APPM 2360 - Introduction to Differential Equations with Linear Algebra COURSE OBJECTIVES: Provide an introduction to ordinary differential equations and linear algebra. The main objectives are to: - Understand various qualitative and quantitative methods of solving differential equations - Understand basic concepts of linear algebra and utilize these to solve differential equations - Improve problem solving and critical thinking skills ### **TEXTBOOK:** - Differential Equations and Linear Algebra, 2nd Edition by Farlow, Hall, McDill and West - Digital resources are also available through WebAssign ## PREREQUISITES: • Any ONE of the following courses (minimum grade C-): APPM 1360 or MATH 2300 # **EQUIVALENT COURSES:** Duplicate Degree Credit Not Granted: • both MATH 2130 and MATH 3430 ### SCHEDULE AND TOPICS COVERED | Day | Section | Topics | | | |-----|-----------|--|--|--| | 1 | 1.2 | Solutions and Direction Fields: Qualitative Analysis [a] | | | | 2 | 1.2 / 1.3 | Solutions and Direction Fields: Qualitative Analysis [b] / Separation of Variables: Quantitative Analysis [a] | | | | 3 | 1.3 / 1.4 | Separation of Variables: Quantitative Analysis [b] / Approximation Methods: Numerical Analysis | | | | 4 | 1.5 / 2.1 | Picard's Theorem: Theoretical Analysis / Linear Equations: The Nature of Their Solutions [a] | | | | 5 | 2.1 / 2.2 | Linear Equations: The Nature of Their Solutions [b] / Solving the First Order Linear Differential Equation [a] | | | | 6 | 2.2 / 2.3 | Solving the First Order Linear Differential Equation [b] / Growth and Decay Phenomena [a] | | | | 7 | 2.3 / 2.4 | Growth and Decay Phenomena [b] / Linear Models: Mixing and Cooling [a] | | | | 8 | 2.4 / 2.5 | Linear Models: Mixing and Cooling [b] / Nonlinear Models: Logistic Equation [a] | | | | 9 | 2.5 / 2.6 | Nonlinear Models: Logistic Equation [b] / Systems of Differential Equations: A First Look [a] | | | | 10 | 2.6 | Systems of Differential Equations: A First Look [b] | | | | 11 | Review | Exam Review (Sections 1.2-2.6) | | | | 12 | 3.1 | Matrices: Sums and Products [a] | | | | 13 | 3.1 / 3.2 | Matrices: Sums and Products [b] / Systems of Linear Equations [a] | | | | 14 | 3.2 | Systems of Linear Equations [b] | | | | 15 | 3.2 / 3.3 | Systems of Linear Equations [c] / The Inverse of a Matrix [a] | | | | 16 | 3.3 / 3.4 | The Inverse of a Matrix [b] / Determinants and Cramer's Rule [a] | | | | 17 | 3.4 / 3.5 | Determinants and Cramer's Rule [b] / Vector Spaces and Subspaces [a] | | | | 18 | 3.5 / 3.6 | Vector Spaces and Subspaces [b] / Basis and Dimension [a] | | | | 19 | 3.6 | Basis and Dimension [b] | | | | 20 | 3.6 | Basis and Dimension [c] | | | | 21 | 3.6 / 5.3 | Basis and Dimension [d] / Eigenvalues and Eigenvectors [a] | | | | 22 | 5.3 | Eigenvalues and Eigenvectors [b] | | | | 23 | Review | Exam Review (Sections 3.1-3.6, 5.3) | | | | 24 | 4.1 | The Harmonic Oscillator | | | | 25 | 4.2 | Real Characteristic Roots | | | | 26 | 4.3 | Complex Characteristic Roots | | | | 27 | 4.4 | Undetermined Coefficients [a] | | | | 28 | 4.4 / 4.5 | Undetermined Coefficients [b] / Variation of Parameters [a] | | | | 29 | 4.5 / 4.6 | Variation of Parameters [b] / Forced Oscillations [a] | | | | 30 | 4.6 / 4.7 | Forced Oscillations [b] / Conservation and Conversion [a] | | | | 31 | 4.7 / 8.1 | Conservation and Conversion [b] / The Laplace Transform and Its Inverse [a] | | | | 32 | 8.1 / 8.2 | The Laplace Transform and Its Inverse [b] / Solving DEs and IVPs with Laplace Transforms [a] | | | | 33 | 8.2 | Solving DEs and IVPs with Laplace Transforms [b] | | | | 34 | 8.3 | The Step Function and the Delta Function [a] | | |----|-----------|--|--| | 35 | Review | Exam Review (Sections 4.1-4.7, 8.1-8.2) | | | 36 | 8.3 | The Step Function and the Delta Function [b] | | | 37 | 6.1 / 6.2 | Theory of Linear DE Systems / Linear Systems with Real Eigenvalues [a] | | | 38 | 6.2 | Linear Systems with Real Eigenvalues [b] | | | 39 | 6.2 / 6.3 | Linear Systems with Real Eigenvalues [c] / Linear Systems with Nonreal Eigenvalues [a] | | | 40 | 6.3 / 6.4 | Linear Systems with Nonreal Eigenvalues [b] / Stability and Linear Classification [a] | | | 41 | 6.4 | Stability and Linear Classification [b] | | | 42 | Review | Final Exam Review (comprehensive) | | ## LEARNING OBJECTIVES BY SECTION | Section | Topics | Learning Objectives – After completing this section, students should be able to do the following: | |---------|--|---| | 1.2 | Solutions and Direction
Fields: Qualitative
Analysis | know what an ordinary differential equation (ODE) is and how to determine its order know what a solution to a differential equation is and how to verify that a function is a solution of an ODE on an interval know what an initial value problem (IVP) is know the difference between a general and particular solution of an ODE/IVP create direction fields and use them to analyze behavior of solutions of differential equations find equilibrium solutions classify the stability of equilibrium solutions determine the long term behavior of ODE solutions based on direction fields alone use isoclines to generate direction fields | | 1.3 | Separation of Variables:
Quantitative Analysis | identify separable differential equations perform separation of variables to find explicit and implicit solutions to differential equations use variable transformations/substitutions to make nonseparable equations separable | | 1.4 | Approximation
Methods: Numerical
Analysis | understand and implement Euler's Method for approximating solutions to differential equations qualitatively understand error types (roundoff/discretization) and error propagation in Euler's Method other methods discussed such as Runge-Kutta | | 1.5 | Picard's Theorem:
Theoretical Analysis | understand existence and uniqueness of solutions apply Picard's theorem to determine if an IVP has a unique solution understand when Picard's theorem is not applicable | | 2.1 | Linear Equations: The
Nature of Their
Solutions | define linearity for differential and algebraic equations recognize linear and nonlinear algebraic and differential equations understand linear operators and their properties distinguish between homogeneous and nonhomogeneous linear equations understand the Superposition Principle understand the Nonhomogeneous Principle know how to build solutions to nonhomogeneous linear equations | |-----|--|--| | 2.2 | Solving the First Order
Linear Differential
Equation | use Euler-Lagrange Two Stage Method (variation of parameters) to solve first order linear nonhomogeneous differential equations find and use an integrating factor to solve first order linear nonhomogeneous differential equations analyze solutions in terms of transient and steady state behavior | | 2.3 | Growth and Decay
Phenomena | apply linear differential equations to exponential decay and growth problems solve applied problems concerning compound interest apply similar equations to other growth and decay problems | | 2.4 | Linear Models: Mixing and Cooling | apply physical principles to model mixing problems with differential equations solve mixing problem differential equations set up and solve applied problems using Newton's law of cooling | | 2.5 | Nonlinear Models:
Logistic Equation | perform qualitative analysis of nonlinear differential equations identify equilibrium solutions and determine their stability identify autonomous and non-autonomous differential equations plot phase lines for autonomous equations solve and interpret initial value problems for the logistic, threshold and similar equations | | 2.6 | Systems of Differential
Equations: A First Look | define what a system of differential equations is understand what a solution to a system of differential equations is know how to create phase portraits for autonomous systems of two differential equations define and find equilibrium solutions and their stability for systems of differential equations define and sketch nullclines understand uniqueness of solutions and its relation to trajectories analyze various models of systems of differential equations (<i>e.g.</i>, predator-prey and competition models) | | 3.1 | Matrices: Sums and Products | understand basic properties and terminology of matrices including order/size of a matrix rows, columns and their relation to subscript notation of elements zero matrix identity matrix diagonal and triangular matrices matrices with functions as entries recognize column and row vectors as special matrices perform matrix operations and understand the properties of these operations matrix transpose trace of a matrix addition of matrices and scalar multiplication multiplication of matrices differentiation of matrices | |-----|--------------------------------|--| | 3.2 | Systems of Linear
Equations | recognize systems of linear algebraic equations and their solutions recognize underdetermined, overdetermined and square systems and the solution possibilities of each recognize consistent and inconsistent systems convert systems of linear algebraic equations into matrix/vector equations know and apply the elementary row operations recognize reduced row echelon form (RREF) of a matrix, leading/basic and free variables, pivot columns perform Gauss-Jordan algorithm on augmented matrices to find solutions to systems of linear algebraic equations determine when solutions to a linear system of algebraic equations are unique apply Superposition and Nonhomogeneous Principles to solutions of linear algebraic equations identify the rank of a matrix | | 3.3 | The Inverse of a Matrix | definition of matrix inverse compute the inverse of a matrix determine when a matrix inverse exists know properties of an invertible matrix use the inverse of a matrix to solve a system of linear algebraic equations | | 3.4 | Determinants and
Cramer's Rule | compute determinants of 2 × 2 matrices know the definition of minors and cofactors compute determinants of n × n matrices using cofactor expansion understand the effects of elementary row operations on determinants know the properties of determinants use Cramer's rule to determine unique solutions to linear systems via determinants relate determinants with invertibility of a matrix and the number of solutions to linear systems | |-----|-----------------------------------|---| | 3.5 | Vector Spaces and
Subspaces | understand the concept of vector spaces and their defining properties/axioms identify important vector spaces understand and apply the vector subspace theorem identify when a set is not a vector space or subspace | | 3.6 | Basis and Dimension | know the definition of linear combination and span define the column space of a matrix and its relationship to solutions of linear systems determine when a set of vectors is linearly independent use the Wronskian to determine if a set of functions is linearly independent define basis for a vector space and know how to determine if a set of vectors forms a basis define dimension of a vector space and compute it | | 5.3 | Eigenvalues and
Eigenvectors | know the definition of an eigenvalue and eigenvector of a matrix find the characteristic equation of a matrix compute eigenvalues and eigenvectors and find bases for eigenspaces understand algebraic and geometric multiplicity of eigenvalues understand basic properties of eigenvalues | | 4.1 | The Harmonic Oscillator | understand the properties of the DE and initial conditions describing an harmonic oscillator motivate and understand the importance of the harmonic oscillator equation in specific relation to physics solve the differential equation describing an undamped harmonic oscillator write solutions to the undamped oscillator equation in multiple forms know the meanings of amplitude, phase angle, circular/angular frequency, natural frequency, period, phase shift understand the impact of various coefficient choices in the governing differential equation convert the harmonic oscillator equation to a system of first order equations understand phase portraits for harmonic oscillators (phase plane, vector field, trajectory) | | 4.2 | Real Characteristic
Roots | solve constant coefficient second order linear DE with real roots via the characteristic equation deal with repeated real roots to the characteristic equation understand overdamping and critical damping of harmonic oscillators know the conditions that guarantee unique solutions to nth order linear homogeneous DE determine the basis and dimension of the solution space to second order constant coefficient linear DE with real roots of the characteristic equation use the Wronskian to determine if solutions of linear homogeneous DE are linearly independent understand and apply the solution space theorem | |-----|---------------------------------|--| | 4.3 | Complex Characteristic
Roots | determine general form of solutions to second order linear constant coefficient DEs when the characteristic polynomial has complex roots determine the basis and dimension of the solution space to second order constant coefficient linear DE with complex roots of the characteristic equation understand underdamping of harmonic oscillators understand quasi-frequency, quasi-period and time constant factor polynomials of degree more than two use the characteristic equation to solve higher order DEs be able to determine what DE a solution came from (work backwards) | | 4.4 | Undetermined
Coefficients | know the superposition principle for nonhomogeneous linear DE and how to exploit it when solving equations know how to apply the Nonhomogeneous Principle for nonhomogeneous linear equations know when the method is applicable utilize the method to solve appropriate nonhomogeneous second order DEs predict forms of the particular solution based on the forcing function and solutions to the associated homogeneous equation | | 4.5 | Variation of Parameters | understand how the method is derived and when it is applicable use the method to solve second order differential equations | | 4.6 | Forced Oscillations | solve DE associated with forced harmonic oscillators determine the affect of damping on the mass/spring problem and observe the impact on solutions understand resonance and beats in harmonic oscillators and their effects on solutions to the DE determine a full solution to the damped, forced, mass-spring system identify transient and steady state solutions identify amplitude factor and interpret amplitude or frequency response curves | | 4.7 | Conservation and
Conversion | recognize differential equations governing conservative systems be able to compute total energy of conservative systems know how to convert high order DE to first order systems | |-----|---|--| | 8.1 | The Laplace Transform and Its Inverse | understand how a transform is helpful in solving IVP define the Laplace transform know the properties of the Laplace transform find inverse Laplace transforms | | 8.2 | Solving DEs and IVPs
with Laplace Transforms | know the Laplace transform for the derivative of a function know the translation and multiplication rules for Laplace transforms use Laplace transforms to solve initial value problems | | 8.3 | The Step Function and the Delta Function | know the definition of the unit step function use the step function to rewrite piecewise-defined functions be able to relate piecewise-defined functions, their graphs and step functions understand delayed functions and compute their Laplace transforms know the definition of the delta function use Laplace transforms to solve IVP involving discontinuous forcing functions | | 6.1 | Theory of Linear DE
Systems | recognize a linear system of DE and associated IVP understand what a solution to a linear system of DE is apply the superposition and nonhomogeneous principles to systems of DE apply the solution space theorem to linear homogeneous systems | | 6.2 | Linear Systems with
Real Eigenvalues | understand how to find solutions to systems of first order DEs using eigenvalues/eigenvectors provide the general solution for n × n systems of DE with distinct real eigenvalues compute a generalized eigenvector and use it to find solutions of linear systems of DE with repeated real eigenvalues interpret the behavior of solutions based on the eigenvalues draw phase plane trajectories create systems of linear DE from real world problems | | 6.3 | Linear Systems with
Nonreal Eigenvalues | know how to build solutions when eigenvalues/eigenvectors are nonreal classify the behavior of solutions with complex eigenvalues via the phase portrait | | 6.4 | Stability and Linear
Classification | define fixed points and their relationship to equilibrium solutions know the various geometries (center, node, spiral, saddle) of fixed points be able to determine the stability of fixed points distinguish asymptotic from neutral stability be able to apply the trace/determinant plane understand fast and slow eigendirections know how nonisolated fixed points arise | |-----|--|---| |-----|--|---| Updated: August 4, 2025