
1. (30 points) Evaluate the following limits and simplify your answers. If a limit does not exist, clearly state this. If you use a theorem, clearly state its name and show that its hypotheses are satisfied. (Reminder: You may not use L'Hopital's Rule in any solutions on this exam.)

(a)
$$\lim_{x \to 1} \frac{3 - \sqrt{6 + 3x}}{x - 1}$$

(b)
$$\lim_{x \to 1} \frac{(x-2)|x-1|}{x^2 - 3x + 2}$$

(c)
$$\lim_{x\to 0} x^2 \cos\left(\frac{1}{x^2}\right)$$
.

- 2. (22 points) Answer each of the following problems. (a) and (b) are unrelated to one another.
 - (a) Let $f(\theta) = 6\cos(2\theta) 1$.
 - i. What is the range of f? Write your final answer in interval notation.
 - ii. Solve the inequality $f(\theta) > 2$ for θ in the interval $[0, \pi]$. Write your final answer in interval notation.
 - (b) Suppose $\cos t = \frac{3}{7}$ and $\sin t < 0$. Find $\sin(2t)$.
- 3. (14 points) Use the table of values of r(x) and the graph of y = g(x) provided here to answer each of the problems below. Assume that r(x) is continuous for all real numbers. Also assume that the entire graph of y = g(x) is represented in the graph below. No justifications are required for this problem.

- (a) State the domain of g(x) using interval notation.
- (b) State the range of g(x) using interval notation.
- (c) Determine the value of $(g \circ r)(1)$.
- (d) Determine the value of $(r \circ g)(1)$.
- (e) Assuming r(x) is an odd function, evaluate r(-2).
- (f) Evaluate $\lim_{x\to 2^-} g(x)$, if it exists. (If it does not exist, state Does Not Exist.)
- (g) Evaluate $\lim_{x\to 1} (g\circ r)(x)$, if it exists. (If it does not exist, state Does Not Exist.)

4. (20 points) Consider the following function in terms of constant a:

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x < 2\\ ax^2 - 5x, & \text{if } x \ge 2 \end{cases}$$

- (a) If a = 3, what type of discontinuity does f have at x = 2? (Justify your answer with the appropriate limit(s).)
- (b) Determine all values of a such that f(x) is continuous at x=2. (Justify your answer with the definition of continuity.)
- 5. (14 points) Consider $h(x) = \frac{x+30}{x+2}$ and $j(x) = x + \frac{1}{x}$.
 - (a) Is h(x) even, odd, or neither? Justify your answer.
 - (b) State the domain of h(x) in interval notation.
 - (c) Determine $(h \circ j)(x)$ and give its domain in interval notation. (Your expression for $(h \circ j)(x)$ should be fully simplified with no fractions inside fractions.)