

- If you have any scratch work, please circle your final answer.
- Any code you write should run in a Jupyter cell; every character counts!
- For all questions on this exam, assume that all necessary packages have been imported.

1. For the following problems, write down what each code block would display if executed in a Jupyter cell. If the code generates an error or infinite loop, write **Error**.

(a) `a, b = (0, 2)`

```
while a < 3:  
    print(f'a/b = {a / b:.2f}')  
    a += 1
```

(b) `a = np.linspace(0, 2, 3)`

```
a ** 2 + 1
```

(c) `xstr = ['a', 'b']`

```
ystr = ['c', 'd']
```

```
for x in xstr:
```

```
    for y in ystr:
```

```
        print(x + y, end=',')
```

(d) `cats = ['tiger', 'lion', 'liger', 'tigon']`

```
list(zip([x for x in range(4)], cats))
```

2. The dataset `fruits.txt` contains a long series of fruit names, some of which might be repeated:

`banana,orange,strawberry,orange,...`

Suppose you read this data into the Python object `fruits` with the code

```
with open('fruits.txt') as wf:  
    fruits = wf.read()
```

- (a) Write code which creates a set of all unique fruit names in the dataset.
- (b) Write code which creates a dictionary with fruit names as keys, and their frequency in the dataset as values. For example, your dictionary might look like

```
{'banana':1, 'orange':2, ...}
```

3. Write a **recursive** function `fruits_after(name, fruits)` which takes a name of a fruit `name` (which is a string) and a list `fruits`, and returns the list of elements of `fruits` *after* the first occurrence of `name`.

For example, the list of fruits from the previous problem might look like

```
fruits_list = ['banana', 'orange', 'strawberry', 'orange', ...]
```

Using this list, `fruits_after('banana', fruits_list)` should return

```
['orange', 'strawberry', 'orange', ...]
```

and `fruits_after('orange', fruits_list)` should return

```
['strawberry', 'orange', ...]
```

Note: you MUST write a recursive function to get full credit on this problem.

4. Write code which would display a plot of the function $f(x) = x \sin(x)$ and its derivative on the same plot, over the domain $[0, 2\pi]$. Make one of the plots red, the other one blue, and give your plot the title **A Function and its Derivative**. Use 100 x -values for your plots.

Note: you may use NumPy on this question, but it is not required.