

1. (30 pts) The following three problems are not related.

(a) Beulah Bee travels along the path $\mathbf{r}(t) = (6t)\mathbf{i} + (8 \cos t)\mathbf{j} + (8 \sin t)\mathbf{k}$, starting at $t = 0$, and stops after covering a distance of 15π units. What are the coordinates of the bee's position now? Simplify your answer.

(b) The temperature at a point (x, y) is $T(x, y)$ degrees. A snail crawls so that its position after t minutes is

$$x = -2 + \frac{6}{\sqrt{1+t}}, \quad y = 7 + \sqrt{1+t}.$$

Suppose $T_x(1, 9) = 3$ and $T_y(1, 9) = 2$. How fast is the temperature changing on the snail's path after 3 minutes?

(c) Show that $\lim_{(x,y) \rightarrow (5,5)} \frac{(x-5)(y-5)}{(x-5)^2 + (y-5)^2}$ does not exist.

2. (36 pts) Consider the surface $z = f(x, y) = (x-2)y^2$ with point P at $(4, -1, 2)$.

(a) Find an equation for the plane tangent to the surface at P .
 (b) Find a linear approximation for $f(x, y)$ and use it to estimate the value of $f(4.05, -1.1)$.
 (c) Use Taylor's Formula to find an upper bound for the error in the linear approximation of $f(x, y)$ given the values $3.8 \leq x \leq 4.2$ and $-1.1 \leq y \leq -0.9$.
 (d) Sketch the level curve $z = 2$ and the vector $\nabla f(4, -1)$ on the same axes.

3. (34 pts) Suppose the elevation of the land near Chet Chipmunk's home is given by

$$g(x, y) = \frac{x^3}{3} - \frac{y^2}{2} + 2xy + 2$$

where x and y are measured in meters.

(a) Find the critical points (x, y) where the land has local extrema or saddle points. Use the Second Derivatives Test to classify the points.
 (b) A nearby trail runs along the line $y = x$ for $-5 \leq x \leq 3$. At what x -coordinate does the trail have a local maximum?
 (c) Chet is at $Q(2, 0)$ when he spots a fox at $R(0, 1)$.

- Find the directional derivative of g at Q in the direction of \overrightarrow{QR} .
- Chet decides to scramble to higher ground as quickly as possible. In which direction should he move? Express your simplified answer in terms of a unit vector.