
Name: APPM 1650 Fall 2025 Final Exam

� If you have any scratch work, please circle your final answer.

� Any code you write should run in a Jupyter cell; every character counts!

� For all questions on this exam, assume that all necessary packages have been imported.

(1) For the following 4 problems, write down what each code block would display if executed in a
Jupyter cell. If the code generates an error or infinite loop, write Error.

(a) name = ’matt’

name_dict = {x : name.count(x) for x in name}

name_dict[name[1]], name_dict[name[2]]

(b) (lambda x: x + 2 * x)(np.ones(2))

(c) arr = np.arange(9).reshape(3, 3)

arr[::2, 1:] = -1

arr

(d) def func(string):

while len(string) > 1:

new = str((int(string[0]) + int(string[-1])) % 10)

print(new)

return func(new + string[1:-1])

return string

func(’987’)

Solution:

(a) (1, 2)

(b) array([3., 3.])

(c) array([[0, -1. -1],

[3, 4, 5],

[6, -1 -1]])

(d) 6

4

’4’

1

Name: APPM 1650 Fall 2025 Final Exam

(2) Euler’s number e ≈ 2.71828 can be approximated by the sequence an given by

an = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

The values of the sequence an get closer to e as n gets larger.

(a) Write a function approx(n) which returns the value of the approximation an. For example,
approx(1) would return 2.0, and approx(2) would return 2.5 because

a1 = 1 +
1

1!
= 2, a2 = 1 +

1

1!
+

1

2!
= 2.5.

(b) Write a function first n(tol) which returns the first value of n such e− an < tol.

For example, first n(0.5) would return 2, because

e− a2 ≈ 2.71828− 2.5 = 0.21828 < 0.5.

Solution:

(a) def approx(n):

reciprocals = [1] + [1 / math.factorial(a) for a in range(1, n + 1)]

return sum(reciprocals)

(b) def first_n(tol):

n = 1

while math.e - approx(n) >= tol:

n += 1

return n

2

Name: APPM 1650 Fall 2025 Final Exam

(3) Create a class called Circle. Each instance of this class should have two attributes:

� center, which is a list of the coordinates of the circle’s center, and has a default value of
[0, 0],

� radius, which is a nonnegative number and has a default value of 1,

and methods

� stretch(factor), which returns nothing but updates the radius by multiplying by the
given factor,

� move(tup), returns nothing but which shifts the circle according to the values in tup. For
example, if tup = (-1, 2), this method will shift the circle one unit left, and two units
up,

� plot top(), which returns nothing but plots the top half of the circle.

Solution:

class Circle:

def __init__(self, center=[0, 0], radius=1):

self.center = center

self.radius = radius

def stretch(self, factor):

self.radius *= factor

def move(self, tup):

self.center = [self.center[0] + tup[0], self.center[1] + tup[1]]

def plot_top(self):

xvals = np.linspace(self.center[0] - self.radius, self.center[0] + self.radius, 100)

yvals = np.sqrt((self.radius ** 2) - (xvals - self.center[0]) ** 2) + self.center[1]

plt.plot(xvals, yvals)

plt.show()

3

Name: APPM 1650 Fall 2025 Final Exam

(4) The dataframe dfpeaks contains information about mountains in Colorado. The index column
is names, and the other columns are elev for the elevation in feet at the summit, county specifies
which county in Colorado the mountain is in, and low temp is the lowest temperature (in ◦C)
recorded at the summit:

Write code to do the following:

(a) Create a new column mt13 which is True if the mountain has elevation from 13,000 and
13,999 feet, and False otherwise.

(b) Create a list of all the names of mountains located in Boulder County.

(c) Create a list of counties which have a mountain whose record low temperature is less than
−20◦C. County names in your list should only appear once.

Solution:

(a) dfpeaks[’mt13’] = (13000 <= dfpeaks[’elev’]) & (dfpeaks[’elev’] <= 13999)

(b) dfpeaks[dfpeaks[’county’] == ’Boulder’].index.tolist()

(c) dfpeaks[dfpeaks[’low temp’] < -20].county.unique().tolist()

4

Name: APPM 1650 Fall 2025 Final Exam

(5) (a) The determinant of the 2×2 matrix A =

[
a b
c d

]
, where a, b, c and d are numbers, is given

by
det(A) = ad− bc.

Write a function det2(arr) which returns the determinant of a 2× 2 Numpy array arr.
If arr is not 2× 2, then det2() should return nothing and print ‘arr is not 2x2.’

(b) Write a function swap(arr, tup) which returns a copy of the array arr, but with the
rows specified in tup swapped. You may assume that the values in tup are valid row
indices.

For example, if arr represents the array

2 1
5 0
0 −1

 , then swap(arr, (0, 2)) should re-

turn an array which represents

0 −1
5 0
2 1

.
Solution:

(a) def det2(arr):

if arr.shape == (2, 2):

return arr[0, 0] * arr[1, 1] - arr[0, 1] * arr[1, 0]

else:

print(’arr is not 2x2’)

(b) def swap(arr, tup):

row0 = np.copy(arr[tup[0], :])

row1 = np.copy(arr[tup[1], :])

arr[tup[0], :] = row1

arr[tup[1], :] = row0

return arr

5

Name: APPM 1650 Fall 2025 Final Exam

6

