

Preliminary Exam

Partial Differential Equations

9AM - 12PM, Wed Jan 7, 2026

Student ID (do NOT write your name):

#	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

There are five problems. **Solve four of the five problems.**

Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. Method of Characteristics. Solve

$$u_t + 2u_x = 1, \quad t > 0,$$

with data prescribed on the finite oblique segment

$$\Gamma : \quad (x, t) = (s, 1 - s), \quad 0 \leq s \leq 1,$$

by

$$u(s, 1 - s) = \sin(\pi s).$$

(a) (8 points) Check the transversality condition for Γ .

Solution: The characteristic equations are

$$\frac{dt}{d\tau} = 1, \quad \frac{dx}{d\tau} = 2,$$

and the parameterized initial data are

$$(x_0(s), t_0(s)) = (s, 1 - s), \quad 0 \leq s \leq 1, \quad u(x_0(s), t_0(s)) = \sin(\pi s).$$

The characteristic map is

$$(x, t) = (x(s, \tau), t(s, \tau)) = (x_0(s) + 2(\tau - t_0(s)), \tau),$$

so

$$\frac{\partial(x, t)}{\partial(s, \tau)} = \begin{pmatrix} \partial_s x & \partial_\tau x \\ \partial_s t & \partial_\tau t \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \quad J = \det \frac{\partial(x, t)}{\partial(s, \tau)} = 3 \neq 0.$$

Hence Γ satisfies the transversality condition for all $0 \leq s \leq 1$.

(b) (10 points) Find the characteristic curves and compute u along them.

Solution: Taking $\tau = t$, we find the characteristics satisfy

$$x - 2t = C,$$

and along each characteristic

$$\frac{du}{d\tau} = 1 \Rightarrow u = t + C_1.$$

To connect to the data on Γ , label characteristics by the intersection point

$$(x_0, t_0) = (s, 1-s), \quad 0 \leq s \leq 1.$$

The characteristic through $(s, 1-s)$ has constant

$$C = x_0 - 2t_0 = s - 2(1-s) = 3s - 2,$$

so it is

$$x - 2t = 3s - 2.$$

On this curve, using $u(s, 1-s) = \sin(\pi s)$ and $u(t) = u(t_0) + (t - t_0)$,

$$u(x, t) = \sin(\pi s) + (t - (1-s)) = t - 1 + s + \sin(\pi s),$$

for points (x, t) lying on the characteristic $x - 2t = 3s - 2$. We thus find

$$u(x, t) = \frac{x+t-1}{3} + \sin\left[\frac{x-2t+2}{3}\right].$$

(c) (7 points) Determine explicitly the region in the (x, t) -plane where the solution is uniquely defined, and describe what fails outside this region.

Solution: Let (x, t) be a point whose backward characteristic meets Γ at $(x_0, t_0) = (s, 1-s)$. Since $x - 2t$ is constant along characteristics,

$$x - 2t = x_0 - 2t_0 = s - 2(1-s) = 3s - 2,$$

so

$$s = \frac{x-2t+2}{3}.$$

Thus the backward characteristic hits Γ if and only if $s \in [0, 1]$, i.e.

$$0 \leq \frac{x-2t+2}{3} \leq 1 \iff -2 \leq x - 2t \leq 1.$$

Moreover, we must be *forward* of the data point, i.e. $t \geq t_0 = 1-s$, which becomes

$$t \geq 1 - \frac{x-2t+2}{3} \iff t \geq 1 - x.$$

Therefore the solution is uniquely determined on the region

$$\mathcal{R} = \{(x, t) : t \geq 0, -2 \leq x - 2t \leq 1, t \geq 1 - x\}.$$

Outside \mathcal{R} , the characteristic through (x, t) does not intersect the initial data Γ , so the given data do not determine $u(x, t)$ uniquely.

2. **Heat Equation.** Let u be a classical solution on the closure of $\Omega = (0, 1) \times (0, \infty)$ to the problem

$$\begin{cases} u_t = u_{xx}, & (x, t) \in \Omega, \\ u(x, 0) = x(1-x), & 0 \leq x \leq 1, \\ u(0, t) = u(1, t) = 0 & t > 0. \end{cases}$$

(a) (7 points) Prove that u is non-negative.

Solution: Let $\Gamma_T = (0, 1) \times \{t = 0\} \cup \{x = 0, 1\} \times [0, T]$. By the minimum principle, we know that

$$\min_{(x,t) \in [0,1] \times [0,T]} u(x,t) \geq \min_{(x,t) \in \Gamma_T} u(x,t) \geq 0$$

for any $T > 0$, and so it holds in Ω .

(b) (12 points) Determine the maximum range of positive a, b so that

$$u(x,t) \leq w(x,t) = ax(1-x)e^{-bt}.$$

Solution: Let $v = w - u$. Our goal is to find a, b such that we can apply the maximum principle and get that $v \geq 0$ in Ω . Note that if $v_t \geq v_{xx}$, then we can apply the maximum principle. Now, we have that

$$w(x,0) = ax(1-x), \quad w_t(x,t) = -abx(1-x)e^{-bt}, \quad \text{and} \quad w_{xx} = -2ae^{-bt}.$$

Moreover, thanks to linearity, we have

$$v_t - v_{xx} = (w_t - w_{xx}) - (u_t - u_{xx}) = a[2 - bx(1-x)]e^{-bt} \geq a\left(2 - \frac{b}{4}\right)e^{-bt}, \quad (1)$$

since the max of $x(1-x)$ occurs at $x = 1/2$. Thus, we only need to figure out when $a\left(2 - \frac{b}{4}\right) \geq 0$. This implies that we need $a > 0$ and $0 < b \leq 8$. Now, we need to look at the boundary of the parabolic domain. Note that

$$v(0,t) = v(1,t) = 0$$

and $v(x,0) = (a-1)x(1-x)$, which is nonnegative if $a \geq 1$. In summary, we need that $0 < b \leq 8$ and $a \geq 1$.

(c) (6 points) Show that $u \rightarrow 0$ uniformly in x as $t \rightarrow \infty$.

Solution: Fix $a = 1$ and $b = 8$ we see that

$$u(x,t) \leq \frac{1}{4}e^{-8t}$$

for all $(x,t) \in \Omega$. For fixed x , taking the limit as $t \rightarrow \infty$ we see that $u(x,t) \rightarrow 0$ at a rate independent of x . Thus, the convergence is uniform.

3. Separation of variables.

Consider the BVP

$$\begin{cases} \Delta u = f(x), & x \in \Omega, \\ \frac{\partial u}{\partial n} = g(x), & x \in \partial\Omega, \end{cases}$$

where f, g are smooth functions.

(a) (5 points) Find the compatibility conditions on f and g for the possibility of a solution.

Solution: Integrate the equation to obtain that

$$\int_{\Omega} f(x) dx = \int_{\Omega} \Delta u(x) dx = \int_{\partial\Omega} \frac{\partial u}{\partial n} dS_x = \int_{\partial\Omega} g(x) dS_x.$$

(b) (15 points) Solve the specific problem

$$\begin{cases} u_t = u_{xx} + \cos(x), & x \in (0, 2\pi), \\ u_x(0, t) = u_x(2\pi, t) = 0 & t > 0, \\ u(x, 0) = \cos(x) + \cos(2x), & x \in [0, 2\pi]. \end{cases}$$

Solution: First we perform a change of variables, $z = u - \cos(x)$, and so z satisfied

$$\begin{cases} z_t = z_{xx}, & x \in (0, 2\pi), \\ z_x(0, t) = z_x(2\pi, t) = 0 & t > 0, \\ z(x, 0) = \cos(2x), & x \in [0, 2\pi]. \end{cases}$$

Now, let $z(x, t) = V(x)W(t)$ and plug into the pde for z to obtain that

$$\frac{W'(t)}{W(t)} = \frac{V''(x)}{V(x)} = -\lambda.$$

For $\lambda \geq 0$ we get that

$$V(x) = a_n \cos(\sqrt{\lambda}x) + b_n \sin(\sqrt{\lambda}x).$$

Taking the derivative, we have that

$$V'(x) = -a_n \sqrt{\lambda} \sin(\sqrt{\lambda}x) + b_n \sqrt{\lambda} \cos(\sqrt{\lambda}x)$$

Using the boundary conditions, we see that $V'(0) = 0$ implies that $b_n = 0$. Moreover, $V'(2\pi) = a_n \sqrt{\lambda} \sin(2\pi \sqrt{\lambda}) = 0$ give the eigenvalues $\lambda_n = \left(\frac{n}{2}\right)^2$ and eigenfunctions $V_n(x) = \cos(\sqrt{\lambda_n}x)$ for $n \geq 0$. We can now solve for T for given λ_n to get

$$T_n(t) = c_n e^{-\left(\frac{n}{2}\right)^2 t}.$$

Putting this all together, we have that

$$z(x, t) = \sum_{n=0}^{\infty} c_n \cos\left(\frac{nx}{2}\right) e^{-\left(\frac{n}{2}\right)^2 t}.$$

To find c_n we use the initial condition,

$$z(x, 0) = \sum_{n=0}^{\infty} c_n \cos\left(\frac{nx}{2}\right) = \cos(2x),$$

from which we can see that $c_4 = 1$ and $c_n = 0$ for $n \neq 4$. Then, $z(x, t) = \cos(2x) e^{-4t}$ and switching back to u , you obtain that

$$u(x, t) = \cos(2x) e^{-4t} + \cos(x).$$

(c) (5 points) Does there exist a solution to the equilibrium version of the problem in (b) if we change its boundary conditions to

$$u_x(0, t) = 1 \quad \text{and} \quad u_x(2\pi, t) = 0$$

Solution: We use the condition that we found in part (a):

$$0 = \int_0^{2\pi} \cos(x) dx \neq -1 = u_x|_0^{2\pi}.$$

The compatibility condition is not satisfied, so there cannot be a solution.

4. Laplace's equation.

(a) (4 points) State the mean-value property for subharmonic v .

Solution:

Theorem 1 (Mean-value property for subharmonic functions). Let $U \subset \mathbb{R}^n$ be open and let $v \in C^2(U)$ be subharmonic, i.e. $\Delta v \geq 0$ in U . Fix $x_0 \in U$ and $r > 0$ such that $\overline{B_r(x_0)} \subset U$. Then

$$v(x_0) \leq \frac{1}{|\partial B_r|} \int_{\partial B_r(x_0)} v \, dS, \quad (2)$$

$$v(x_0) \leq \frac{1}{|B_r|} \int_{B_r(x_0)} v \, dx. \quad (3)$$

Here $|B_r|$ is the volume of $B_r(x_0)$ and $|\partial B_r|$ is the surface area of $\partial B_r(x_0)$.

(b) (13 points) Assume that for every $x_0 \in U$ and every $r > 0$ such that $\overline{B_r(x_0)} \subset U$,

$$v(x_0) = \frac{1}{|\partial B_r|} \int_{\partial B_r(x_0)} v \, dS.$$

Show that v is harmonic in U , i.e. $\Delta v = 0$. *Hint:* For $v \in C^2(U)$ and $x_0 \in U$, define the spherical mean

$$M(r) := \frac{1}{|\partial B_r|} \int_{\partial B_r(x_0)} v \, dS.$$

You may want to use the identity

$$M'(r) = \frac{1}{|\partial B_r|} \int_{B_r(x_0)} \Delta v \, dx.$$

Solution: Fix $x_0 \in U$. Choose $r_0 > 0$ so that $\overline{B_{r_0}(x_0)} \subset U$. For $0 < r < r_0$ define the spherical mean $M(r)$ as in the hint. By hypothesis, $M(r) = v(x_0)$ for all $0 < r < r_0$, hence $M'(r) = 0$. On the other hand, the differentiation identity for spherical means that was provided in the hint states that for $u \in C^2$,

$$M'(r) = \frac{1}{|\partial B_r|} \int_{B_r(x_0)} \Delta v \, dx,$$

implies that

$$\int_{B_r(x_0)} \Delta v \, dx = 0 \quad \text{for all } 0 < r < r_0.$$

Let $f := \Delta v$, which is continuous on U . Divide by $|B_r|$ to obtain

$$0 = \frac{1}{|B_r|} \int_{B_r(x_0)} f(x) \, dx.$$

Letting $r \rightarrow 0^+$ and using continuity of f (the average of a continuous function over shrinking balls tends to its value at the center) yields

$$0 = \lim_{r \rightarrow 0^+} \frac{1}{|B_r|} \int_{B_r(x_0)} f(x) \, dx = f(x_0) = \Delta v(x_0).$$

Since $x_0 \in U$ was arbitrary, $\Delta v = 0$ in U , so v is harmonic.

(c) (4 points) Let $u \in C^2(U)$ be a harmonic function in $U \subset \mathbb{R}^n$ is open. Assume $F \in C^2(\mathbb{R})$ is convex and let $w = F(u)$. Prove that w is subharmonic.

Solution: $\Delta w = F''(u)|\nabla u|^2 + F'(u)\Delta u = F''(u)|\nabla u|^2 \geq 0$.

(d) (4 points) Assume $U = \mathbb{R}^n$ and $u \in L^2(U)$ then prove $u \equiv 0$.

Solution: Take $x_0 \in U$ and $r > 0$. Let $F(s) = s^2$, a convex function, so by part (c) u^2 is subharmonic because u is assumed to be harmonic. Now, by part (a), we see that

$$u^2(x_0) \leq \frac{1}{|B_r|} \int_{B_r(x_0)} u^2 dx \leq \frac{\|u\|_{L^2}^2}{|B_r|} \rightarrow 0$$

as $r \rightarrow \infty$. Since x_0 is arbitrary, we conclude that $u \equiv 0$.

5. Wave equation. Let u be a classical solution of

$$u_{tt} = u_{xx}, \quad 0 < x < L, t > 0,$$

with initial data $u(x, 0) = f(x)$ and $u_t(x, 0) = g(x)$, and boundary conditions

$$u_x(L, t) + \delta u_t(L, t) = 0, \quad u_x(0, t) - \alpha u_t(0, t) = \beta u_t(L, t), \quad t > 0,$$

where $\alpha > 0$, $\delta > 0$, and $\beta \in \mathbb{R}$ are constants.

(a) (10 points) Define the energy

$$E(t) = \frac{1}{2} \int_0^L (u_t(x, t)^2 + u_x(x, t)^2) dx.$$

Show that

$$E'(t) = -\delta u_t(L, t)^2 - \alpha u_t(0, t)^2 - \beta u_t(0, t)u_t(L, t).$$

Solution: Differentiate:

$$E'(t) = \int_0^L (u_t u_{tt} + u_x u_{xt}) dx.$$

Using $u_{tt} = u_{xx}$ and integrating by parts in x ,

$$\int_0^L u_t u_{tt} dx = \int_0^L u_t u_{xx} dx = [u_t u_x]_0^L - \int_0^L u_{xt} u_x dx.$$

Hence the bulk terms cancel with $\int_0^L u_x u_{xt} dx$, yielding

$$E'(t) = [u_t u_x]_0^L = u_t(L, t)u_x(L, t) - u_t(0, t)u_x(0, t).$$

Using the boundary conditions

$$u_x(L, t) = -\delta u_t(L, t), \quad u_x(0, t) = \alpha u_t(0, t) + \beta u_t(L, t),$$

we obtain

$$\begin{aligned} E'(t) &= u_t(L, t)(-\delta u_t(L, t)) - u_t(0, t)(\alpha u_t(0, t) + \beta u_t(L, t)) \\ &= -\delta u_t(L, t)^2 - \alpha u_t(0, t)^2 - \beta u_t(0, t)u_t(L, t). \end{aligned}$$

(b) (8 points) Use (a) to prove uniqueness of classical solutions in the case $\beta = 0$ (with $\delta \geq 0$ fixed).

Solution: Let u and v be two classical solutions with the same data and set $w = u - v$. Then $w_{tt} = w_{xx}$, $w(\cdot, 0) = 0$, $w_t(\cdot, 0) = 0$, and when $\beta = 0$ the boundary conditions reduce to

$$w_x(L, t) + \delta w_t(L, t) = 0, \quad w_x(0, t) - \alpha w_t(0, t) = 0.$$

Applying the energy identity from part (a) to w yields

$$E'_w(t) = -\delta w_t(L, t)^2 - \alpha w_t(0, t)^2 \leq 0.$$

Since $E_w(t) \geq 0$ and $E_w(0) = 0$, it follows that $E_w(t) \equiv 0$ for all $t \geq 0$. Hence $w_t \equiv 0$ and $w_x \equiv 0$ on $(0, L) \times (0, \infty)$, so w is constant in both x and t . Using $w(\cdot, 0) = 0$, we conclude that $w \equiv 0$, and therefore $u \equiv v$.

(c) (7 points) Assume $\beta \neq 0$ (and $\delta > 0$). Using the formula for $E'(t)$ from part (a), show that if

$$\beta^2 \leq 4\alpha\delta,$$

then the energy is nonincreasing:

$$E'(t) \leq 0 \quad \text{for all } t \geq 0.$$

Solution: From part (a),

$$E'(t) = -\delta u_t(L, t)^2 - \alpha u_t(0, t)^2 - \beta u_t(0, t)u_t(L, t).$$

Let $a = u_t(0, t)$ and $b = u_t(L, t)$. Then

$$E'(t) = -\alpha a^2 - \delta b^2 - \beta ab.$$

Complete the square:

$$-\alpha a^2 - \delta b^2 - \beta ab = -\alpha \left(a + \frac{\beta}{2\alpha} b \right)^2 - \left(\delta - \frac{\beta^2}{4\alpha} \right) b^2.$$

If $\beta^2 \leq 4\alpha\delta$, then $\delta - \beta^2/(4\alpha) \geq 0$, so both terms on the right-hand side are ≤ 0 . Hence $E'(t) \leq 0$ for all $t \geq 0$.