

Write your name and your professor's name or your section number below. You are *not* allowed to use textbooks, or a calculator. You may have two 3x5" cards (both sides) for notes, or equivalent. To receive full credit on a problem you must show **sufficient justification for your conclusion** unless explicitly stated otherwise.

Name:

Instructor and Section: Mitchell, 002

1. (30 pts) If the statement is **always true**, write “TRUE”; if it is possible for the statement to be false then mark “FALSE.” You must give a **justification** for your answer. That is, if the answer is true, provide a brief proof. If the answer is false, provide a counterexample.

- A singular matrix is not diagonalizable.
- If the incomplete matrix A has a Jordan Canonical Form (JCF) J , then the JCF of A^2 is J^2 .
- The quadratic function $p(x, y) = 2x^2 - 2xy + y^2 - 2x + 4y + 7$ has a minimum value.
- If a matrix is not symmetric, then it is incomplete.
- If a system of equations $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions then the matrix A is singular.

Solution

(a) **False.** A counterexample is

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

which is singular and already diagonalized, since $S = I$

(b) **False.** The square of a Jordan block is generally not another Jordan block, and so cannot be in the Jordan Canonical Form of the squared matrix. For example, if

$$J = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

then

$$J^2 = \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix}$$

which is not a Jordan block since the entry on the superdiagonal is not 1.

(c) **True.** Here we have a positive definite matrix:

$$K = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 1/2 \end{pmatrix}$$

so $p(x, y)$ will have a minimum value.

(d) **False** A counterexample would be

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$

which is not symmetric, but is still complete.

(e) **False** This is true when A is square, but for a nonsquare system there can be infinitely many solutions whenever $\text{rank}(A) < n$.

2. (20 pts) The following questions are unrelated.

(a) (8 pts) Is $L\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \\ -x \end{pmatrix}$ a linear function? If it is linear, prove that it is and find the matrix representation of L in the standard basis.

(b) (12 pts) Let L be the linear function with the standard basis representation given by $A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$. Find bases for \mathbb{R}^2 and \mathbb{R}^3 that puts L into canonical form after a change of basis.

Solution

(a) Yes, this is a linear function, since

$$L(a\mathbf{x} + b\mathbf{y}) = \begin{pmatrix} ax_2 + by_2 \\ 0 \\ -ax_1 - by_1 \end{pmatrix} = aL(\mathbf{x}) + bL(\mathbf{y})$$

The matrix representation has columns

$$L\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \quad L\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{pmatrix}$$

(b) For \mathbb{R}^3 , we need basis vectors for the coimage and kernel. Row reducing A allows us to find the kernel:

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{R_2=R_2-R_1} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_1=R_1+R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$

So the basis vector for the kernel is

$$z = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

We take the transposes of the rows of the REF as a basis for the cokernel, so our basis is

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \right\}$$

To find the \mathbb{R}^2 basis, we apply the linear transformation to the coimage basis:

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

So the \mathbb{R}^2 basis is

$$\left\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \end{pmatrix} \right\}$$

3. (20 pts) Let $A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}$.

- (8 pts) What is the characteristic polynomial $p(\lambda)$ for A ?
- (8 pts) Find the eigenvalues and eigenvectors for A .
- (4 pts) Is A a complete matrix? What is the diagonalization transformation for A ? (The Λ matrix in $S\Lambda S^{-1}$)

Solution:

- $p(\lambda) = \lambda^2 - 4\lambda + 3$
- $\lambda_1 = 3, \mathbf{v}_1 = (1, 2)^T, \lambda_2 = 1, \mathbf{v}_2 = (1, 1)^T$
- Yes. Set $P = (\mathbf{v}_1, \mathbf{v}_2)$, then $A = P\Lambda P^{-1}$, where $\Lambda = \text{diag}(3, 1)$.

4. (20 pts) Let A be a matrix with characteristic polynomial given by

$$p_A(\lambda) = (1 - \lambda)^3(2 - \lambda)^3(-3 - \lambda)$$

Eigenvalue $\lambda = 1$ has one ordinary eigenvector while eigenvalue $\lambda = 2$ has two ordinary eigenvectors.

(a) (16 pts) Write down all of the Jordan blocks that appear in A 's Jordan Canonical Form.

(b) (4 pts) What is the dimension of the eigenspace for eigenvalue 2?

Solution:

(a) Eigenvalue $\lambda = 1$ has algebraic multiplicity 3 and geometric multiplicity 1, so it will have one 3 Jordan block:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Eigenvalue $\lambda = 2$ has algebraic multiplicity 3 and geometric multiplicity 2, so it will have one 2 Jordan block and one 1×1 :

$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

$$(2)$$

Finally, eigenvalue $\lambda = -3$ has algebraic multiplicity 1 and geometric multiplicity 1, so it will have one 1 Jordan block:

$$(-3)$$

(b) Since $\lambda = 2$ has two ordinary eigenvectors, the dimension of the eigenspace is 2.

5. (20 pts) Let A be the matrix with the SVD given by

$$A = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{7} \\ 1/\sqrt{3} & 2/\sqrt{7} \\ 1/\sqrt{3} & -1/\sqrt{7} \\ 0 & 1/\sqrt{7} \end{pmatrix} \begin{pmatrix} 4\sqrt{15} & 0 \\ 0 & \sqrt{35} \end{pmatrix} \begin{pmatrix} -1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

(a) (2 pts) What is the rank of A ? Be sure to justify your answer.

(b) (6 pts) Does $A\mathbf{x} = \mathbf{b}$ have a solution when $\mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$?

(c) (12 pts) What is the best rank 1 approximation of A using the Frobenius norm?

Solution:

- (a) A has two singular values and so it's rank is 2.
- (b) Yes. \mathbf{b} is a multiple of the first column of P . Since the columns of P are a basis for the image of the matrix, $A\mathbf{x} = \mathbf{b}$ has a solution.
- (c) We use the largest singular value and its singular vectors to construct the rank 1 approximation:

$$\begin{aligned} A_1 &= \begin{pmatrix} -1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \end{pmatrix} (4\sqrt{15}) \begin{pmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \\ &= \frac{4\sqrt{15}}{\sqrt{3}\sqrt{5}} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 & 2 \end{pmatrix} \\ &= 4 \begin{pmatrix} 1 & -2 \\ -1 & 2 \\ -1 & 2 \\ 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 4 & -8 \\ -4 & 8 \\ -4 & 8 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

6. (20 pts) Let B be the matrix with the SVD given by

$$B = \begin{pmatrix} -1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(a) (8 pts) Find the pseudoinverse of B .

(b) (4 pts) Find the least squares solution to $B\mathbf{x} = \mathbf{c}$ when $\mathbf{c} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$.

(c) (8 pts) What is the closest point to \mathbf{c} in $\text{img}B$?

Solution:

(a) The pseudoinverse of B is given by

$$\begin{aligned} B^+ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1/4 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} -1/2 & 1/2 & 1/2 & 1/2 \\ -1/2 & -1/2 & -1/2 & 1/2 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1/8 & 1/8 & 1/8 & 1/8 \\ -1/4 & -1/4 & -1/4 & 1/4 \end{pmatrix} \\ &= \begin{pmatrix} -1/4 & -1/4 & -1/4 & 1/4 \\ -1/8 & 1/8 & 1/8 & 1/8 \end{pmatrix} \end{aligned}$$

(b) The least squares solution is $B^+\mathbf{c}$:

$$\mathbf{x}^* = \begin{pmatrix} -1/4 & -1/4 & -1/4 & 1/4 \\ -1/8 & 1/8 & 1/8 & 1/8 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/4 \\ 3/8 \end{pmatrix}$$

(c) The closest point in $\text{img}B$ is $B\mathbf{x}^*$:

$$\begin{aligned}\mathbf{w} &= \begin{pmatrix} -1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1/4 \\ 3/8 \end{pmatrix} \\ &= \begin{pmatrix} -1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3/8 \\ -1/4 \end{pmatrix} \\ &= \begin{pmatrix} -1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 3/2 \\ -1/2 \end{pmatrix} \\ &= \begin{pmatrix} -1/2 \\ 1 \\ 1 \\ 1/2 \end{pmatrix}\end{aligned}$$

7. (20 points) The 3×3 matrix A has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 3$ and $\lambda_3 = 4$ with corresponding eigenvectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, and $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, respectively.

- (a) (4 pts) Does this uniquely define the matrix A ? Explain your answer.
- (b) (8 pts) Find a matrix A corresponding to the given eigenvalues/eigenvectors (either “a” matrix, or “the” matrix, depending on your answer to the previous question).
- (c) (8 pts) Find e^{tA} .

Solution:

- (a) Yes, this is unique, since the eigenvectors are linearly independent (they *have* to be, since they correspond to different eigenvalues), so they form a basis for \mathbb{R}^3 , so we’ve completely specified the linear operator, and its representation as a matrix (i.e., with the canonical basis) is also unique.

If we make $S = (\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3)$ and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ so that $A = S\Lambda S^{-1}$, you might wonder what if you defined $S = (\mathbf{v}_3 \mathbf{v}_2 \mathbf{v}_1)$ or some other permutation. As long as you permuted Λ and used the new S^{-1} , then you’d get the same matrix A .

Similarly, if $\mathbf{v}_1 = [2 \ 0 \ 0]^T$ is an eigenvector, then $[1 \ 0 \ 0]^T$ is also an eigenvector, and you could use that just as well, and it wouldn’t change A .

- (b) The matrix A is $A = S\Lambda S^{-1}$ where S and Λ are as above, so

$$S = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Finding S^{-1} by Gauss-Jordan gives

$$S^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

And so our A matrix is

$$\begin{aligned}
 A &= S\Lambda S^{-1} \\
 &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \\
 &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & -4 \end{pmatrix} \\
 &= \begin{pmatrix} 3 & 0 & -1 \\ 0 & 3 & 0 \\ -1 & 0 & 3 \end{pmatrix}
 \end{aligned}$$

(c) Since the matrix is diagonalizable, we can define $e^{tA} = Se^{t\Lambda}S^{-1}$ and the exponential of a diagonal matrix is done entrywise to the diagonal entries. Hence:

$$\begin{aligned}
 e^t At &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & e^{3t} & 0 \\ 0 & 0 & e^{4t} \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \\
 &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{2t} & 0 & e^{2t} \\ 0 & e^{3t} & 0 \\ e^{4t} & 0 & -e^{4t} \end{pmatrix} \\
 &= \frac{1}{2} \begin{pmatrix} e^{2t} + e^{4t} & 0 & e^{2t} - e^{4t} \\ 0 & 2e^{3t} & 0 \\ e^{2t} - e^{4t} & 0 & e^{2t} + e^{4t} \end{pmatrix}
 \end{aligned}$$