- 1. The following are unrelated: (18 pts)
 - (a) Consider the comma-separated list of numbers $\left\{\frac{1}{6}, \sqrt{4}, -\frac{3}{2}, 0, \pi, \sqrt{2}, \frac{8}{40}\right\}$ and answer the following:
 - i. Write down all rational numbers given in the list. **Include all expressions that simplify to a rational number.**

Solution:
$$\left\{ \frac{1}{6}, \sqrt{4}, -\frac{3}{2}, 0, \frac{8}{40} \right\}$$
 since $\sqrt{4} = 2$.

ii. Write down the numbers given in the comma-separated list (include all numbers, not just rational numbers) from smallest to largest.

Solution:
$$\boxed{ -\frac{3}{2}, \ 0, \ \frac{1}{6}, \ \frac{8}{40}, \ \sqrt{2}, \sqrt{4}, \ \pi }$$
 since

- $-\frac{3}{2}$ is the only negative number,
- 0 is smaller than positive numbers and bigger than negative numbers,
- $\frac{1}{6} < \frac{8}{40}$ as $\frac{8}{40} = \frac{1}{5}$,
- $\sqrt{2} > 1$, therefore $\sqrt{2} > \frac{8}{40}$,
- $\sqrt{2} < \sqrt{4} = \sqrt{2^2}$
- $\sqrt{4} < \pi$ as $\sqrt{4} = 2$ and $\pi \approx 3.14159$.
- (b) Given x > 0, y < 0, and z < 0, determine whether each expression is positive, negative, or zero.

i.
$$2x^3y^4z$$

Solution:
$$2x^3y^4z$$
 is negative as $x^3 > 0$, $y^4 > 0$, and $z < 0$. Negative

ii.
$$-y^4z^5$$

Solution:
$$-y^4z^5$$
 is positive as $y^4>0$ and $z^5<0$. Therefore, $y^4z^5<0$ and $-y^4z^5>0$. $Positive$

iii.
$$y^2 + 1$$

Solution:
$$y^2 + 1$$
 is positive as $y^2 > 0$. Positive

(c) Rewrite the expression without using absolute value:

i.
$$|5 - x|$$
 if $x < 5$

Solution: When
$$x < 5$$
, $5 - x > 0$, therefore $|5 - x| = 5 - x$

ii.
$$|2 - \pi|$$

Solution: As
$$\pi \approx 3.14159$$
, $2 - \pi < 0$, therefore $|2 - x| = \boxed{-(2 - \pi)}$ or $\boxed{\pi - 2}$.

(d) Subtract/add as indicated: $\frac{2}{15} - \frac{1}{9} + 3^{-1}$

Solution:

$$\frac{2}{15} - \frac{1}{9} + 3^{-1} = \frac{2}{15} - \frac{1}{9} + \frac{1}{3} \tag{1}$$

$$=\frac{2}{15}\cdot\frac{3}{3}-\frac{1}{9}\cdot\frac{5}{5}+\frac{1}{3}\cdot\frac{15}{15}$$
 (2)

$$= \frac{6}{45} - \frac{5}{45} + \frac{15}{45}$$

$$= \frac{6 - 5 + 15}{45}$$
(3)

$$=\frac{6-5+15}{45}\tag{4}$$

$$= \boxed{\frac{16}{45}} \tag{5}$$

2. The following are unrelated: (18 pts)

(a) Simplify:
$$(2x+1)^2 - 2\left(\frac{3}{2}x^2 - 5x\right)$$

Solution:

$$(2x+1)^2 - 2\left(\frac{3}{2}x^2 - 5x\right) = (2x+1)\cdot(2x+1) - \left(2\cdot\frac{3}{2}x^2 - 2\cdot5x\right) \tag{6}$$

$$= (2x)^2 + 2x + 2x + 1^2 - (3x^2 - 10x)$$
 (7)

$$=4x^2 + 4x + 1 - 3x^2 + 10x \tag{8}$$

$$= \boxed{x^2 + 14x + 1} \tag{9}$$

(b) Simplify:
$$\frac{8x^3y}{4x^{-3}y^{-9}} + \left(3x^3y^5\right)^2$$

Solution:

$$\frac{8x^3y}{4x^{-3}y^{-9}} + (3x^3y^5)^2 = \frac{2x^3y}{x^{-3}y^{-9}} + 3^2x^{3\cdot 2}y^{5\cdot 2}$$
 (10)

$$=2x^{3+3}y^{1+9} + 9x^6y^{10} (11)$$

$$=2x^6y^{10} + 9x^6y^{10} (12)$$

$$= \boxed{11x^6y^{10}} \tag{13}$$

(c) Find the missing power (that value of the exponent in the box that would make the equality true) in the calculation: $x^{2/7} \cdot x^{\square} = x$

Solution:

$$x^{2/7} \cdot x^{\square} = x \tag{14}$$

$$\frac{x^{2/7} \cdot x^{\square}}{x^{2/7}} = \frac{x}{x^{2/7}} \tag{15}$$

$$x^{\square} = x^{1 - \frac{2}{7}} \tag{16}$$

$$x^{\square} = x^{1 \cdot \frac{7}{7} - \frac{2}{7}} \tag{17}$$

$$x^{\square} = x^{\frac{7-2}{7}} \tag{18}$$

$$x^{\square} = x^{\frac{5}{7}} \tag{19}$$

The missing power is $\left| \frac{5}{7} \right|$

(d) Simplify each expression:

i.
$$\sqrt{72} - \sqrt{32}$$

Solution:

$$\sqrt{72} - \sqrt{32} = \sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3} - \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$$
 (20)

$$= \sqrt{2^2 \cdot 2 \cdot 3^2} - \sqrt{2^2 \cdot 2^2 \cdot 2} \tag{21}$$

$$=2\cdot 3\sqrt{2}-2\cdot 2\sqrt{2}\tag{22}$$

$$=6\sqrt{2}-4\sqrt{2}\tag{23}$$

$$=\boxed{2\sqrt{2}}\tag{24}$$

ii. $\sqrt{4x^2+16}$

Solution:

$$\sqrt{4x^2 + 16} = \sqrt{4(x^2 + 4)} \tag{25}$$

$$=\sqrt{4}\sqrt{(x^2+4)}\tag{26}$$

$$=\sqrt{2^2}\sqrt{(x^2+4)}$$
 (27)

$$= 2\sqrt{x^2 + 4} \tag{28}$$

(e) Multiply: $x^{1/3} \left(x^{2/3} + \frac{1}{\sqrt[3]{x}} \right)$

Solution:

$$x^{1/3}\left(x^{2/3} + \frac{1}{\sqrt[3]{x}}\right) = x^{1/3} \cdot x^{2/3} + x^{1/3} \cdot \frac{1}{\sqrt[3]{x}}$$
 (29)

$$=x^{1/3+2/3}+x^{1/3}\cdot\frac{1}{x^{1/3}}\tag{30}$$

$$=x^{\frac{1+2}{3}}+1\tag{31}$$

$$=x^{3/3}+1 (32)$$

$$= \boxed{x+1} \tag{33}$$

- 3. The following are unrelated: (20 pts)
 - (a) Factor completely (If not factorable write NF): $27x^3 1$

Solution: We use our difference of cubes formula provided on the exam with $a^3 = (3x)^3$ so a = 3x and $b^3 = 1^3$ so b = 1:

$$27x^3 - 1 = (3x - 1)((3x)^2 + (3x)(1) + (1)^2)$$
(34)

$$= (3x-1)(9x^2+3x+1)$$
 (35)

NOTE: $9x^2 + 3x + 1$ is not factorable so we are done.

(b) Simplify the compound fraction: $\frac{\frac{1}{2x^2} - \frac{4}{x}}{\frac{1}{3x^2} - 3}$

Solution: One approach to solving this is to clear the fractions by multiplying both the numerator and denominator by the common denominator of all the three fractions, then simplify:

$$\frac{\frac{1}{2x^2} - \frac{4}{x}}{\frac{1}{3x^2} - 3} = \left(\frac{\frac{1}{2x^2} - \frac{4}{x}}{\frac{1}{3x^2} - 3}\right) \left(\frac{6x^2}{6x^2}\right) \tag{36}$$

$$= \left(\frac{\frac{6x^2}{2x^2} - \frac{4(6x^2)}{x}}{\frac{6x^2}{3x^2} - 3(6x^2)}\right) \tag{37}$$

$$= \boxed{\frac{3 - 24x}{2 - 18x^2}} \tag{38}$$

or =
$$\frac{3(1-8x)}{2(1-9x^2)}$$
 (39)

or =
$$\frac{3(1-8x)}{2(1-3x)(1+3x)}$$
 (40)

Since nothing cancels when we factor, any of the three answers are correct.

(c) Factor completely (If not factorable write NF): $x^3 - 4x^2 + 2x - 8$

$$x^{3} - 4x^{2} + 2x - 8 = x^{2}(x - 4) + 2(x - 4)$$

$$\tag{41}$$

$$= (x^2 + 2)(x - 4)$$
 (42)

(d) Let d be a constant real number. Find the value of d that makes the factoring of the polynomial true: $3x^2 + dx - 8 = (3x + 1)(x - 8)$

Solution: We distribute on the right hand side of our equation and solve for d:

$$3x^2 + dx - 8 = (3x+1)(x-8) (43)$$

$$3x^2 + dx - 8 = 3x^2 - 24x + x - 8 (44)$$

$$3x^2 + dx - 8 = 3x^2 - 23x - 8 (45)$$

$$dx - 8 = -23x - 8 (46)$$

$$dx = -23x (47)$$

$$d = \boxed{-23} \tag{48}$$

4. Simplify: $\frac{(x-2)(-3)4x^2+(2x)^22x}{x}$ (5 pts)

Solution:

$$\frac{(x-2)(-3)4x^2 + (2x)^2 2x}{x} = \frac{x\left((x-2)(-3)4x + (2x)^2 2\right)}{x} \tag{49}$$

$$= (x-2)(-3)4x + 2(2x)^2$$
(50)

$$= (x-2)(-12x) + 2(4x^2)$$
(51)

$$= -12x^2 + 24x + 8x^2 \tag{52}$$

$$= \boxed{-4x^2 + 24x} \tag{53}$$

5. The following are unrelated: (10 pts)

(a) Perform the subtraction: $\frac{1}{x^2 + 5x} - \frac{2}{x + 5}$

Solution: We begin by finding the common denominator by factoring:

$$\frac{1}{x^2 + 5x} - \frac{2}{x+5} = \frac{1}{x(x+5)} - \frac{2}{x+5}
= \frac{1}{x(x+5)} - \frac{2x}{x(x+5)}$$
(54)

$$=\frac{1}{x(x+5)} - \frac{2x}{x(x+5)} \tag{55}$$

$$= \boxed{\frac{1-2x}{x(x+5)}} \tag{56}$$

(b) Perform the multiplication: $\frac{2x^4 + 8x^2}{4(x^2 - 6x + 9)} \cdot \frac{x - 3}{x^2 + 4}$

Solution: We factor and cancel:

$$\frac{2x^4 + 8x^2}{4(x^2 - 6x + 9)} \cdot \frac{x - 3}{x^2 + 4} = \frac{2x^2(x^2 + 4)}{4(x - 3)(x - 3)} \cdot \frac{x - 3}{x^2 + 4}$$

$$= \boxed{\frac{x^2}{2(x - 3)}}$$
(57)

$$= \boxed{\frac{x^2}{2(x-3)}} \tag{58}$$

6. Is x=9 a solution of the equation: $\frac{\sqrt{x}}{x-10}+2x=14$? As usual, be sure to show work to justify your answer for credit. (4 pts)

Solution:

Plugging x = 9 to the left hand side (LHS) of the equation, we obtain

$$\frac{\sqrt{9}}{9-10} + 18 = \frac{3}{-1} + 18$$

$$= 15$$
(59)

Since 15 does not match the right hand side (RHS) value of 14, we conclude that x = 9 is NOT a solution of the given equation.

7. Solve each of the following equations: (15 pts)

(a)
$$12 + 8x = -x^2$$

Solution:

$$12 + 8x = -x^2 (61)$$

$$x^2 + 8x + 12 = 0 ag{62}$$

$$(x+6)(x+2) = 0 (63)$$

Thus, using the multiplicative property of zero, we conclude that x=-6 and x=-2

(b)
$$\frac{1}{4}x - 2 = \frac{5}{6} - 2x$$

Solution:

$$\frac{1}{4}x - 2 = \frac{5}{6} - 2x\tag{64}$$

$$12\left(\frac{1}{4}x - 2\right) = 12\left(\frac{5}{6} - 2x\right) \tag{65}$$

$$3x - 24 = 10 - 24x \tag{66}$$

$$27x = 34\tag{67}$$

$$x = \boxed{\frac{34}{27}}\tag{68}$$

(c)
$$(y^2+9)(2y^2-4)=0$$

Solution:

Using the multiplicative property of zero, the possible solutions come from:

i.
$$y^2 + 9 = 0$$

$$y^{2} + 9 = 0 (69)$$

$$y^{2} = -9 (70)$$

$$y = \pm \sqrt{-9} (71)$$

$$y^2 = -9 \tag{70}$$

$$y = \pm \sqrt{-9} \tag{71}$$

but $\sqrt{-9}$ and $-\sqrt{-9}$ are not real numbers (and so $y^2 + 9 = 0$ has no solutions in the real numbers).

ii.

$$2y^2 - 4 = 0 (72)$$

$$2y^2 = 4 \tag{73}$$

$$y^2 = 2 \tag{74}$$

$$y = \pm \sqrt{2} \tag{75}$$

So the solutions to $(y^2 + 9)(2y^2 - 4) = 0$ are $y = \pm \sqrt{2}$

- 8. Solve each of the following Physics equations for the specified variable: (10 pts)
 - (a) Solve for t: 2s vt = 2at

Solution:

$$2s - vt = 2at (76)$$

$$2s = vt + 2at \tag{77}$$

$$2s = t(v + 2a) \tag{78}$$

$$t = \boxed{\frac{2s}{v + 2a}}\tag{79}$$

(b) Solve for v: $T = \frac{1}{2}mv^2$

Solution:

$$T = \frac{1}{2}mv^2 \tag{80}$$

$$2T = mv^2 (81)$$

$$\frac{2T}{m} = v^2 \tag{82}$$

$$v = \boxed{\pm \sqrt{\frac{2T}{m}}} \tag{83}$$