋𝑠).

The characteristic map is

(𝑥, 𝑡) = (𝑥(𝑠, 𝜏), 𝑡(𝑠, 𝜏)) =
(

𝑥0(𝑠) + 2(𝜏 − 𝑡0(𝑠)), 𝜏
)

,

so
𝜕(𝑥, 𝑡)
𝜕(𝑠, 𝜏)

=
(

𝜕𝑠𝑥 𝜕𝜏𝑥
𝜕𝑠𝑡 𝜕𝜏𝑡

)

=
(

1 2
−1 1

)

, 𝐽 = det
𝜕(𝑥, 𝑡)
𝜕(𝑠, 𝜏)

= 3 ≠ 0.

Hence Γ satisfies the transversality condition for all 0 ≤ 𝑠 ≤ 1.
(b) (10 points) Find the characteristic curves and compute 𝑢 along them.

Solution: Taking 𝜏 = 𝑡, we find the characteristics satisfy

𝑥 − 2𝑡 = 𝐶,

and along each characteristic
𝑑𝑢
𝑑𝜏

= 1 ⇒ 𝑢 = 𝑡 + 𝐶1.



To connect to the data on Γ, label characteristics by the intersection point

(𝑥0, 𝑡0) = (𝑠, 1 − 𝑠), 0 ≤ 𝑠 ≤ 1.

The characteristic through (𝑠, 1 − 𝑠) has constant

𝐶 = 𝑥0 − 2𝑡0 = 𝑠 − 2(1 − 𝑠) = 3𝑠 − 2,

so it is
𝑥 − 2𝑡 = 3𝑠 − 2.

On this curve, using 𝑢(𝑠, 1 − 𝑠) = sin(𝜋𝑠) and 𝑢(𝑡) = 𝑢(𝑡0) + (𝑡 − 𝑡0),

𝑢(𝑥, 𝑡) = sin(𝜋𝑠) +
(

𝑡 − (1 − 𝑠)
)

= 𝑡 − 1 + 𝑠 + sin(𝜋𝑠),

for points (𝑥, 𝑡) lying on the characteristic 𝑥 − 2𝑡 = 3𝑠 − 2. We thus find

𝑢(𝑥, 𝑡) = 𝑥 + 𝑡 − 1
3

+ sin
[𝑥 − 2𝑡 + 2

3

]

.

(c) (7 points) Determine explicitly the region in the (𝑥, 𝑡)-plane where the solution is uniquely defined,
and describe what fails outside this region.
Solution: Let (𝑥, 𝑡) be a point whose backward characteristic meets Γ at (𝑥0, 𝑡0) = (𝑠, 1−𝑠). Since
𝑥 − 2𝑡 is constant along characteristics,

𝑥 − 2𝑡 = 𝑥0 − 2𝑡0 = 𝑠 − 2(1 − 𝑠) = 3𝑠 − 2,

so
𝑠 = 𝑥 − 2𝑡 + 2

3
.

Thus the backward characteristic hits Γ if and only if 𝑠 ∈ [0, 1], i.e.

0 ≤ 𝑥 − 2𝑡 + 2
3

≤ 1 ⟺ −2 ≤ 𝑥 − 2𝑡 ≤ 1.

Moreover, we must be forward of the data point, i.e. 𝑡 ≥ 𝑡0 = 1 − 𝑠, which becomes

𝑡 ≥ 1 − 𝑥 − 2𝑡 + 2
3

⟺ 𝑡 ≥ 1 − 𝑥.

Therefore the solution is uniquely determined on the region

 = {(𝑥, 𝑡) ∶ 𝑡 ≥ 0, −2 ≤ 𝑥 − 2𝑡 ≤ 1, 𝑡 ≥ 1 − 𝑥}.

Outside , the characteristic through (𝑥, 𝑡) does not intersect the initial data Γ, so the given data
do not determine 𝑢(𝑥, 𝑡) uniquely.

2. Heat Equation. Let 𝑢 be a classical solution on the closure of Ω = (0, 1) × (0,∞) to the problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑢𝑥𝑥, (𝑥, 𝑡) ∈ Ω,
𝑢(𝑥, 0) = 𝑥(1 − 𝑥), 0 ≤ 𝑥 ≤ 1,
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 𝑡 > 0.



(a) (7 points) Prove that 𝑢 is non-negative.
Solution: Let Γ𝑇 = (0, 1) × {𝑡 = 0} ∪ {𝑥 = 0, 1} × [0, 𝑇 ). By the minimum principle, we know
that

min
(𝑥,𝑡)∈[0,1]×[0,𝑇 ]

𝑢(𝑥, 𝑡) ≥ min
(𝑥,𝑡)∈Γ𝑇

𝑢(𝑥, 𝑡) ≥ 0

for any 𝑇 > 0, and so it holds in Ω.
(b) (12 points) Determine the maximum range of positive 𝑎, 𝑏 so that

𝑢(𝑥, 𝑡) ≤ 𝑤(𝑥, 𝑡) = 𝑎𝑥(1 − 𝑥)𝑒−𝑏𝑡.

Solution: Let 𝑣 = 𝑤− 𝑢. Our goal is to find 𝑎, 𝑏 such that we can apply the maximum principle
and get that 𝑣 ≥ 0 in Ω. Note that if 𝑣𝑡 ≥ 𝑣𝑥𝑥, then we can apply the maximum principle. Now,
we have that

𝑤(𝑥, 0) = 𝑎𝑥(1 − 𝑥), 𝑤𝑡(𝑥, 𝑡) = −𝑎𝑏𝑥(1 − 𝑥)𝑒−𝑏𝑡 , and 𝑤𝑥𝑥 = −2𝑎𝑒−𝑏𝑡.

Moreover, thanks to linearity, we have

𝑣𝑡 − 𝑣𝑥𝑥 = (𝑤𝑡 −𝑤𝑥𝑥) − (𝑢𝑡 − 𝑢𝑥𝑥) = 𝑎[2 − 𝑏𝑥(1 − 𝑥)]𝑒−𝑏𝑡 ≥ 𝑎
(

2 − 𝑏
4

)

𝑒−𝑏𝑡, (1)

since the max of 𝑥(1−𝑥) occurs at 𝑥 = 1∕2.Thus, we only need to figure out when 𝑎
(

2 − 𝑏
4

)

≥ 0.
This implies that we need 𝑎 > 0 and 0 < 𝑏 ≤ 8. Now, we need to look at the boundary of the
parabolic domain. Note that

𝑣(0, 𝑡) = 𝑣(1, 𝑡) = 0

and 𝑣(𝑥, 0) = (𝑎−1)𝑥(1−𝑥), which is nonnegative if 𝑎 ≥ 1. In summary, we need that 0 < 𝑏 ≤ 8
and 𝑎 ≥ 1.

(c) (6 points) Show that 𝑢 → 0 uniformly in 𝑥 as 𝑡 → ∞.
Solution: Fix 𝑎 = 1 and 𝑏 = 8 we see that

𝑢(𝑥, 𝑡) ≤ 1
4
𝑒−8𝑡

for all (𝑥, 𝑡) ∈ Ω. For fixed 𝑥, taking the limit as 𝑡 → ∞ we see that 𝑢(𝑥, 𝑡) → 0 at a rate
independent of 𝑥. Thus, the convergence is uniform.

3. Separation of variables.
Consider the BVP

{

Δ𝑢 = 𝑓 (𝑥), 𝑥 ∈ Ω,
𝜕𝑢
𝜕𝑛

= 𝑔(𝑥), 𝑥 ∈ 𝜕Ω,

where 𝑓, 𝑔 are smooth functions.

(a) (5 points) Find the compatability conditions on 𝑓 and 𝑔 for the possibility of a solution.
Solution: Integrate the equation to obtain that

∫Ω
𝑓 (𝑥) 𝑑𝑥 = ∫Ω

Δ𝑢(𝑥) 𝑑𝑥 = ∫𝜕Ω

𝜕𝑢
𝜕𝑛

𝑑𝑆𝑥 = ∫𝜕Ω
𝑔(𝑥) 𝑑𝑆𝑥.



(b) (15 points) Solve the specific problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑢𝑥𝑥 + cos(𝑥), 𝑥 ∈ (0, 2𝜋),
𝑢𝑥(0, 𝑡) = 𝑢𝑥(2𝜋, 𝑡) = 0 𝑡 > 0,
𝑢(𝑥, 0) = cos(𝑥) + cos(2𝑥), 𝑥 ∈ [0, 2𝜋].

Solution: First we perform a change of variables, 𝑧 = 𝑢 − cos(𝑥), and so 𝑧 satisfied

⎧

⎪

⎨

⎪

⎩

𝑧𝑡 = 𝑧𝑥𝑥, 𝑥 ∈ (0, 2𝜋),
𝑧𝑥(0, 𝑡) = 𝑧𝑥(2𝜋, 𝑡) = 0 𝑡 > 0,
𝑧(𝑥, 0) = cos(2𝑥), 𝑥 ∈ [0, 2𝜋].

Now, let 𝑧(𝑥, 𝑡) = 𝑉 (𝑥)𝑊 (𝑡) and plug into the pde for 𝑧 to obtain that
𝑊 ′(𝑡)
𝑊 (𝑡)

=
𝑉 ′′(𝑥)
𝑉 (𝑥)

= −𝜆.

For 𝜆 ≥ 0 we get that
𝑉 (𝑥) = 𝑎𝑛 cos(

√

𝜆𝑥) + 𝑏𝑛 sin(
√

𝜆𝑥).
Taking the derivative, we have that

𝑉 ′(𝑥) = −𝑎𝑛
√

𝜆 sin(
√

𝜆𝑥) + 𝑏𝑛
√

𝜆 cos(
√

𝜆𝑥)

Using the boundary conditons, we see that 𝑉 ′(0) = 0 implies that 𝑏𝑛 = 0. Moreover, 𝑉 ′(2𝜋) =

𝑎𝑛
√

𝜆 sin(2𝜋
√

𝜆) = 0 give the eigenvalues 𝜆𝑛 =
(

𝑛
2

)2
and eigenfunctions 𝑉𝑛(𝑥) = cos(

√

𝜆𝑛𝑥)
for 𝑛 ≥ 0. We can now solve for 𝑇 for given 𝜆𝑛 to get

𝑇𝑛(𝑡) = 𝑐𝑛𝑒
−
(

𝑛
2

)2
𝑡.

Putting this all together, we have that

𝑧(𝑥, 𝑡) =
∞
∑

𝑛=0
𝑐𝑛 cos

(𝑛𝑥
2

)

𝑒−
(

𝑛
2

)2
𝑡.

To find 𝑐𝑛 we use the initial condition,

𝑧(𝑥, 0) =
∞
∑

𝑛=0
𝑐𝑛 cos

(𝑛𝑥
2

)

= cos(2𝑥),

from which we can see that 𝑐4 = 1 and 𝑐𝑛 = 0 for 𝑛 ≠ 4. Then, 𝑧(𝑥, 𝑡) = cos (2𝑥) 𝑒−4𝑡 and
switching back to 𝑢, you obtain that

𝑢(𝑥, 𝑡) = cos (2𝑥) 𝑒−4𝑡 + cos(𝑥).

(c) (5 points) Does there exist a solution to the equilibrium version of the problem in (b) if we change
its boundary conditions to

𝑢𝑥(0, 𝑡) = 1 and 𝑢𝑥(2𝜋, 𝑡) = 0
Solution: We use the condition that we found in part (𝑎):

0 = ∫

2𝜋

0
cos(𝑥) 𝑑𝑥 ≠ −1 = 𝑢𝑥|

2𝜋
0 .

The compatibility condition is not satisfied, so there cannot be a solution.



4. Laplace’s equation.

(a) (4 points) State the mean-value property for subharmonic 𝑣.
Solution:
Theorem 1 (Mean-value property for subharmonic functions). Let 𝑈 ⊂ ℝ𝑛 be open and let
𝑣 ∈ 𝐶2(𝑈 ) be subharmonic, i.e. Δ𝑣 ≥ 0 in 𝑈 . Fix 𝑥0 ∈ 𝑈 and 𝑟 > 0 such that 𝐵𝑟(𝑥0) ⊂ 𝑈 .
Then

𝑣(𝑥0) ≤
1

|𝜕𝐵𝑟| ∫𝜕𝐵𝑟(𝑥0)
𝑣 𝑑𝑆, (2)

𝑣(𝑥0) ≤
1

|𝐵𝑟| ∫𝐵𝑟(𝑥0)
𝑣 𝑑𝑥. (3)

Here |𝐵𝑟| is the volume of 𝐵𝑟(𝑥0) and |𝜕𝐵𝑟| is the surface area of 𝜕𝐵𝑟(𝑥0).

(b) (13 points) Assume that for every 𝑥0 ∈ 𝑈 and every 𝑟 > 0 such that 𝐵𝑟(𝑥0) ⊂ 𝑈 ,

𝑣(𝑥0) =
1

|𝜕𝐵𝑟| ∫𝜕𝐵𝑟(𝑥0)
𝑣 𝑑𝑆.

Show that 𝑣 is harmonic in 𝑈 , i.e. Δ𝑣 = 0. Hint: For 𝑣 ∈ 𝐶2(𝑈 ) and 𝑥0 ∈ 𝑈 , define the spherical
mean

𝑀(𝑟) ∶= 1
|𝜕𝐵𝑟| ∫𝜕𝐵𝑟(𝑥0)

𝑣 𝑑𝑆.

You may want to use the identity

𝑀 ′(𝑟) = 1
|𝜕𝐵𝑟| ∫𝐵𝑟(𝑥0)

Δ𝑣 𝑑𝑥.

Solution: Fix 𝑥0 ∈ 𝑈 . Choose 𝑟0 > 0 so that 𝐵𝑟0(𝑥0) ⊂ 𝑈 . For 0 < 𝑟 < 𝑟0 define the spherical
mean 𝑀(𝑟) as in the hint. By hypothesis, 𝑀(𝑟) = 𝑣(𝑥0) for all 0 < 𝑟 < 𝑟0, hence 𝑀 ′(𝑟) = 0.
On the other hand, the differentiation identity for spherical means that was provided in the hint
states that for 𝑢 ∈ 𝐶2,

𝑀 ′(𝑟) = 1
|𝜕𝐵𝑟| ∫𝐵𝑟(𝑥0)

Δ𝑣 𝑑𝑥,

implies that

∫𝐵𝑟(𝑥0)
Δ𝑣 𝑑𝑥 = 0 for all 0 < 𝑟 < 𝑟0.

Let 𝑓 ∶= Δ𝑣, which is continuous on 𝑈 . Divide by |𝐵𝑟| to obtain

0 = 1
|𝐵𝑟| ∫𝐵𝑟(𝑥0)

𝑓 (𝑥) 𝑑𝑥.

Letting 𝑟 → 0+ and using continuity of 𝑓 (the average of a continuous function over shrinking
balls tends to its value at the center) yields

0 = lim
𝑟→0+

1
|𝐵𝑟| ∫𝐵𝑟(𝑥0)

𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑥0) = Δ𝑣(𝑥0).

Since 𝑥0 ∈ 𝑈 was arbitrary, Δ𝑣 = 0 in 𝑈 , so 𝑣 is harmonic.



(c) (4 points) Let 𝑢 ∈ 𝐶2(𝑈 ) be a harmonic function in 𝑈 ⊂ ℝ𝑛 is open. Assume 𝐹 ∈ 𝐶2(ℝ) is
convex and let 𝑤 = 𝐹 (𝑢). Prove that 𝑤 is subharmonic.
Solution: Δ𝑤 = 𝐹 ′′(𝑢)|∇𝑢|2 + 𝐹 ′(𝑢)Δ𝑢 = 𝐹 ′′(𝑢)|∇𝑢|2 ≥ 0.

(d) (4 points) Assume 𝑈 = ℝ𝑛 and 𝑢 ∈ 𝐿2(𝑈 ) then prove 𝑢 ≡ 0.
Solution: Take 𝑥0 ∈ 𝑈 and 𝑟 > 0. Let 𝐹 (𝑠) = 𝑠2, a convex function, so by part (c) 𝑢2 is
subharmonic because 𝑢 is assumed to be harmonic. Now, by part (a), we see that

𝑢2(𝑥0) ≤
1

|𝐵𝑟| ∫𝐵𝑟(𝑥0)
𝑢2 𝑑𝑥 ≤

||𝑢||2
𝐿2

|𝐵𝑟|
→ 0

as 𝑟 → ∞. Since 𝑥0 as arbitrary, we conclude that 𝑢 ≡ 0.

5. Wave equation. Let 𝑢 be a classical solution of

𝑢𝑡𝑡 = 𝑢𝑥𝑥, 0 < 𝑥 < 𝐿, 𝑡 > 0,

with initial data 𝑢(𝑥, 0) = 𝑓 (𝑥) and 𝑢𝑡(𝑥, 0) = 𝑔(𝑥), and boundary conditions

𝑢𝑥(𝐿, 𝑡) + 𝛿𝑢𝑡(𝐿, 𝑡) = 0, 𝑢𝑥(0, 𝑡) − 𝛼𝑢𝑡(0, 𝑡) = 𝛽 𝑢𝑡(𝐿, 𝑡), 𝑡 > 0,

where 𝛼 > 0, 𝛿 > 0, and 𝛽 ∈ ℝ are constants.

(a) (10 points) Define the energy

𝐸(𝑡) = 1
2 ∫

𝐿

0

(

𝑢𝑡(𝑥, 𝑡)2 + 𝑢𝑥(𝑥, 𝑡)2
)

𝑑𝑥.

Show that
𝐸′(𝑡) = −𝛿 𝑢𝑡(𝐿, 𝑡)2 − 𝛼 𝑢𝑡(0, 𝑡)2 − 𝛽 𝑢𝑡(0, 𝑡)𝑢𝑡(𝐿, 𝑡).

Solution: Differentiate:
𝐸′(𝑡) = ∫

𝐿

0

(

𝑢𝑡𝑢𝑡𝑡 + 𝑢𝑥𝑢𝑥𝑡
)

𝑑𝑥.

Using 𝑢𝑡𝑡 = 𝑢𝑥𝑥 and integrating by parts in 𝑥,

∫

𝐿

0
𝑢𝑡𝑢𝑡𝑡 𝑑𝑥 = ∫

𝐿

0
𝑢𝑡𝑢𝑥𝑥 𝑑𝑥 =

[

𝑢𝑡𝑢𝑥
]𝐿

0
− ∫

𝐿

0
𝑢𝑥𝑡𝑢𝑥 𝑑𝑥.

Hence the bulk terms cancel with ∫ 𝐿
0 𝑢𝑥𝑢𝑥𝑡 𝑑𝑥, yielding

𝐸′(𝑡) =
[

𝑢𝑡𝑢𝑥
]𝐿

0
= 𝑢𝑡(𝐿, 𝑡)𝑢𝑥(𝐿, 𝑡) − 𝑢𝑡(0, 𝑡)𝑢𝑥(0, 𝑡).

Using the boundary conditions

𝑢𝑥(𝐿, 𝑡) = −𝛿𝑢𝑡(𝐿, 𝑡), 𝑢𝑥(0, 𝑡) = 𝛼𝑢𝑡(0, 𝑡) + 𝛽𝑢𝑡(𝐿, 𝑡),

we obtain

𝐸′(𝑡) = 𝑢𝑡(𝐿, 𝑡)
(

− 𝛿𝑢𝑡(𝐿, 𝑡)
)

− 𝑢𝑡(0, 𝑡)
(

𝛼𝑢𝑡(0, 𝑡) + 𝛽𝑢𝑡(𝐿, 𝑡)
)

= −𝛿 𝑢𝑡(𝐿, 𝑡)2 − 𝛼 𝑢𝑡(0, 𝑡)2 − 𝛽 𝑢𝑡(0, 𝑡)𝑢𝑡(𝐿, 𝑡).



(b) (8 points) Use (a) to prove uniqueness of classical solutions in the case 𝛽 = 0 (with 𝛿 ≥ 0 fixed).
Solution: Let 𝑢 and 𝑣 be two classical solutions with the same data and set 𝑤 = 𝑢 − 𝑣. Then
𝑤𝑡𝑡 = 𝑤𝑥𝑥, 𝑤(⋅, 0) = 0, 𝑤𝑡(⋅, 0) = 0, and when 𝛽 = 0 the boundary conditions reduce to

𝑤𝑥(𝐿, 𝑡) + 𝛿𝑤𝑡(𝐿, 𝑡) = 0, 𝑤𝑥(0, 𝑡) − 𝛼𝑤𝑡(0, 𝑡) = 0.

Applying the energy identity from part (a) to 𝑤 yields

𝐸′
𝑤(𝑡) = −𝛿 𝑤𝑡(𝐿, 𝑡)2 − 𝛼 𝑤𝑡(0, 𝑡)2 ≤ 0.

Since 𝐸𝑤(𝑡) ≥ 0 and 𝐸𝑤(0) = 0, it follows that 𝐸𝑤(𝑡) ≡ 0 for all 𝑡 ≥ 0. Hence 𝑤𝑡 ≡ 0 and 𝑤𝑥 ≡ 0
on (0, 𝐿) × (0,∞), so 𝑤 is constant in both 𝑥 and 𝑡. Using 𝑤(⋅, 0) = 0, we conclude that 𝑤 ≡ 0,
and therefore 𝑢 ≡ 𝑣.

(c) (7 points) Assume 𝛽 ≠ 0 (and 𝛿 > 0). Using the formula for 𝐸′(𝑡) from part (a), show that if

𝛽2 ≤ 4𝛼𝛿,

then the energy is nonincreasing:

𝐸′(𝑡) ≤ 0 for all 𝑡 ≥ 0.

Solution: From part (a),

𝐸′(𝑡) = −𝛿 𝑢𝑡(𝐿, 𝑡)2 − 𝛼 𝑢𝑡(0, 𝑡)2 − 𝛽 𝑢𝑡(0, 𝑡)𝑢𝑡(𝐿, 𝑡).

Let 𝑎 = 𝑢𝑡(0, 𝑡) and 𝑏 = 𝑢𝑡(𝐿, 𝑡). Then

𝐸′(𝑡) = −𝛼𝑎2 − 𝛿𝑏2 − 𝛽𝑎𝑏.

Complete the square:

−𝛼𝑎2 − 𝛿𝑏2 − 𝛽𝑎𝑏 = −𝛼
(

𝑎 +
𝛽
2𝛼

𝑏
)2

−
(

𝛿 −
𝛽2

4𝛼

)

𝑏2.

If 𝛽2 ≤ 4𝛼𝛿, then 𝛿 − 𝛽2∕(4𝛼) ≥ 0, so both terms on the right-hand side are ≤ 0. Hence 𝐸′(𝑡) ≤ 0
for all 𝑡 ≥ 0.


