- This exam is worth 100 points and has 7 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED AND UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- 0. At the top of the page containing your solution to problem 1, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/101525 (10 pts)] Write the word **TRUE** or **FALSE** as appropriate. No work need be shown. No partial credit given. Please write your answers in a single column separate from any work you do to arrive at the answer.
 - (a) If $\lambda = 0$ is an eigenvalue of the square matrix **A**, then the system $\mathbf{A} \mathbf{x} = \mathbf{b}$ must be inconsistent.
 - (b) The column space of an $n \times n$ nonsingular matrix is \mathbb{R}^n .
 - (c) Given any $m \times n$ matrix A, you can always compute $\text{Tr}(\mathbf{A}^T \mathbf{A})$ and $\text{Tr}(\mathbf{A}\mathbf{A}^T)$.
 - (d) Every set of n vectors in an n-dimensional vector space forms a basis.
 - (e) If \mathbf{A} is an $m \times n$ matrix and $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are solutions of $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$, then $\vec{\mathbf{u}} \vec{\mathbf{v}}$ is a solution of the associated homogeneous system.
- 2. [2360/101525 (18 pts)] Consider the following matrices: $\mathbf{F} = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -2 & 3 \end{bmatrix}$, $\mathbf{G} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $\mathbf{H} = \begin{bmatrix} 2 & -1 \end{bmatrix}$. Compute the following if possible, making sure to fully simplify the result. If not possible to compute, write NP.
 - (a) |**G**|
- (b) $\mathbf{H}\mathbf{F}\mathbf{F}^{\mathrm{T}}$
- (c) Tr **H**
- (d) $\mathbf{G}^{\mathrm{T}}\mathbf{G}$
- (e) 5F 8G
- (f) |**H**²
- 3. [2360/101525 (15 pts)] Use Gauss-Jordan row reduction to find the RREF and solution of the following system.

$$x_1 + 2x_2 + x_3 = 7$$

$$x_1 + x_2 + x_3 = 6$$

$$2x_1 + 5x_3 = 19$$

$$3x_1 - x_2 + 2x_3 = 11$$

- 4. [2360/101525 (12 pts)] Find all of the eigenvalues and eigenvectors of $\mathbf{B} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$. State the algebraic and geometric multiplicity of each eigenvalue.
- 5. [2360/101525 (15 pts)] This problem deals with the vector space \mathbb{P}_2 .
 - (a) (7 pts) Does $\mathbb{P}_2 = \text{span } \{3t^2-4, 2t, t^2-1\}$? Draw your conclusion, if possible, by computing the Wronksian.
 - (b) (8 pts) Without using the Wronskian, determine if the set $\{2+2t^2, -1+4t+3t^2, 3-5t-2t^2\}$ forms a basis for \mathbb{P}_2 .

- 6. [2360/101525 (12 pts)] The following parts are not related.
 - (a) (6 pts) Let C and D be invertible matrices. Solve for \vec{x} if $C(DC)^{-1}\vec{x} = \vec{y}$. Simplify your answer completely.

(b) (6 pts) For which value(s) of
$$k$$
, if any, will the system $\mathbf{A}^T \vec{\mathbf{x}} = \vec{\mathbf{b}}$ have a unique solution if $\mathbf{A} = \begin{bmatrix} 1 & 0 & k \\ 0 & k & 1 \\ k & 0 & 4 \end{bmatrix}$.

7. [2360/101525 (18 pts)] In each of the following problems, decide whether the given subset W of the vector space V is or is not a subspace of V. Justify your answers. If not a subspace, identify at least one requirement that is not satisfied. Assume the standard definitions of vector addition and scalar multiplication in each vector space.

(a) (6 pts)
$$\mathbb{V} = \mathbb{R}^2$$
, $\mathbb{W} = \{(x,y) \in \mathbb{R}^2 \mid y = px^2, p \in \mathbb{R}\}$.

(b) (6 pts)
$$\mathbb{V}=\mathbb{M}_{22},\ \mathbb{W}$$
 is the set of 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with $a+b=c$ and $a,b,c\in\mathbb{R}.$

(c) (6 pts)
$$\mathbb{V}=\mathcal{C}(-\infty,\infty),\ \mathbb{W}$$
 is the set of all negative functions in $\mathcal{C}(-\infty,\infty)$.