

1. [2360/101525 (10 pts)] Write the word **TRUE** or **FALSE** as appropriate. No work need be shown. No partial credit given. Please write your answers in a single column separate from any work you do to arrive at the answer.

- (a) If $\lambda = 0$ is an eigenvalue of the square matrix \mathbf{A} , then the system $\mathbf{A}\vec{x} = \vec{b}$ must be inconsistent.
- (b) The column space of an $n \times n$ nonsingular matrix is \mathbb{R}^n .
- (c) Given any $m \times n$ matrix \mathbf{A} , you can always compute $\text{Tr}(\mathbf{A}^T \mathbf{A})$ and $\text{Tr}(\mathbf{A} \mathbf{A}^T)$.
- (d) Every set of n vectors in an n -dimensional vector space forms a basis.
- (e) If \mathbf{A} is an $m \times n$ matrix and \vec{u} and \vec{v} are solutions of $\mathbf{A}\vec{x} = \vec{b}$, then $\vec{u} - \vec{v}$ is a solution of the associated homogeneous system.

SOLUTION:

- (a) **FALSE** The system could have infinitely many solutions.
- (b) **TRUE** $\mathbf{A}\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^n \implies \text{Col } \mathbf{A} = \mathbb{R}^n$
- (c) **TRUE** Both $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ are square so the trace can be computed.
- (d) **FALSE** The n vectors must be linearly independent in order to form a basis.
- (e) **TRUE** $\mathbf{A}(\vec{u} - \vec{v}) = \mathbf{A}\vec{u} - \mathbf{A}\vec{v} = \vec{b} - \vec{b} = \vec{0}$

2. [2360/101525 (18 pts)] Consider the following matrices: $\mathbf{F} = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -2 & 3 \end{bmatrix}$, $\mathbf{G} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $\mathbf{H} = \begin{bmatrix} 2 & -1 \end{bmatrix}$. Compute the following if possible, making sure to fully simplify the result. If not possible to compute, write NP.

- (a) $|\mathbf{G}|$
- (b) $\mathbf{H}\mathbf{F}\mathbf{F}^T$
- (c) $\text{Tr } \mathbf{H}$
- (d) $\mathbf{G}^T \mathbf{G}$
- (e) $5\mathbf{F} - 8\mathbf{G}$
- (f) $|\mathbf{H}^2|$

SOLUTION:

(a) $\cos^2 \theta + \sin^2 \theta = 1$

(b)

$$\begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -4 & 6 & -3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 16 & -29 \end{bmatrix}$$

(c) NP

(d)

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$

(e) NP

(f) NP

3. [2360/101525 (15 pts)] Use Gauss-Jordan row reduction to find the RREF and solution of the following system.

$$\begin{aligned} x_1 + 2x_2 + x_3 &= 7 \\ x_1 + x_2 + x_3 &= 6 \\ 2x_1 + 5x_3 &= 19 \\ 3x_1 - x_2 + 2x_3 &= 11 \end{aligned}$$

SOLUTION:

$$\left[\begin{array}{ccc|c} 1 & 2 & 1 & 7 \\ 1 & 1 & 1 & 6 \\ 2 & 0 & 5 & 19 \\ 3 & -1 & 2 & 11 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 1 & 7 \\ 0 & -1 & 0 & -1 \\ 0 & -4 & 3 & 5 \\ 0 & -7 & -1 & -10 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 1 & 7 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & -1 & -3 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 0 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right] \implies \vec{x} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

■

4. [2360/101525 (12 pts)] Find all of the eigenvalues and eigenvectors of $\mathbf{B} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$. State the algebraic and geometric multiplicity of each eigenvalue.

SOLUTION:

$$\begin{vmatrix} -\lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & -\lambda \end{vmatrix} = (2 - \lambda)(-1)^{2+2} \begin{vmatrix} -\lambda & 2 \\ 2 & -\lambda \end{vmatrix} = (2 - \lambda)(\lambda^2 - 4) = -(\lambda - 2)^2(\lambda + 2) = 0 \implies \lambda = 2, -2$$

$$\lambda = -2 : (\mathbf{B} + 2\mathbf{I})\vec{v} = \mathbf{0} \implies \left[\begin{array}{ccc|c} 2 & 0 & 2 & 0 \\ 0 & 4 & 0 & 0 \\ 2 & 0 & 2 & 0 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \implies \vec{v} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \begin{array}{l} \text{algebraic multiplicity} = 1 \\ \text{geometric multiplicity} = 1 \end{array}$$

$$\lambda = 2 : (\mathbf{B} - 2\mathbf{I})\vec{v} = \mathbf{0} \implies \left[\begin{array}{ccc|c} -2 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & -2 & 0 \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \implies \vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{array}{l} \text{algebraic multiplicity} = 2 \\ \text{geometric multiplicity} = 2 \end{array}$$

■

5. [2360/101525 (15 pts)] This problem deals with the vector space \mathbb{P}_2 .

(a) (7 pts) Does $\mathbb{P}_2 = \text{span} \{3t^2 - 4, 2t, t^2 - 1\}$? Draw your conclusion, if possible, by computing the Wronksian.

(b) (8 pts) Without using the Wronskian, determine if the set $\{2 + 2t^2, -1 + 4t + 3t^2, 3 - 5t - 2t^2\}$ forms a basis for \mathbb{P}_2 .

SOLUTION:

(a) Yes. The set consists of three linearly independent vectors in the 3-dimensional space. Justification:

$$W(t) = \begin{vmatrix} 3t^2 - 4 & 2t & t^2 - 1 \\ 6t & 2 & 2t \\ 6 & 0 & 2 \end{vmatrix} = 6(-1)^{3+1} \begin{vmatrix} 2t & t^2 - 1 \\ 2 & 2t \end{vmatrix} + 2(-1)^{3+3} \begin{vmatrix} 3t^2 - 4 & 2t \\ 6t & 2 \end{vmatrix} \\ = 6(4t^2 - 2t^2 + 2) + 2(6t^2 - 8 - 12t^2) = 12t^2 + 12 - 12t^2 - 16 = -4 \neq 0$$

(b) No. Although there are three vectors in the set, they are linearly dependent and thus cannot form a basis. Justification:

$$c_1(2 + 2t^2) + c_2(-1 + 4t + 3t^2) + c_3(3 - 5t - 2t^2) = 0 + 0t + 0t^2$$

$$\begin{array}{l} t^0 : 2c_1 - 1c_2 + 3c_3 = 0 \\ \text{equating coefficients} \implies t^1 : 0c_1 + 4c_2 - 5c_3 = 0 \\ t^2 : 2c_1 + 3c_2 - 2c_3 = 0 \end{array} \implies \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -5 \\ 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} 2 & -1 & 3 \\ 0 & 4 & -5 \\ 2 & 3 & -2 \end{vmatrix} = 2(-1)^{1+1} \begin{vmatrix} 4 & -5 \\ 3 & -2 \end{vmatrix} + 2(-1)^{3+1} \begin{vmatrix} -1 & 3 \\ 4 & -5 \end{vmatrix} = 2(-8 + 15) + 2(5 - 12) = 2(7) + 2(-7) = 0$$

This shows that the system possesses nontrivial solutions and thus the functions are linearly dependent.

Alternatively, the RREF of the coefficient matrix is $\begin{bmatrix} 1 & 0 & \frac{7}{8} \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 \end{bmatrix}$ from which the same conclusion follows.

6. [2360/101525 (12 pts)] The following parts are not related.

(a) (6 pts) Let \mathbf{C} and \mathbf{D} be invertible matrices. Solve for \vec{x} if $\mathbf{C}(\mathbf{DC})^{-1}\vec{x} = \vec{y}$. Simplify your answer completely.

(b) (6 pts) For which value(s) of k , if any, will the system $\mathbf{A}^T\vec{x} = \vec{b}$ have a unique solution if $\mathbf{A} = \begin{bmatrix} 1 & 0 & k \\ 0 & k & 1 \\ k & 0 & 4 \end{bmatrix}$.

SOLUTION:

(a)

$$\vec{x} = [\mathbf{C}(\mathbf{DC})^{-1}]^{-1} \vec{y} = [(\mathbf{DC})^{-1}]^{-1} \mathbf{C}^{-1} \vec{y} = \mathbf{DCC}^{-1} \vec{y} = \mathbf{DI} \vec{y} = \mathbf{D} \vec{y}$$

(b) To have a unique solution, \mathbf{A}^T must be invertible. This is equivalent to saying that $|\mathbf{A}^T| \neq 0$ or $|\mathbf{A}| \neq 0$. Now

$$|\mathbf{A}| = k(-1)^{2+2} \begin{vmatrix} 1 & k \\ k & 4 \end{vmatrix} = k(4 - k^2) = k(2 - k)(2 + k)$$

\mathbf{A}^T will be invertible and thus the system will have a unique solution if and only if $k \neq -2, 0, 2$.

7. [2360/101525 (18 pts)] In each of the following problems, decide whether the given subset \mathbb{W} of the vector space \mathbb{V} is or is not a subspace of \mathbb{V} . Justify your answers. If not a subspace, identify at least one requirement that is not satisfied. Assume the standard definitions of vector addition and scalar multiplication in each vector space.

(a) (6 pts) $\mathbb{V} = \mathbb{R}^2$, $\mathbb{W} = \{(x, y) \in \mathbb{R}^2 \mid y = px^2, p \in \mathbb{R}\}$.

(b) (6 pts) $\mathbb{V} = \mathbb{M}_{22}$, \mathbb{W} is the set of 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with $a + b = c$ and $a, b, c \in \mathbb{R}$.

(c) (6 pts) $\mathbb{V} = \mathcal{C}(-\infty, \infty)$, \mathbb{W} is the set of all negative functions in $\mathcal{C}(-\infty, \infty)$.

SOLUTION:

(a) Not a subspace. Some possible justifications, choosing $p = 1$:

- Not closed under vector addition. $(1, 1), (2, 4) \in \mathbb{W}$ but $(1, 1) + (2, 4) = (3, 5) \notin \mathbb{W}$
- Not closed under scalar multiplication. $(1, 1) \in \mathbb{W}$ but $2(1, 1) = (2, 2) \notin \mathbb{W}$
- Not closed under linear combinations. Let $\vec{u} = (a, a^2)$, $\vec{v} = (b, b^2) \in \mathbb{W}$ and $c, d \in \mathbb{R}$. Then

$$c\vec{u} + d\vec{v} = c(a, a^2) + d(b, b^2) = (ca, ca^2) + (db, db^2) = (ca + db, ca^2 + db^2) \notin \mathbb{W} \text{ since } ca^2 + db^2 \neq (ca + db)^2$$

(b) Subspace. Let $\vec{u} = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}$ be in \mathbb{W} . This means that $a_1 + b_1 = c_1$ and $a_2 + b_2 = c_2$. Let $r, s \in \mathbb{R}$. Then

$$r\vec{u} + s\vec{v} = r \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} + s \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix} = \begin{bmatrix} ra_1 & rb_1 \\ 0 & rc_1 \end{bmatrix} + \begin{bmatrix} sa_2 & sb_2 \\ 0 & sc_2 \end{bmatrix} = \begin{bmatrix} ra_1 + sa_2 & rb_1 + sb_2 \\ 0 & rc_1 + sc_2 \end{bmatrix} \text{ with}$$

$$(ra_1 + sa_2) + (rb_1 + sb_2) = r(a_1 + b_1) + s(a_2 + b_2) = rc_1 + sc_2 \implies r\vec{u} + s\vec{v} \in \mathbb{W}$$

(c) Not a subspace. Some possible justifications:

- The zero vector, that is the function that is zero for all real numbers, is not in \mathbb{W} .
- $f(t) = -1 - t^2 \in \mathbb{W}$ but $-1f(t) = 1 + t^2 \notin \mathbb{W}$, giving an example of nonclosure with respect to scalar multiplication.
- More generally \mathbb{W} is not closed under scalar multiplication. If $f(t) \in \mathbb{W}$, then $f(t) < 0$ for all t . But $-1f(t) > 0$ and thus not in \mathbb{W} .

Note that \mathbb{W} is closed under vector addition.