Write your name and your professor's name or your section number below. You are not allowed to use textbooks, notes, or a calculator. To receive full credit on a problem you must show sufficient justification for your conclusion unless explicitly stated otherwise.

Name:

Instructor and Section:

APPM 3310 Fall 2025 **Exam 1**

- 1. (24 pts) If the statement is **always true**, write "TRUE"; if it is possible for the statement to be false then mark "FALSE." You must give a **justification** for your answer. That is, if the answer is true, provide a brief proof. If the answer is false, provide a counterexample.
 - (a) The vectors $\vec{v}_1 = (1,0,1)^T$, $\vec{v}_2 = (0,1,1)^T$, and $\vec{v}_3 = (0,0,1)^T$ form a basis for \mathbb{R}^3 .
 - (b) If A and B are nonsingular $n \times n$ matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$
 - (c) If A and B are symmetric $n \times n$ matrices then AB is symmetric.
 - (d) The set of vectors $(x, y, z)^T$ with $x, y, z \in \mathbb{R}$ such that x + y + z = 1 is a vector subspace.

2. (21 pts) Let A be the matrix

$$A = \begin{pmatrix} 1 & 0 & 3 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & c & 1 \end{pmatrix}$$

for c an arbitrary real parameter.

- (a) (5 pts) Reduce A to a matrix U in Row-Echelon form.
- (b) (5 pts) What is rank(A)? How does it depend on c?
- (c) (5 pts) Solve the homogeneous problem $A\vec{x} = \vec{0}$. Does $A\vec{x} = \vec{0}$ always have a solution? Explain why or why not.
- (d) (6 pts) Solve the inhomogeneous problem $A\vec{x} = (1,1,1)^T$. Does this have a solution for all values of c? Explain why or why not.

- 3. (15 pts)
 - (a) Construct a basis for the vector space of real skew-symmetric 3×3 matrices, $A^T = -A$. What is the dimension of this space?
 - (b) Do the same (i.e., construct a basis) for the vector space of real symmetric 3×3 matrices, $A^T = A$. What is its dimension?
 - (c) Any real 3×3 matrix can be written as a sum of symmetric and skew-symmetric matrices,

$$A = \frac{1}{2} \left(A + A^T \right) + \frac{1}{2} \left(A - A^T \right).$$

What is the dimension of the vector space of all real 3×3 matrices?

4. (20 pts) For the matrix

$$A = \begin{pmatrix} 0 & 2 & -2 & 2 \\ -2 & 1 & -1 & -1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$$

find bases for the

- (a) (7 pts) image of A and
- (b) (7 pts) kernel of A.
- (c) (6 pts) Is $(6, -1, 1)^T$ in the image of A?

APPM 3310 Fall 2025 **Exam 1**

5. (20 pts) Let

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 0 \end{array}\right).$$

- (a) (7 pts) Find the permutation matrix P such that PA is symmetric.
- (b) (7 pts) Find matrices L and D such that $PA = LDL^T$.
- (c) (6 pts) What is the determinant of A?