
APPM 2340 Final Exam Fall 2025

1. (54 pts) Consider the surface x2 − 10x+ 4y2 − 4z2 + 25 = 0.

(a) Points P (11, 0, 3) and Q(5,−2, 2) lie on the surface.

i. Find a vector of length 4 in the direction of PQ.
ii. Find symmetric equations for the line passing through P and Q.

iii. Find an equation for the plane tangent to the surface at P .
iv. Let h(x, y, z) = y+xz. Find the directional derivative of h at P in the direction toward Q.

(b) Write the equation for the surface in standard form and identify the surface.

(c) Classify the type of curves in the x = 0, y = 0, and z = 0 traces of the surface.

(d) The path r(t) =
〈
4 + t2, t, 1

2 + 1
2 t

2
〉

lies on the surface. Let the temperature along the path

be T (x, y, z) =
y

x
− z. Find dT/dt, the rate at which the temperature is changing, at t = 2.

Solution:

(a) i. PQ = 〈−6,−2,−1〉 and |PQ| =
√
62 + 22 + 12 =

√
41, so a unit vector in the same

direction is PQ
|PQ| = 1√

41
〈−6,−2,−1〉. A vector in the direction of PQ of length 4 is

4√
41
〈−6,−2,−1〉 .

ii. The line has direction PQ = 〈−6,−2,−1〉 and passes through P (11, 0, 3), so a vector
equation for the line is 〈x, y, z〉 = 〈11, 0, 3〉+ t〈−6,−2,−1〉. Parametric equations for the
line are x = 11− 6t, y = −2t, and z = 3− t, and symmetric equations are

x− 11

−6
=

y

−2
=
z − 3

−1
.

or
x− 5

−6
=
y + 2

−2
=
z − 2

−1

using Q(5,−2, 2).

iii. Let f(x, y, z) = x2− 10x+4y2− 4z2+25. Then an equation for the tangent plane at P is

∇f(x0, y0, z0) · 〈x− x0, y − y0, z − z0〉 = 0

∇f(11, 0, 3) · 〈x− 11, y, z − 3〉 = 0.

Solve for∇f at P :
∇f(x, y, z) = 〈2x− 10, 8y,−8z〉

∇f(11, 0, 3) = 〈12, 0,−24〉,
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so an equation for the tangent plane at P is

12(x− 11)− 24(z − 3) = 0

or
x− 2z = 5 .

Alternate solution:

z = f(x, y) =
1

2

√
x2 − 10x+ 4y2 + 25

for z > 0. An equation for the tangent plane at P is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

z = f(11, 0) + fx(11, 0)(x− 11) + fy(11, 0)y

Given

∇f =
1

2

〈
x− 5√

x2 − 10x+ 4y2 + 25
,

4y√
x2 − 10x+ 4y2 + 25

〉

∇f(11, 0) =
〈
1

2
, 0

〉
,

an equation for the tangent plane is

z = 3 +
1

2
(x− 11) =

1

2
x− 5

2
.

iv.

h(x, y, z) = y + xz

∇h(x, y, z) = 〈z, 1, x〉

The directional derivative of h at P in the direction of PQ equals

∇h(11, 0, 3) · PQ

|PQ|
= 〈3, 1, 11〉 · 〈−6,−2,−1〉√

41

=
−18− 2− 11√

41
=
−31√
41

.

(b)

x2 − 10x+ 4y2 − 4z2 + 25 = 0

(x− 5)2 + 4y2 − 4z2 = 0

(x− 5)2

4
+ y2 = z2

The surface is a cone .

(c) The x = 0 trace is
25

4
+ y2 = z2 which corresponds to a hyperbola .

The y = 0 trace is
(x− 5)2

4
= z2 which corresponds to the two lines 2z = |x− 5|.

The z = 0 trace is
(x− 5)2

4
+ y2 = 0 which corresponds to the point (5, 0, 0).
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(d) Note that

r(2) =
〈
8, 2, 52

〉
r′(t) = 〈2t, 1, t〉
r′(2) = 〈4, 1, 2〉

and

∇T (x, y, z) =
〈
− y

x2
,
1

x
,−1

〉
∇T

(
8, 2, 52

)
=

〈
− 1

32
,
1

8
,−1

〉
.

The rate at which the temperature is changing is

dT

dt
=
dT

dx

dx

dt
+
dT

dy

dy

dt
+
dT

dz

dz

dt

= ∇T · r′(t).

At t = 2,

dT

dt

∣∣∣∣∣
t=2

= ∇T
(
8, 2, 52

)
· r′(2)

=

〈
− 1

32
,
1

8
,−1

〉
· 〈4, 1, 2〉

= −1

8
+

1

8
− 2

= −2 .

2. (18 pts) A joint probability density function for random variables X and Y is

f(x, y) =
1

2π
e(−x

2−y2)/2

for all real x, y. Consider the probability P
(
Y ≥ 0 and X2 + Y 2 ≥ 16

)
.

(a) Set up a double integral in polar coordinates to compute the probability.

(b) Evaluate the integral.

Solution:

(a) Let R be the region with y ≥ 0 and x2 + y2 ≥ 16, which consists of all points in the upper half
of the xy-plane exterior to a circle of radius 4 centered at the origin. In polar coordinates, the
region corresponds to 0 ≤ θ ≤ π and r ≥ 4. Substituting r2 = x2+ y2 and the Jacobian r gives

P
(
Y ≥ 0 and X2 + Y 2 ≥ 16

)
=

∫∫
R

1

2π
e(−x

2−y2)/2 dA =

∫ π

0

∫ ∞
4

1

2π
re−r

2/2 dr dθ.
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(b) ∫ π

0

∫ ∞
4

1

2π
re−r

2/2 dr dθ =

(∫ π

0
dθ

)∫ ∞
4

1

2π
re−r

2/2 dr︸ ︷︷ ︸
u=r2/2,du=r dr

=

(∫ π

0
dθ

)∫ ∞
8

1

2π
e−u du

=
[
θ
]π
0

[
− 1

2π
e−u
]∞
8

= π

(
− 1

2π

)
lim
t→∞

(
e−t − e−8

)
=

1

2
e−8

3. (28 pts) Region E lies in the first octant, below a sphere of radius 3 centered at the origin, and above
the surface z = 3−

√
x2 + y2.

(a) Sketch and shade a cross-section of the region in the rz-plane (i.e., a half-plane of constant θ).

(b) Set up (but do not evaluate) an integral to find the volume of the region using

i. rectangular coordinates in the order dz dy dx
ii. cylindrical coordinates in the order dz dr dθ

iii. spherical coordinates in the order dρ dφ dθ.

Solution:

(a) Region E lies between a sphere of radius 3 and an inverted cone. A cross-section of the region
in the rz-plane is shown below.

3

3

r

z

(b) An equation for the sphere is

x2 + y2 + z2 = 9 =⇒ z =
√

9− x2 − y2.

The projection ofE onto the xy-plane is a quarter-circular region of radius 3 in the first quadrant.
The circle has equation x2 + y2 = 9, so the quarter-circle is defined by y =

√
9− x2.

i. In rectangular coordinates, the projected region in the xy-plane corresponds to 0 ≤ x ≤ 3
and 0 ≤ y ≤

√
9− x2, so the volume integral is∫ 3

x=0

∫ √9−x2
y=0

∫ √9−x2−y2

z=3−
√
x2+y2

dz dy dx.
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ii. In polar coordinates, the projected region corresponds to θ in [0, π2 ] and r in [0, 3]. Substi-
tuting r2 = x2 + y2 and the Jacobian r, the volume integral is∫ π/2

θ=0

∫ 3

r=0

∫ √9−r2
z=3−r

r dz dr dθ.

iii. In spherical coordinates, region E in the first octant corresponds to θ in [0, π2 ] and φ in
[0, π2 ]. The variable ρ extends from the cone z = 3 − r to the sphere ρ = 3. Substituting
the identities z = ρ cosφ and r = ρ sinφ, then solving for ρ, gives a lower bound of

z = 3− r =⇒ ρ cosφ = 3− ρ sinφ =⇒ ρ =
3

cosφ+ sinφ
.

Inserting the Jacobian ρ2 sinφ, the volume integral is∫ π/2

θ=0

∫ π/2

φ=0

∫ 3

ρ=3/(cosφ+sinφ)
ρ2 sinφdρ dφ dθ.

4. (14 pts) Let A and B be symmetric n× n matrices. Prove that (AB)T = BA in two ways:

(a) Using properties of matrix transpose and multiplication.

(b) Examining the (i, j) entries of (AB)T and BA.

Solution:

(a) Because A and B are symmetric matrices, A = AT and B = BT . Then

(AB)T = BTAT = BA

using the transpose property of matrix product.

(b)

(i, j) entry of (AB)T = (j, i) entry of AB (definition of matrix transpose)

= (row j of A) · (col i of B) (definition of matrix mult)

= (col j of A) · (row i of B) (symmetric matrix property)

= (row i of B) · (col j of A) (commutative property of dot product)

= (i, j) entry of BA (definition of matrix mult)

5. (14 pts) Use row reduction to find the inverse of the matrix.1 0 4
0 1 −2
1 −2 0


Solution:
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
1 0 4 1 0 0

0 1 −2 0 1 0

1 −2 0 0 0 1

→

1 0 4 1 0 0

0 1 −2 0 1 0

0 −2 −4 −1 0 1

→

1 0 4 1 0 0

0 1 −2 0 1 0

0 0 −8 −1 2 1

→

1 0 4 1 0 0

0 1 −2 0 1 0

0 0 1 1
8 −1

4 −1
8

→

1 0 4 1 0 0

0 1 0 1
4

1
2 −1

4

0 0 1 1
8 −1

4 −1
8

→

1 0 0 1

2 1 1
2

0 1 0 1
4

1
2 −1

4

0 0 1 1
8 −1

4 −1
8


The inverse is 

1
2 1 1

2

1
4

1
2 −1

4

1
8 −1

4 −1
8

 .

6. (10 pts) A homogeneous system has 2 equations and 5 variables x1, x2, x3, x4, x5. The fundamental
solutions for the system are

b(−5, 1, 0, 0, 0) + d(2, 0, 0, 1, 0) + e(0, 0, 3, 0, 1)

where x2 = b, x4 = d, and x5 = e, for real numbers b, d, and e. Find the reduced row echelon form
(RREF) augmented matrix that represents the system.

Solution:

The homogeneous system has independent variables x2 = b, x4 = d, and x5 = e. Given the
fundamental solutions b(−5, 1, 0, 0, 0) + d(2, 0, 0, 1, 0) + e(0, 0, 3, 0, 1), the complete solution set is

{(−5b+ 2d, b, 3e, d, e) | b, d, e in R}.

The solution set corresponds to the equations

x1 = −5b+ 2d =⇒ x1 + 5b− 2d = 0 =⇒ x1 + 5x2 − 2x4 = 0

x3 = 3e =⇒ x3 − 3e = 0 =⇒ x3 − 3x5 = 0.

An augmented matrix that representing this homogeneous system is[
1 5 0 −2 0 0
0 0 1 0 −3 0

]
which is in reduced row echelon form.
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7. (12 pts) Suppose we wish to find a quadratic least-squares polynomial for the points

(−1,−2), (0, 0), (1, 0), (2,−1).

Set up an augmented matrix representing the linear system that can be solved to determine the quadratic
polynomial. (Do not solve the system.)

Solution: Let the quadratic function be y = c0 + c1x + c2x
2. We wish to find constants c0, c1, and

c2 that will minimize the least-squares error. Let

A =


1 −1 1
1 0 0
1 1 1
1 2 4

 v =

c0c1
c2

 and b =


−2
0
0
−1

 .

We wish to solve ATAv = ATb. Given AT =

 1 1 1 1
−1 0 1 2
1 0 1 4

, the augmented matrix that will

lead to the solution is [
ATA | ATb

]
=

4 2 6 −3
2 6 8 0
6 8 18 −6

 .
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