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1. [Exam03] (30pts) There are 3 unrelated parts to this question. Justify yoursanswers.
(a) (10pts) Suppose that A and B each randomly and independently choose 3 of 10 objects. Find the expected
number of objects chosen exclusively by A or B (but net both).

(b) (10pts) A fair die is successively rolled. Let Xuwand Y denote, respectively, the number of rolls necessary
to obtain the first 6 and the first 5. Find P(X'= 2[¥'=5).

(c) (10pts) If X1, X2, X3, and X4 are (pairwise) uncorrelated random variables, each“having mean 0 and
variance 1, compute the correlation of X7 + Xo and X5 + X3, that is, find p(X71 +X5, Xo+ X3).

Solution:
1, if A or B [choese item i but not both, !

(a)(10pts) Let X; = and let X = ZXi and note that
0, else, i=1

. . . ) 3 7 7, 3 3 7
P(X; = 1) = R({(sratiem 1} or (Fhorseion ) = 75 10 M 16 =2 10 10

and so the expected iumber ofiobjects chosen exclusively by A or B (but not both) is
10 10 10 3 - 3 -
EX)= ElX;] = P(X;=1)= 2= (= | =102 =) (—=)|=4.2
A rixi =3 roi= =32 () () |02 (55) ()

(b)(10pts) Proceeding by definition, we have

P(X =2|Y =5)= — = = =|—|=0.16.

(€)(10pts) Since the randoém variables are uncorrelated we have Cov(X;, X;) = 0 for ¢ # j, and so

COV(Xl + Xo, Xo + Xg) = COV(Xl, X9+ Xg) + COV(XQ,XQ + Xg)

= Cov(X1, X2) 4+ Cov(X1, X3) + Cov(X2, X2) + Cov(Xa, X3) = Var(Xs) = 1.

For the variance, we have
Var(X; + X2) = Cov(X; + Xo, X7 + X2)
= COV(Xl,Xl) + QCOV(Xl,XQ) + COV(XQ,XQ) = Var(Xl) + Var(Xg) =2
and, similarly, Var(Xg + X3) = 2. Thus the correlation of X; + X3 and X3 + X3 is

COV(X1 + X9, Xo + Xg) Var(Xg) 1
X1+ Xy, Xy + Xs) = _ |t
P e ) = e R X Vit Xa) V3 Va2




2. [Exam03] (40pts) Let X and Y have the joint density function

20y +9%), f0<y<l, —y<zx<y,
fX,Y(x7y) = .
0, otherwise.

2/3+x —5x3/3, dfx € (-1,0)
where E[X|Y] = y/3 and the marginal pdf of X is fx(z) = ¢2/3+2 —23/3, i 2 [0,1)
0, else
(a) (10pts) Set-up the integral(s) we would need to calculate to findeP(}.X | < 0.4, |¥| < 0.4). (Set-up only!)
(b) (10pts) Find the marginal pdf fy(y) and the conditional pdf.fx |y (2]0.4). (Be sure to explicitly specify the

domains as appropriate.)
(c) (10pts) Find the expectation E[X].
(d) (10pts) Find the conditional probability P(0 <Y < 0.5(X = 0).

Solution:

(a)(10pts) Note thate{]|.X| <04, ¥ £ 0.4} = {-04 < X <04,-04 <Y <04}, so

04 pry
PX<04,]Y]| <04) =P(-Y < X <Y,0[< Y <0.4) = / / 2(y? + zy) dady
0 -y

or

04 0.4
P(|X|<04,]Y|<04) = /04/ W2 + zy) dyd:z:—l—/ / (y? + zy) dydz.

(b)(10pts) To find the marginal pdf fy(y), note that, for each y € (0,1), we have

2

00 y
= / fleyy)dz = / 2(y2 + xy) dx:2(:cy2+ﬁ>‘y = 493
. i 2 /1y

= | fy(y) =493 for'0 < y < 1 and 0 else.

If y = 0.4, then —0.4 < z < 0.4, so the conditional pdf of X|Y = 0.4 is

-0.4- i 0.4
f(x,0.4) 2:04 (z —g 0 4), for —0.4 < z < 0.4, r+92 5, for —0.4 <z <04,
fxy(2]0.4) = Fo0n - 4(0.4) — ) 2(0.4)
fy(04) 0, otherwise. 0, otherwise.

(c)(10pts) Using the formula E[X] = E[E[X|Y]], we have

wit_|4
510 |15

E[X] = E[E[X]|Y]] :/_00 E[X|Y]fy(y)dy:/0 %,4y3dy: g_




(d)(10pts) To find P(0 <Y < 0.5|X = 0), we need the conditional pdf fyx(y|0). Note that fx(0) = 2/3
and, if z =0, then 0 < y < 1, so the pdf of Y|X =0 is

200-y+9%) . ,
f(0,y) % ifo<y<1, 3y?, if0<y<l,

fyix(w0) = ; =

otherwise, 0,  otherwise.

Now, to find the probability P(0 <Y < 0.5| X = 0), we have

1/2 1/2
P(0<Y <05/X =0) frix(y0)dy = / 2d
0 0

3. [Examo03] (30pts) Suppose X and Y are independent random variable X is Exponentially distributed with
A =1and Y is Uniformly distributed on (0, 1).

(a) (10pts) Set-up the integral(s) we would need to calcul find P(Y > eX —1). (Set-up only!)

(b) (10pts) For X > 0 and Y > 0 define U =
defined for all of R%.)

the joint pdf fy v (u,v). (The pdf should be

(c) (10pts) Find the conditional expectation E[V 1|

Solution:

In(2)

(a) zy-domain (b) wv-domain
(a)(10p ependence, the joint pdf is fx y; )fylyy=1l-e=e* 2>0,0<y<1and
0
In(2 1
PY>eX—-1)=P ,ef —1<Y <1) / / e ¥ dydx
0 1
(b)(10pts) Suppose X ~ Exp A = 1) and Y ~ Uniform(0,1) and X, Y are independent. Note, if
U=Xand V =X/Y, then dY =X/V=U/V and
Ozu  Oyu 1 0 _ y? w/v)? U
Tay) = v V==t s )t = L= B )
Ozv Oyv 1)y —x/y x u v

and note that > 0 implies « > 0 and 0 < y < 1 implies 0 < 7 < 1 and, since v = % > 0, we can conclude
that 0 < w < wv. Since fxy(z,y) =1-e ¥ ifx>0,0<y<1andO0 else, we have

o e‘“-%, foru >0, v > u,
foy(u,v) = fxy(u,u/v)-[J(z,y)| = v
0, else.




(c)(10pts) Since U = X and X ~Exponential(A = 1), we have fyr(u) = e for u > 0 and 0 otherwise, thus,
for each u > 0, we have

fvip(v|u) = =

u .
f(u,v) {F’ if v > u,

0, else.

Thus, for each u > 0, we have

B © q ©1 0o B
E[V1|U]=/ o frw(vlu) dv /;-v—2dv=/ w3 dv = —

—00

for u > 0.




