APPM 2350 - Calculus 3 for Engineers

COURSE OBJECTIVES: Extend the ideas of single variable calculus to functions of several variables:

- three-dimensional space, vectors and vector-valued functions, functions of multiple variables, partial differentiation, multiple integrals
- vector analysis and the Fundamental Theorem of Line Integrals, Gauss, Green and Stokes

The class reinforces problem solving and critical thinking skills required for math, engineering and the sciences

TEXTBOOK:

- Essential Calculus, 2nd Edition by James Stewart, Chapter 10-13.
- Digital resources are also available through WebAssign
- Supplementary reading on Taylor Series is also available

PREREQUISITES:

• Any ONE of the following courses (minimum grade C-): APPM 1360 or MATH 2300

EQUIVALENT COURSES: Duplicate Degree Credit Not Granted:

• MATH 2400

SCHEDULE AND TOPICS COVERED

Day	Section / Pages	Topics
1	10.1 / 10.2	Three-Dimensional Coordinate Systems / Vectors [a]
2	10.2 / 10.3	Vectors [b] / The Dot Product [a]
3	10.3 / 10.4	The Dot Product [b] / The Cross Product [a]
4	10.4 / 10.5	The Cross Product [b] / Equations of Lines and Planes [a]
5	10.5 / 10.6	Equations of Lines and Planes [b] / Cylinders and Quadric Surfaces [a]
6	10.6 / 10.7	Cylinders and Quadric Surfaces [b] / Vector Functions and Space Curves [a]
7	10.7	Vector Functions and Space Curves [b]
8	10.8	Arc Length and Curvature [a]
9	10.8 / 10.9	Arc Length and Curvature [b] / Motion in Space: Velocity and Acceleration [a]
10	10.9 / 11.1	Motion in Space: Velocity and Acceleration [b] / Functions of Several Variables [a]
11	Review	Exam Review (Sections 10.1-10.9)
12	11.1 / 11.2	Functions of Several Variables [b] / Limits and Continuity [a]
13	11.2 / 11.3	Limits and Continuity [b] / Partial Derivatives [a]
14	11.3 / 11.4	Partial Derivatives [b] / Tangent Planes and Linear Approximations [a]
15	11.4 / Handout	Tangent Planes and Linear Approximations [b] / Taylor's Theorem for Functions of Two Variables [a]
16	Handout / 11.5	Taylor's Theorem for Functions of Two Variables [b] / The Chain Rule [a]
17	11.5 / 11.6	The Chain Rule [b] / Directional Derivatives and the Gradient Vector [a]
18	11.6 / 11.7	Directional Derivatives and the Gradient Vector [b] / Maximum and Minimum Values [a]
19	11.7 / 11.8	Maximum and Minimum Values [b] / Lagrange Multipliers [a]
20	11.8	Lagrange Multipliers [b]
21	12.1 / 12.2	Double Integrals over Rectangles / Double Integrals over General Regions [a]
22	12.2 / 12.3	Double Integrals over General Regions [b] / Double Integrals in Polar Coordinates [a]
23	Review	Exam Review (Sections 11.1-11.8, Handout)
24	12.3 / 12.4	Double Integrals in Polar Coordinates [b] / Applications of Double Integrals [a]
25	12.4 / 12.5	Applications of Double Integrals [b] / Triple Integrals [a]
26	12.5 / 12.6	Triple Integrals [b] / Triple Integrals in Cylindrical Coordinates [a]
27	12.6 / 12.7	Triple Integrals in Cylindrical Coordinates [b] / Triple Integrals in Spherical Coordinates [a]
28	12.7 / 12.8	Triple Integrals in Spherical Coordinates [b] / Change of Variables in Multiple Integrals [a]
29	12.8 / 13.A (pp 767-774, 803-810, 813-817)	Change of Variables in Multiple Integrals [b] / Scalar Line and Surface Integrals [a]
30	13.A (pp 767-774, 803-810, 813-817)	Scalar Line and Surface Integrals [b]

31	13.A (pp 767-774, 803-810, 813-817) / 13.B (pp 761-765, 795-799)	Scalar Line and Surface Integrals [c] / Vector Fields, Divergence and Curl [a]
32	13.B (pp 761-765, 795-799) / 13.C (pp 774-776, 817-822)	Vector Fields, Divergence and Curl [b] / Vector Line and Surface Integrals [a]
33	13.C (pp 774-776, 817-822) 13.D (pp 779-786)	Vector Line and Surface Integrals [b] / Fundamental Theorem for Line Integrals [a]
34	13.D (pp 779-786)	Fundamental Theorem for Line Integrals [b]
35	Review	Exam Review (Sections 12.1-13.B)
36	13.E (pp 788-793, 799-801)	Green's Theorem [a]
37	13.E (pp 788-793, 799-801)	Green's Theorem [b]
38	13.F (pp 824-828)	Stokes' Theorem [a]
39	13.F (pp 824-828)	Stokes' Theorem [b]
40	13.G (pp 829-834)	Gauss' Theorem [a]
41	13.G (pp 829-834)	Gauss' Theorem [b]
42	Review	Exam Review (Comprehensive)

LEARNING OBJECTIVES BY SECTION

Section	Topics	Learning Objectives – After completing this section, students should be able to do the following:
10.1	Three-Dimensional Coordinate Systems	 represent points in three-dimensional space know the three coordinate planes and various octants of three-dimensional space know the right-hand rule for relating coordinate axes in three dimensions understand the notation R, R², and R³ derive and use the distance formula in three dimensions give the equation for a sphere or ball and recognize the generalization from two dimensions.
10.2	Vectors	 state the definition of a vector find vectors between points relate position vectors to points in space write vectors in component form perform vector addition and scalar multiplication of vectors geometrically and algebraically know the properties of vector addition and scalar multiplication calculate the magnitude of a vector and find unit vectors know the standard basis vectors and write vectors as linear combinations of the basis vectors use vectors to solve applied problems

10.3	The Dot Product	 compute the dot product of two vectors using two different formulas use dot products to compute the angle between vectors know the relationship of dot products and orthogonal vectors know properties of the dot product find vector, scalar and orthogonal projections of vectors use dot products to calculate work
10.4	The Cross Product	 compute the cross product of two vectors using two different formulas understand symbolic determinants know the relationships between vectors and their cross product know the geometric meaning of the magnitude of the cross product of two vectors know properties of the cross product know the relationship of cross products and parallel vectors define the scalar triple product and explain what it means geometrically use cross products to calculate torque
10.5	Equations of Lines and Planes	 find the vector, parametric and symmetric equations of lines given information about the line determine if two given lines are parallel, skew or intersecting find the shortest distance from a point to a line using cross products find the equation of a plane given information about the plane given the equation of a plane, find a vector normal to the plane find the shortest distance between a plane and a point find the distance between two parallel planes find the angle between two planes find the line of intersection of two planes find the point of intersection of a line and a plane
10.6	Cylinders and Quadric Surfaces	 understand the geometry of generalized cylinders recognize equations that describe cylinders know the geometry and equations of the quadric surfaces define and sketch the quadric surfaces using traces identify and sketch different traces for the quadric surfaces

10.7	Vector Functions and Space Curves	 define vector-valued functions and interpret them geometrically as a position vector relate parametric curves to the space curve defined by a vector-valued function find limits, derivatives, antiderivatives and definite integrals of vector-valued functions relate the derivative of a vector-valued function to the vector tangent to the space curve know the differentiation rules of vector-valued functions
10.8	Arclength and Curvature	 compute the arc length of a space curve define the arc length function parameterize a curve in terms of arc length define and compute curvature of a space curve interpret curvature in terms of the osculating circle define, compute and understand the geometry of the unit tangent, normal and binormal vectors of a space curve define the osculating, normal and rectifying planes associated with a space curve
10.9	Motion in Space: Velocity and Acceleration	 decompose the acceleration vector into tangential and normal components understand the physics of tangential and normal acceleration use vector-valued functions to analyze projectile motion and find forces on moving objects
11.1	Functions of Several Variables	 define a function of several variables find the domain and range of a function of several variables visualize graphs of functions of two variables understand traces and level curves of functions of two variables create contour plots (maps) of functions of two variables generate level surfaces for functions of three variables
11.2	Limits and Continuity	 informally explain the concept of the limit of a function of two variables apply theorems that guarantee limits of multivariable functions exist understand the two path criterion to show that a limit does not exist and apply it to solve problems about limits determine continuity of functions of several variables
11.3	Partial Derivatives	 calculate partial derivatives of multivariable functions recognize various notation for partial derivatives provide geometrical meaning of partial derivatives estimate partial derivatives from tables estimate partial derivatives contour plots determine if a function satisfies a given partial differential equation

11.4	Tangent Planes and Linear Approximations; Taylor's Theorem for Functions of Two Variables (supplemental reading)	 find explicit formulas for tangent planes understand the relationship between linear approximation and the tangent plane understand the definition of differentiability for multivariable functions find linear approximations of multivariable functions use linearizations to estimate values of functions calculate differentials of functions of multiple variables use differentials to approximate changes in multivariable functions use differentials in applied problems compute Taylor series of functions of two variables compute Taylor polynomials of functions of two variables and analyze the errors in the approximations
11.5	The Chain Rule	 define the chain rules for functions of more than one variable compute the derivative of the composition of a function of several variables and a vector-valued function and describe its applications compute the derivatives of the composition of a function of several variables, each of which is a function of several variables use the multivariable chain rule to perform implicit differentiation
11.6	Directional Derivatives and the Gradient Vector	 compute directional derivatives interpret directional derivatives graphically estimate directional derivatives from contour maps compute gradient vectors and understand their relationship to level curves and level surfaces understand rates of change of multivariable functions and their relationship to gradient vectors know the relationship between rates of change with respect to time and distance
11.7	Maximum and Minimum Values	 define and find the critical points of a function of two variables recognize relative maxima, minima and saddle points of functions of two variables using graphs and level curves classify critical points of functions of two variables using the Second Derivatives Test solve applied optimization problems involving functions of two variables know and apply the Extreme Value Theorem for multivariable functions
11.8	Lagrange Multipliers	 understand the geometric basis of the method of Lagrange multipliers use Lagrange multipliers to solve constrained optimization problems

12.1	Double Integrals over Rectangles	 understand the Riemann sum definition of a double integral, both algebraically and geometrically know the geometric meaning of a double integral use iterated integrals to compute double integrals over rectangular regions apply Fubini's Theorem
12.2	Double Integrals over General Regions	 compute definite integrals over general domains apply Fubini's theorem to general domains of integration use double integrals to calculate areas and volumes sketch the region of integration given a double integral change the order of integration in a double integral
12.3	Double Integrals in Polar Coordinates	 understand algebraically and geometrically how areas in Cartesian coordinates are related to areas in polar coordinates compute double integrals in polar coordinates convert polar coordinate double integrals to Cartesian coordinate double integrals and vice versa
12.4	Applications of Double Integrals	 use double integrals to calculate average value use double integrals to calculate mass, moments, center of mass, moments of inertia of two-dimensional objects
12.5	Triple Integrals	 understand the Riemann sum definition of a triple integral both algebraically and geometrically use iterated integrals to compute triple integrals apply Fubini's theorem to triple integrals use triple integrals to calculate volume, mass, and center of mass of three-dimensional solids use triple integrals to calculate average values change the order of integration in triple integrals
12.6	Triple Integrals in Cylindrical Coordinates	 understand both algebraically and geometrically how volumes in cylindrical coordinates are related to volumes in Cartesian coordinates convert triple integrals from Cartesian to cylindrical coordinates and vice versa calculate volume, mass, center of mass and average values using cylindrical coordinates change the order of integration in cylindrical coordinates draw regions in space given a triple integral in cylindrical coordinates

12.7	Triple Integrals in Spherical Coordinates	 understand both algebraically and geometrically how volumes in spherical coordinates are related to volumes in Cartesian coordinates convert triple integrals from Cartesian to spherical coordinates and vice versa convert triple integrals from cylindrical to spherical coordinates and vice versa calculate volume, mass, center of mass and average values using spherical coordinates change the order of integration in spherical coordinates draw regions in space given a triple integral in spherical coordinates
12.8	Change of Variables in Multiple Integrals	 understand the need to use change of variables in multiple integrals know the basics of transformations in two- and three-dimensional space compute Jacobians of transformations and understand their geometric meaning identify transformations to use in multiple integral problems apply the Change of Variables Theorem
13.A	Scalar Line and Surface Integrals	 know the definition and different forms of scalar line integrals parameterize paths to evaluate scalar line integrals use scalar line integrals to compute area, arclength of curves, average values, mass, moments and centers of mass know the definition and different forms of scalar surface integrals parameterize surfaces to evaluate scalar surface integrals use scalar surface integrals to compute surface area, average values, mass, moments and centers of mass
13.B	Vector Fields, Divergence and Curl	 explain the concept of a vector field and make sketches of simple vector fields in the plane define gradient vector fields know what a conservative vector field is and its relationship to a potential function compute the divergence of a vector field and describe its physical meaning compute the curl of a vector field and describe its physical meaning
13.C	Vector Line and Surface Integrals	 know the definition and different forms of vector line integrals parameterize paths to evaluate vector line integrals use vector line integrals to compute work, flow, and circulation along two-or three-dimensional curves, and flux through two-dimensional curves know the definition and different notation used for vector surface integrals parameterize surfaces to evaluate vector surface integrals use vector surface integrals to compute the flux of a vector field through a surface understand the physical meanings of flux and flow

13.D	Fundamental Theorem for Line Integrals	 know the necessary and sufficient conditions required for a vector field to be conservative find potential functions for conservative vector fields define path independence state and apply the Fundamental Theorem for Line Integrals
13.E	Green's Theorem	 state Green's Theorem in both its flow and flux form and describe the physical meanings of the various integrals use Green's Theorem to compute areas know when to use the correct form of Green's Theorem to compute various integrals and quantities defined as integrals
13.F	Stokes' Theorem	 state Stokes' Theorem and describe the physical meaning of the various integrals interpret Stokes' Theorem as a three-dimensional version of Green's Theorem know how to use Stokes' Theorem to compute various integrals and quantities defined as integrals
13.G	Gauss' Divergence Theorem	 state Gauss' Divergence Theorem and describe the physical meaning of the various integrals interpret Gauss' Divergence Theorem as a three-dimensional version of Green's Theorem know how to use Gauss' Theorem to compute various integrals and quantities defined as integrals

Updated: August 4, 2025