


1. (16 pts) Use Lagrange multipliers to find the point(s) on the hyperbola $x^2 - y^2 = 1$ that are closest to the point $(0, 4)$. (*Hint:* You may minimize the square of the distance.)

2. (16 pts) Consider the integral $\iint_R (2x+y)^2 \sqrt{x-y} \, dx \, dy$, where R , shown at right, is bounded by

$$y = \frac{x}{2}, \quad y = \frac{x}{2} + 1, \quad y = -2x, \quad y = -2x + 2.$$

(a) Let $u = 2x + y$ and $v = x - y$. Sketch the transformed region in the uv -plane.

(b) Set up (but do not evaluate) an equivalent uv -integral.

3. (18 pts) Evaluate $\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} \, dx \, dy$ by converting to a polar double integral.

4. (28 pts) Consider the solid with volume $V = \int_0^\pi \int_0^5 \int_r^5 r \, dz \, dr \, d\theta$ in cylindrical coordinates.

(a) Sketch and shade a cross-section of the solid in the rz -plane (that is, a half-plane of constant θ). Label the intercepts.

(b) Set up (but do not evaluate) an equivalent integral using

- rectangular coordinates in the order $dz \, dy \, dx$
- spherical coordinates in the order $d\rho \, d\phi \, d\theta$.

5. The following two problems are not related.

(a) (12 pts) Let X and Y be continuous random variables with joint probability density function

$$f(x, y) = \begin{cases} k & \text{if } 0 \leq x \leq 50, \ 10 \leq y \leq 25 \\ 0 & \text{otherwise.} \end{cases}$$

- Find the constant k .
- Set up (but do not evaluate) a double integral that represents $P(Y \geq \frac{X}{2})$.

(b) (10 pts) A matrix A is *skew-symmetric* if $A = -A^T$.

- Give an example of a 3×3 matrix B with nonzero entries that is skew-symmetric.
- Compute $B - B^T$.