- 1. (30 pts) Evaluate the following. You may use any calc 1 techniques.
 - (a) Evaluate $\lim_{x \to 0} \frac{xe^x}{e^x 1}$
 - (b) Evaluate $\lim_{x \to \frac{\pi}{2}^-} \frac{\sec x}{\tan x}$
 - (c) Evaluate $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x$

Solution:

(a) Note that this is a 0/0 indeterminate limit. So, we will use L'Hopital's rule.

$$\lim_{x \to 0} \frac{xe^x}{e^x - 1} \stackrel{LH}{=} \lim_{x \to 0} \frac{xe^x + e^x}{e^x}$$

$$= \lim_{x \to 0} \frac{e^x(x+1)}{e^x}$$

$$= \lim_{x \to 0} x + 1 = \boxed{1}$$

(b) For this limit, we start by rewriting this limit in terms of $\sin x$ and $\cos x$.

$$\lim_{x\to\frac{\pi}{2}^-}\frac{\sec x}{\tan x}=\lim_{x\to\frac{\pi}{2}^-}\frac{1}{\cos x}\cdot\frac{\cos x}{\sin x}=\lim_{x\to\frac{\pi}{2}^-}\frac{1}{\sin x}=\boxed{1}$$

(c) For this problem, we let $L = \lim_{x\to\infty} \left(1 + \frac{2}{x}\right)^x$ and take the log.

$$\ln L = \lim_{x \to \infty} x \ln \left(1 + \frac{2}{x} \right)$$

This is an $\infty \cdot 0$, so we re-write the limit to use L'Hopital's rule:

$$\lim_{x \to \infty} x \ln \left(1 + \frac{2}{x} \right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{2}{x} \right)}{\frac{1}{x}}$$

$$\stackrel{LH}{=} \lim_{x \to \infty} \frac{\frac{1}{1 + 2/x} \cdot (-2x^{-2})}{(-x^{-2})}$$

$$= \lim_{x \to \infty} \frac{2}{1 + \frac{2}{x}} = 2$$

So,
$$\ln L = 2$$
, and $L = e^2$

2. (15 pts) A box with a square base and open top must have a volume of 32,000cm³. Find the dimensions of the box that minimize the amount of material used.

Solution: Let's call the side length of the base b and the height h.

We are given a restriction on the volume, $V=32,000=b^2h$. We are told we want to minimize the amount of material used. Since there is no top, we want to minimize $A=b^2+4bh$. Using the volume equation, $h=\frac{32000}{b^2}$. Plugging in to our A equation, we get

$$A(b) = b^2 + \frac{4 \cdot 32000}{b}$$

$$A'(b) = 2b - 128000b^{-2}$$

To find critical points, we need to find b such that A'(b) = 0.

$$0 = 2b - 128,000b^{-2}$$
$$128,000b^{-2} = 2b$$
$$64,000 = b^{3}$$
$$b = 40cm$$

We check that this is a minimum using the second derivative test: $A''(b) = 2 + 256000b^{-3} > 0$ for b > 0, so A(b) is concave up and we have a minimum. Plugging back in to find the height: $h = 32,000/(40^2) = 20$ cm. The dimensions that minimize the amount of material used are: $40 \times 40 \times 20$ cm.

- 3. (26 pts) For the following problems, consider the decreasing function $f(x) = \frac{-\sqrt{e^x}}{2}$.
 - (a) Find the domain and range of f(x).
 - (b) Find $f^{-1}(x)$. Indicate the domain and range of the inverse function.
 - (c) Find the equation of the tangent line to $f^{-1}(x)$ when $x = \frac{-1}{2}$.

Solution:

- (a) The domain of f is $(-\infty, \infty)$, because $e^x > 0$ for all x. The range is $(-\infty, 0)$.
- (b) To find the inverse, we swap x and y and solve for y:

$$x = \frac{-\sqrt{e^y}}{2}$$
$$-2x = \sqrt{e^y}$$
$$4x^2 = e^y$$
$$y = \ln(4x^2)$$

- So, $f^{-1}(x) = \ln(4x^2)$. The domain is $(-\infty, 0)$ and the range is $(-\infty, \infty)$.
- (c) To find the equation of the tangent line, we need a point and the slope. To find the coordinate point, we calculate $f^{-1}\left(-\frac{1}{2}\right) = \ln\left(4 \cdot \frac{1}{4}\right) = \ln(1) = 0$. So the point is $\left(-\frac{1}{2}, 0\right)$. To find the slope, we can either find $(f^{-1})'(-\frac{1}{2})$ or $\frac{1}{f'(0)}$.

$$(f^{-1})'(x) = \frac{1}{4x^2} \cdot 8x$$
$$= \frac{2}{x}$$
$$(f^{-1})'\left(-\frac{1}{2}\right) = -4$$

So, the equation of the tangent line is y = -4x - 2.

4. (36 pts) The following problems are unrelated. You may use any calc 1 techniques.

(a) Compute
$$\int \frac{x}{\sqrt{16x^2+1}} dx$$

(b) Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2+1)^4}{(2x+1)^3(3x-1)^5}$ Hint: use logarithmic differentiation.

(c) Evaluate
$$\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1-x^2}} \, \mathrm{d}x$$

Solution:

(a) To evaluate this integral we do a substitution: $u = 16x^2 + 1$, and du = 32x dx.

$$\int \frac{x}{\sqrt{u}} \frac{du}{32x} = \frac{1}{32} \int u^{-1/2} dx$$

$$= \frac{1}{32} \left[2u^{1/2} \right] + C$$

$$= \boxed{\frac{\sqrt{16x^2 + 1}}{16} + C}$$

(b) We will use logarithmic differentiation to find $\frac{dy}{dx}$.

$$\ln(y) = \ln\left(\frac{(x^2+1)^4}{(2x+1)^3(3x-1)^5}\right)$$
$$= 4\ln(x^2+1) - 3\ln(2x+1) - 5\ln(3x-1)$$

Now that we have simplified, we take the derivative of both sides:

$$\frac{1}{y}\frac{dy}{dx} = 4\left(\frac{1}{x^2+1}\right) \cdot 2x - 3\left(\frac{1}{2x+1}\right) \cdot 2 - 5\left(\frac{1}{3x-1}\right) \cdot 3$$

$$= \left(\frac{8x}{x^2+1}\right) - \left(\frac{6}{2x+1}\right) - \left(\frac{15}{3x-1}\right)$$

$$\frac{dy}{dx} = y\left[\left(\frac{8x}{x^2+1}\right) - \left(\frac{6}{2x+1}\right) - \left(\frac{15}{3x-1}\right)\right]$$

$$= \left[\frac{(x^2+1)^4}{(2x+1)^3(3x-1)^5} \left[\left(\frac{8x}{x^2+1}\right) - \left(\frac{6}{2x+1}\right) - \left(\frac{15}{3x-1}\right)\right]$$

(c)
$$\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1-x^2}} dx = \left[4 \arcsin x\right]_{1/2}^{1/\sqrt{2}} = 4\left[\frac{\pi}{4} - \frac{\pi}{6}\right] = \frac{4\pi}{12} = \left[\frac{\pi}{3}\right]$$

- 5. (18 pts) Consider a bacteria culture that grows at a rate proportional to its size. The size of the culture increases by 50% in one hour. Let P(t) be the number of bacteria after t hours.
 - (a) Find the relative growth rate of the culture (k).
 - (b) Find an expression for P(t). Fully simplify your answer.
 - (c) If the number of cells in the culture is 900 after two hours, what was the initial population of the culture?

Solution:

(a) We are given that the bacteria culture is growing at a rate proportional to its size, so we know it is growing exponentially. So, we are looking for an equation of the form $P(t) = P_0 e^{kt}$. We are looking for k.

We are told that $P(1) = \frac{3}{2}P_0$, so we use this to solve for k:

$$\frac{3}{2}P_0 = P_0 e^{k \cdot 1}$$

$$\frac{3}{2} = e^k$$

$$k = \ln\left(\frac{3}{2}\right)$$

- (b) Plugging in, $P(t) = P_0 e^{\ln(3/2)t}$. Rewriting in simplified form: $P(t) = P_0 \left(\frac{3}{2}\right)^t$
- (c) We are told P(2) = 900. We plug in to our equation from (b):

$$900 = P_0 \left(\frac{3}{2}\right)^2$$

$$900 = P_0 \left(\frac{9}{4}\right)$$

$$P_0 = 400 \text{ cells}$$