

1. (54 pts) Consider the surface $x^2 - 10x + 4y^2 - 4z^2 + 25 = 0$.

- Points $P(11, 0, 3)$ and $Q(5, -2, 2)$ lie on the surface.
 - Find a vector of length 4 in the direction of \mathbf{PQ} .
 - Find symmetric equations for the line passing through P and Q .
 - Find an equation for the plane tangent to the surface at P .
 - Let $h(x, y, z) = y + xz$. Find the directional derivative of h at P in the direction toward Q .
- Write the equation for the surface in standard form and identify the surface.
- Classify the type of curves in the $x = 0$, $y = 0$, and $z = 0$ traces of the surface.
- The path $\mathbf{r}(t) = \langle 4 + t^2, t, \frac{1}{2} + \frac{1}{2}t^2 \rangle$ lies on the surface. Let the temperature along the path be $T(x, y, z) = \frac{y}{x} - z$. Find dT/dt , the rate at which the temperature is changing, at $t = 2$.

Solution:

(a) i. $\mathbf{PQ} = \langle -6, -2, -1 \rangle$ and $|\mathbf{PQ}| = \sqrt{6^2 + 2^2 + 1^2} = \sqrt{41}$, so a unit vector in the same direction is $\frac{\mathbf{PQ}}{|\mathbf{PQ}|} = \frac{1}{\sqrt{41}} \langle -6, -2, -1 \rangle$. A vector in the direction of \mathbf{PQ} of length 4 is $\boxed{\frac{4}{\sqrt{41}} \langle -6, -2, -1 \rangle}$.

ii. The line has direction $\mathbf{PQ} = \langle -6, -2, -1 \rangle$ and passes through $P(11, 0, 3)$, so a vector equation for the line is $\langle x, y, z \rangle = \langle 11, 0, 3 \rangle + t \langle -6, -2, -1 \rangle$. Parametric equations for the line are $x = 11 - 6t$, $y = -2t$, and $z = 3 - t$, and symmetric equations are

$$\boxed{\frac{x - 11}{-6} = \frac{y}{-2} = \frac{z - 3}{-1}}.$$

or

$$\boxed{\frac{x - 5}{-6} = \frac{y + 2}{-2} = \frac{z - 2}{-1}}$$

using $Q(5, -2, 2)$.

iii. Let $f(x, y, z) = x^2 - 10x + 4y^2 - 4z^2 + 25$. Then an equation for the tangent plane at P is

$$\nabla f(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$\nabla f(11, 0, 3) \cdot \langle x - 11, y, z - 3 \rangle = 0.$$

Solve for ∇f at P :

$$\nabla f(x, y, z) = \langle 2x - 10, 8y, -8z \rangle$$

$$\nabla f(11, 0, 3) = \langle 12, 0, -24 \rangle,$$

so an equation for the tangent plane at P is

$$12(x - 11) - 24(z - 3) = 0$$

or

$$x - 2z = 5.$$

Alternate solution:

$$z = f(x, y) = \frac{1}{2} \sqrt{x^2 - 10x + 4y^2 + 25}$$

for $z > 0$. An equation for the tangent plane at P is

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

$$z = f(11, 0) + f_x(11, 0)(x - 11) + f_y(11, 0)y$$

Given

$$\nabla f = \frac{1}{2} \left\langle \frac{x - 5}{\sqrt{x^2 - 10x + 4y^2 + 25}}, \frac{4y}{\sqrt{x^2 - 10x + 4y^2 + 25}} \right\rangle$$

$$\nabla f(11, 0) = \left\langle \frac{1}{2}, 0 \right\rangle,$$

an equation for the tangent plane is

$$z = 3 + \frac{1}{2}(x - 11) = \frac{1}{2}x - \frac{5}{2}.$$

iv.

$$h(x, y, z) = y + xz$$

$$\nabla h(x, y, z) = \langle z, 1, x \rangle$$

The directional derivative of h at P in the direction of \mathbf{PQ} equals

$$\begin{aligned} \nabla h(11, 0, 3) \cdot \frac{\mathbf{PQ}}{|\mathbf{PQ}|} &= \langle 3, 1, 11 \rangle \cdot \frac{\langle -6, -2, -1 \rangle}{\sqrt{41}} \\ &= \frac{-18 - 2 - 11}{\sqrt{41}} = \frac{-31}{\sqrt{41}}. \end{aligned}$$

(b)

$$x^2 - 10x + 4y^2 - 4z^2 + 25 = 0$$

$$(x - 5)^2 + 4y^2 - 4z^2 = 0$$

$$\frac{(x - 5)^2}{4} + y^2 = z^2$$

The surface is a **cone**.

(c) The $x = 0$ trace is $\frac{25}{4} + y^2 = z^2$ which corresponds to a **hyperbola**.

The $y = 0$ trace is $\frac{(x - 5)^2}{4} = z^2$ which corresponds to the **two lines** $2z = |x - 5|$.

The $z = 0$ trace is $\frac{(x - 5)^2}{4} + y^2 = 0$ which corresponds to the **point** $(5, 0, 0)$.

(d) Note that

$$\begin{aligned}\mathbf{r}(2) &= \langle 8, 2, \frac{5}{2} \rangle \\ \mathbf{r}'(t) &= \langle 2t, 1, t \rangle \\ \mathbf{r}'(2) &= \langle 4, 1, 2 \rangle\end{aligned}$$

and

$$\begin{aligned}\nabla T(x, y, z) &= \left\langle -\frac{y}{x^2}, \frac{1}{x}, -1 \right\rangle \\ \nabla T(8, 2, \frac{5}{2}) &= \left\langle -\frac{1}{32}, \frac{1}{8}, -1 \right\rangle.\end{aligned}$$

The rate at which the temperature is changing is

$$\begin{aligned}\frac{dT}{dt} &= \frac{dT}{dx} \frac{dx}{dt} + \frac{dT}{dy} \frac{dy}{dt} + \frac{dT}{dz} \frac{dz}{dt} \\ &= \nabla T \cdot \mathbf{r}'(t).\end{aligned}$$

At $t = 2$,

$$\begin{aligned}\left. \frac{dT}{dt} \right|_{t=2} &= \nabla T(8, 2, \frac{5}{2}) \cdot \mathbf{r}'(2) \\ &= \left\langle -\frac{1}{32}, \frac{1}{8}, -1 \right\rangle \cdot \langle 4, 1, 2 \rangle \\ &= -\frac{1}{8} + \frac{1}{8} - 2 \\ &= \boxed{-2}.\end{aligned}$$

2. (18 pts) A joint probability density function for random variables X and Y is

$$f(x, y) = \frac{1}{2\pi} e^{(-x^2-y^2)/2}$$

for all real x, y . Consider the probability $P(Y \geq 0 \text{ and } X^2 + Y^2 \geq 16)$.

- (a) Set up a double integral in polar coordinates to compute the probability.
- (b) Evaluate the integral.

Solution:

- (a) Let R be the region with $y \geq 0$ and $x^2 + y^2 \geq 16$, which consists of all points in the upper half of the xy -plane exterior to a circle of radius 4 centered at the origin. In polar coordinates, the region corresponds to $0 \leq \theta \leq \pi$ and $r \geq 4$. Substituting $r^2 = x^2 + y^2$ and the Jacobian r gives

$$P(Y \geq 0 \text{ and } X^2 + Y^2 \geq 16) = \iint_R \frac{1}{2\pi} e^{(-x^2-y^2)/2} dA = \int_0^\pi \int_4^\infty \frac{1}{2\pi} r e^{-r^2/2} dr d\theta.$$

(b)

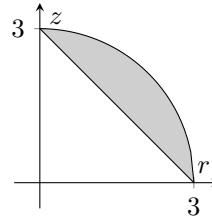
$$\begin{aligned}
\int_0^\pi \int_4^\infty \frac{1}{2\pi} r e^{-r^2/2} dr d\theta &= \left(\int_0^\pi d\theta \right) \int_4^\infty \underbrace{\frac{1}{2\pi} r e^{-r^2/2} dr}_{u=r^2/2, du=r dr} \\
&= \left(\int_0^\pi d\theta \right) \int_8^\infty \frac{1}{2\pi} e^{-u} du \\
&= [\theta]_0^\pi \left[-\frac{1}{2\pi} e^{-u} \right]_8^\infty \\
&= \pi \left(-\frac{1}{2\pi} \right) \lim_{t \rightarrow \infty} (e^{-t} - e^{-8}) \\
&= \boxed{\frac{1}{2} e^{-8}}
\end{aligned}$$

3. (28 pts) Region E lies in the **first octant**, below a sphere of radius 3 centered at the origin, and above the surface $z = 3 - \sqrt{x^2 + y^2}$.

- (a) Sketch and shade a cross-section of the region in the rz -plane (i.e., a half-plane of constant θ).
- (b) Set up (but do not evaluate) an integral to find the volume of the region using
 - i. rectangular coordinates in the order $dz dy dx$
 - ii. cylindrical coordinates in the order $dz dr d\theta$
 - iii. spherical coordinates in the order $d\rho d\phi d\theta$.

Solution:

(a) Region E lies between a sphere of radius 3 and an inverted cone. A cross-section of the region in the rz -plane is shown below.



(b) An equation for the sphere is

$$x^2 + y^2 + z^2 = 9 \implies z = \sqrt{9 - x^2 - y^2}.$$

The projection of E onto the xy -plane is a quarter-circular region of radius 3 in the first quadrant. The circle has equation $x^2 + y^2 = 9$, so the quarter-circle is defined by $y = \sqrt{9 - x^2}$.

- i. In rectangular coordinates, the projected region in the xy -plane corresponds to $0 \leq x \leq 3$ and $0 \leq y \leq \sqrt{9 - x^2}$, so the volume integral is

$$\int_{x=0}^3 \int_{y=0}^{\sqrt{9-x^2}} \int_{z=3-\sqrt{x^2+y^2}}^{\sqrt{9-x^2-y^2}} dz dy dx.$$

ii. In polar coordinates, the projected region corresponds to θ in $[0, \frac{\pi}{2}]$ and r in $[0, 3]$. Substituting $r^2 = x^2 + y^2$ and the Jacobian r , the volume integral is

$$\int_{\theta=0}^{\pi/2} \int_{r=0}^3 \int_{z=3-r}^{\sqrt{9-r^2}} r \, dz \, dr \, d\theta.$$

iii. In spherical coordinates, region E in the first octant corresponds to θ in $[0, \frac{\pi}{2}]$ and ϕ in $[0, \frac{\pi}{2}]$. The variable ρ extends from the cone $z = 3 - r$ to the sphere $\rho = 3$. Substituting the identities $z = \rho \cos \phi$ and $r = \rho \sin \phi$, then solving for ρ , gives a lower bound of

$$z = 3 - r \implies \rho \cos \phi = 3 - \rho \sin \phi \implies \rho = \frac{3}{\cos \phi + \sin \phi}.$$

Inserting the Jacobian $\rho^2 \sin \phi$, the volume integral is

$$\int_{\theta=0}^{\pi/2} \int_{\phi=0}^{\pi/2} \int_{\rho=3/(\cos \phi + \sin \phi)}^3 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

4. (14 pts) Let A and B be symmetric $n \times n$ matrices. Prove that $(AB)^T = BA$ in two ways:

(a) Using properties of matrix transpose and multiplication.
(b) Examining the (i, j) entries of $(AB)^T$ and BA .

Solution:

(a) Because A and B are symmetric matrices, $A = A^T$ and $B = B^T$. Then

$$(AB)^T = B^T A^T = BA$$

using the transpose property of matrix product.

(b)

$$\begin{aligned} (i, j) \text{ entry of } (AB)^T &= (j, i) \text{ entry of } AB && \text{(definition of matrix transpose)} \\ &= (\text{row } j \text{ of } A) \cdot (\text{col } i \text{ of } B) && \text{(definition of matrix mult)} \\ &= (\text{col } j \text{ of } A) \cdot (\text{row } i \text{ of } B) && \text{(symmetric matrix property)} \\ &= (\text{row } i \text{ of } B) \cdot (\text{col } j \text{ of } A) && \text{(commutative property of dot product)} \\ &= (i, j) \text{ entry of } BA && \text{(definition of matrix mult)} \end{aligned}$$

5. (14 pts) Use row reduction to find the inverse of the matrix.

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -2 \\ 1 & -2 & 0 \end{bmatrix}$$

Solution:

$$\begin{array}{ccc}
\left[\begin{array}{ccc|ccc} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{array} \right] & \xrightarrow{\quad} & \left[\begin{array}{ccc|ccc} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & -2 & -4 & -1 & 0 & 1 \end{array} \right] & \xrightarrow{\quad} & \left[\begin{array}{ccc|ccc} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & -8 & -1 & 2 & 1 \end{array} \right] & \xrightarrow{\quad} \\
\left[\begin{array}{ccc|ccc} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} \end{array} \right] & \xrightarrow{\quad} & \left[\begin{array}{ccc|ccc} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} \end{array} \right] & \xrightarrow{\quad} & \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} \end{array} \right]
\end{array}$$

The inverse is

$$\begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{8} & -\frac{1}{4} & -\frac{1}{8} \end{bmatrix}.$$

6. (10 pts) A homogeneous system has 2 equations and 5 variables x_1, x_2, x_3, x_4, x_5 . The fundamental solutions for the system are

$$b(-5, 1, 0, 0, 0) + d(2, 0, 0, 1, 0) + e(0, 0, 3, 0, 1)$$

where $x_2 = b$, $x_4 = d$, and $x_5 = e$, for real numbers b, d , and e . Find the reduced row echelon form (RREF) augmented matrix that represents the system.

Solution:

The homogeneous system has independent variables $x_2 = b$, $x_4 = d$, and $x_5 = e$. Given the fundamental solutions $b(-5, 1, 0, 0, 0) + d(2, 0, 0, 1, 0) + e(0, 0, 3, 0, 1)$, the complete solution set is

$$\{(-5b + 2d, b, 3e, d, e) \mid b, d, e \text{ in } \mathbb{R}\}.$$

The solution set corresponds to the equations

$$\begin{aligned}
x_1 &= -5b + 2d \implies x_1 + 5b - 2d = 0 \implies x_1 + 5x_2 - 2x_4 = 0 \\
x_3 &= 3e \implies x_3 - 3e = 0 \implies x_3 - 3x_5 = 0.
\end{aligned}$$

An augmented matrix that representing this homogeneous system is

$$\left[\begin{array}{ccccc|c} 1 & 5 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & -3 & 0 \end{array} \right]$$

which is in reduced row echelon form.

7. (12 pts) Suppose we wish to find a quadratic least-squares polynomial for the points

$$(-1, -2), (0, 0), (1, 0), (2, -1).$$

Set up an augmented matrix representing the linear system that can be solved to determine the quadratic polynomial. (Do not solve the system.)

Solution: Let the quadratic function be $y = c_0 + c_1x + c_2x^2$. We wish to find constants c_0 , c_1 , and c_2 that will minimize the least-squares error. Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -2 \\ 0 \\ 0 \\ -1 \end{bmatrix}.$$

We wish to solve $\mathbf{A}^T \mathbf{A} \mathbf{v} = \mathbf{A}^T \mathbf{b}$. Given $\mathbf{A}^T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 4 \end{bmatrix}$, the augmented matrix that will

lead to the solution is

$$[\mathbf{A}^T \mathbf{A} \mid \mathbf{A}^T \mathbf{b}] = \left[\begin{array}{ccc|c} 4 & 2 & 6 & -3 \\ 2 & 6 & 8 & 0 \\ 6 & 8 & 18 & -6 \end{array} \right].$$