

1. (30 pts) The following three problems are not related.

(a) Beulah Bee travels along the path $\mathbf{r}(t) = (6t)\mathbf{i} + (8 \cos t)\mathbf{j} + (8 \sin t)\mathbf{k}$, starting at $t = 0$, and stops after covering a distance of 15π units. What are the coordinates of the bee's position now? Simplify your answer.

(b) The temperature at a point (x, y) is $T(x, y)$ degrees. A snail crawls so that its position after t minutes is

$$x = -2 + \frac{6}{\sqrt{1+t}}, \quad y = 7 + \sqrt{1+t}.$$

Suppose $T_x(1, 9) = 3$ and $T_y(1, 9) = 2$. How fast is the temperature changing on the snail's path after 3 minutes?

(c) Show that $\lim_{(x,y) \rightarrow (5,5)} \frac{(x-5)(y-5)}{(x-5)^2 + (y-5)^2}$ does not exist.

Solution:

(a)

$$\begin{aligned} \mathbf{r}(t) &= \langle 6t, 8 \cos t, 8 \sin t \rangle \\ \mathbf{r}'(t) &= \langle 6, -8 \sin t, 8 \cos t \rangle \\ |\mathbf{r}'(t)| &= \sqrt{6^2 + 64 \sin^2 t + 64 \cos^2 t} \\ &= \sqrt{36 + 64} = \sqrt{100} = 10 \end{aligned}$$

Beulah travels from $t = 0$ to $t = a$, covering a distance of

$$\begin{aligned} 15\pi &= \int_0^a 10 dt = 10t \Big|_0^a \\ &= 10a \implies a = \frac{15\pi}{10} = \frac{3\pi}{2}. \end{aligned}$$

Beulah is now at $\mathbf{r}(\frac{3\pi}{2})$ which corresponds to the point $(6 \cdot \frac{3\pi}{2}, 8 \cos(\frac{3\pi}{2}), 8 \sin(\frac{3\pi}{2})) = (9\pi, 0, -8)$.

(b) First calculate $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

$$\frac{dx}{dt} = -\frac{3}{(1+t)^{3/2}} \quad \text{and} \quad \frac{dy}{dt} = \frac{1}{2\sqrt{1+t}}.$$

At $t = 3$,

$$\frac{dx}{dt} = -\frac{3}{2^3} = -\frac{3}{8} \quad \text{and} \quad \frac{dy}{dt} = \frac{1}{2 \cdot 2} = \frac{1}{4}.$$

The change in temperature when $t = 3$, $x = 1$, and $y = 9$ is

$$\begin{aligned} \frac{dT}{dt} &= \frac{\partial T}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial T}{\partial y} \cdot \frac{dy}{dt} \\ &= T_x(1, 9) \left(-\frac{3}{8} \right) + T_y(1, 9) \cdot \frac{1}{4} \\ &= 3 \left(-\frac{3}{8} \right) + 2 \cdot \frac{1}{4} = \boxed{-\frac{5}{8} \text{ }^{\circ}\text{C/min}}. \end{aligned}$$

(c) Let $f(x, y) = \frac{(x-5)(y-5)}{(x-5)^2 + (y-5)^2}$.

First approach $(5, 5)$ along the line $y = 5$. Then $f(x, 5) = \frac{0}{(x-5)^2} = 0$ for $x \neq 5$, so $f(x, y) \rightarrow 0$. By symmetry, $f(x, y) \rightarrow 0$ approaching $(5, 5)$ along the line $x = 5$.

Approaching $(5, 5)$ along the line $y = x$, $f(x, x) = \frac{(x-5)^2}{2(x-5)^2} = \frac{1}{2}$, so along this line $f(x, y) \rightarrow \frac{1}{2}$. Therefore the limit does not exist.

2. (36 pts) Consider the surface $z = f(x, y) = (x-2)y^2$ with point P at $(4, -1, 2)$.

- (a) Find an equation for the plane tangent to the surface at P .
- (b) Find a linear approximation for $f(x, y)$ centered at $(4, -1)$ and use it to estimate the value of $f(4.05, -1.1)$.
- (c) Use Taylor's Formula to find an upper bound for the error in the linear approximation of $f(x, y)$ when $3.8 \leq x \leq 4.2$ and $-1.1 \leq y \leq -0.9$.
- (d) Sketch the level curve $z = 2$ and the vector $\nabla f(4, -1)$ on the axes below.

Solution:

(a) A plane tangent to $z = f(x, y)$ has the equation

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

For this function

$$\begin{aligned} f_x &= y^2 & f_x(4, -1) &= 1 \\ f_y &= 2(x-2)y & f_y(4, -1) &= -4. \end{aligned}$$

An equation of the tangent plane is therefore

$$\boxed{z - 2 = (x - 4) - 4(y + 1)} \\ z = x - 4y - 6.$$

(b) A linear approximation corresponding to the tangent plane is

$$L(x, y) = 2 + (x - 4) - 4(y + 1).$$

Then

$$f(4.05, -1.1) \approx L(4.05, -1.1) = 2 + 0.05 - 4(-0.1) = \boxed{2.45}.$$

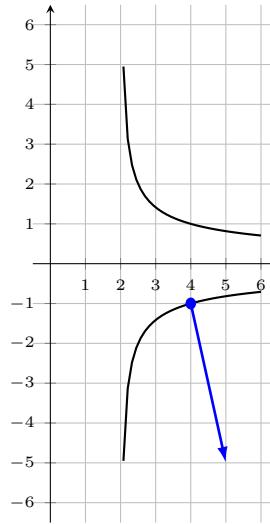
(c) For $3.8 \leq x \leq 4.2$ and $-1.1 \leq y \leq -0.9$,

$$\begin{aligned} f_{xx} &= 0 & |f_{yy}| &\leq 2(4.2 - 2) = 4.4 \\ f_{yy} &= 2(x-2) & |f_{xy}| &\leq 2.2 \\ f_{xy} &= 2y \end{aligned}$$

Let the upper bound $M = 4.4$. Then

$$\begin{aligned}|E(x, y)| &\leq \frac{1}{2!} M (|x - 4| + |y + 1|)^2 \\&\leq \frac{4.4}{2} (0.2 + 0.1)^2 \\&= 2.2(0.09) = \boxed{0.198}.\end{aligned}$$

(d) Note that $\nabla f(4, -1) = \langle f_x(4, -1), f_y(4, -1) \rangle = \langle 1, -4 \rangle$. The gradient vector at $(4, -1)$ is shown below, along with the graph of $(x - 2)y^2 = 2$ which can be written as $x = \frac{2}{y^2} + 2$ (similar to HW 1 #2b).



3. (34 pts) Suppose the elevation of the land near Chet Chipmunk's home is given by

$$g(x, y) = \frac{x^3}{3} - \frac{y^2}{2} + 2xy + 2$$

where x and y are measured in meters.

- (a) Find the critical points (x, y) where the land has local extrema or saddle points. Use the Second Derivatives Test to classify the points.
- (b) A nearby trail runs along the line $y = x$ for $-5 \leq x \leq 3$. At what x -coordinate does the trail have a local maximum?
- (c) Chet is at $Q(2, 0)$ when he spots a fox at $R(0, 1)$.
 - i. Find the directional derivative of g at Q in the direction of \overrightarrow{QR} .
 - ii. Chet decides to scramble to higher ground as quickly as possible. In which direction should he move? Express your simplified answer in terms of a unit vector.

Solution:

(a) Begin by calculating the first partial derivatives:

$$g_x = x^2 + 2y \quad g_y = -y + 2x.$$

If $g_y = -y + 2x = 0$, then $y = 2x$. Substituting into $g_x = 0$ gives $x^2 + 4x = 0$, so $x = 0$ or -4 . The critical points are $(0, 0)$ and $(-4, -8)$. Next calculate the second partial derivatives:

$$\begin{array}{lll} g_{xx} = 2x & g_{xx}(0, 0) = 0 & g_{xx}(-4, -8) = -8 \\ g_{yy} = -1 & g_{yy}(0, 0) = -1 & g_{yy}(-4, -8) = -1 \\ g_{xy} = 2 & g_{xy}(0, 0) = 2 & g_{xy}(-4, -8) = 2. \end{array}$$

Applying the Second Derivatives Test to the point $(0, 0)$ gives

$$D = g_{xx}g_{yy} - (g_{xy})^2 = 0 - 2^2 = -4 < 0,$$

so there is a saddle point at $(0, 0)$. For the point $(-4, -8)$,

$$D = g_{xx}g_{yy} - (g_{xy})^2 = 8 - 2^2 = 4 > 0 \quad \text{and} \quad f_{xx}(-4, -8) < 0,$$

so there is a local maximum at $(-4, -8)$.

(b) The plane $y = x$ meets the surface at the curve

$$g(x, x) = \frac{x^3}{3} - \frac{x^2}{2} + 2x^2 + 2 = \frac{x^3}{3} + \frac{3x^2}{2} + 2.$$

Given

$$g'(x, x) = x^2 + 3x \quad \text{and} \quad g''(x, x) = 2x + 3,$$

the curve has critical points at $x = 0, -3$ where $g' = 0$. There is a local minimum at $x = 0$ where $g''(0, 0) > 0$ and a local maximum at $x = -3$ where $g''(-3, -3) < 0$.

(c) i. Let $\mathbf{u} = \frac{\mathbf{QR}}{|\mathbf{QR}|} = \frac{\langle -2, 1 \rangle}{\sqrt{2^2 + 1^2}} = \frac{\langle -2, 1 \rangle}{\sqrt{5}}$. Then the directional derivative is

$$\begin{aligned} D_{\mathbf{u}}g(2, 0) &= \nabla g(2, 0) \cdot \frac{\langle -2, 1 \rangle}{\sqrt{5}} \\ &= \langle g_x(2, 0), g_y(2, 0) \rangle \cdot \frac{\langle -2, 1 \rangle}{\sqrt{5}} \\ &= \langle 4, 4 \rangle \cdot \frac{\langle -2, 1 \rangle}{\sqrt{5}} \\ &= \frac{4(-2) + 4 \cdot 1}{\sqrt{5}} = \boxed{-\frac{4}{\sqrt{5}}}. \end{aligned}$$

ii. Chet should move in the direction of the gradient vector

$$\frac{\nabla g(2, 0)}{|\nabla g(2, 0)|} = \frac{\langle 4, 4 \rangle}{|\langle 4, 4 \rangle|} = \frac{4 \langle 1, 1 \rangle}{4 |\langle 1, 1 \rangle|} = \boxed{\frac{\langle 1, 1 \rangle}{\sqrt{2}}} = \boxed{\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle}.$$