

Write your name and your professor's name or your section number below. You are *not* allowed to use textbooks, or a calculator. You may have two 3x5" cards (both sides) for notes, or equivalent. To receive full credit on a problem you must show **sufficient justification for your conclusion** unless explicitly stated otherwise.

Name:

Instructor and Section: Mitchell, 002

1. (30 pts) If the statement is **always true**, write “TRUE”; if it is possible for the statement to be false then mark “FALSE.” You must give a **justification** for your answer. That is, if the answer is true, provide a brief proof. If the answer is false, provide a counterexample.
- (a) A singular matrix is not diagonalizable.
 - (b) If the incomplete matrix A has a Jordan Canonical Form (JCF) J , then the JCF of A^2 is J^2 .
 - (c) The quadratic function $p(x, y) = 2x^2 - 2xy + y^2 - 2x + 4y + 7$ has a minimum value.
 - (d) If a matrix is not symmetric, then it is incomplete.
 - (e) If a system of equations $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions then the matrix A is singular.

2. (20 pts) The following questions are unrelated.

- (a) (8 pts) Is $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \\ -x \end{pmatrix}$ a linear function? If it is linear, prove that it is and find the matrix representation of L in the standard basis.
- (b) (12 pts) Let L be the linear function with the standard basis representation given by $A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$. Find bases for \mathbb{R}^2 and \mathbb{R}^3 that puts L into canonical form after a change of basis.

3. (20 pts) Let $A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}$.
- (a) (8 pts) What is the characteristic polynomial $p(\lambda)$ for A ?
- (b) (8 pts) Find the eigenvalues and eigenvectors for A .
- (c) (4 pts) Is A a complete matrix? What is the diagonalization transformation for A ? (The Λ matrix in $S\Lambda S^{-1}$)

4. (20 pts) Let A be a matrix with characteristic polynomial given by

$$p_A(\lambda) = (1 - \lambda)^3(2 - \lambda)^3(-3 - \lambda)$$

Eigenvalue $\lambda = 1$ has one ordinary eigenvector while eigenvalue $\lambda = 2$ has two ordinary eigenvectors.

- (a) (16 pts) Write down all of the Jordan blocks that appear in A 's Jordan Canonical Form.
- (b) (4 pts) What is the dimension the of eigenspace for eigenvalue 2?

5. (20 pts) Let A be the matrix with the SVD given by

$$A = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{7} \\ 1/\sqrt{3} & 2/\sqrt{7} \\ 1/\sqrt{3} & -1/\sqrt{7} \\ 0 & 1/\sqrt{7} \end{pmatrix} \begin{pmatrix} 4\sqrt{15} & 0 \\ 0 & \sqrt{35} \end{pmatrix} \begin{pmatrix} -1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}$$

(a) (2 pts) What is the rank of A ? Be sure to justify your answer.

(b) (6 pts) Does $A\mathbf{x} = \mathbf{b}$ have a solution when $\mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$?

(c) (12 pts) What is the best rank 1 approximation of A using the Frobenius norm?

6. (20 pts) Let B be the matrix with the SVD given by

$$B = \begin{pmatrix} -1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(a) (8 pts) Find the pseudoinverse of B .

(b) (4 pts) Find the least squares solution to $B\mathbf{x} = \mathbf{c}$ when $\mathbf{c} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$.

(c) (8 pts) What is the closest point to \mathbf{c} in $\text{img}B$?

7. (20 points) The 3×3 matrix A has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 3$ and $\lambda_3 = 4$ with corresponding eigenvectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, and $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, respectively.

- (a) (4 pts) Does this uniquely define the matrix A ? Explain your answer.
- (b) (8 pts) Find a matrix A corresponding to the given eigenvalues/eigenvectors (either “a” matrix, or “the” matrix, depending on your answer to the previous question).
- (c) (8 pts) Find e^{tA} .