
APPM 2350 Final Exam Summer 2025

1. [2350/072525 (18 pts)] Let F = ey i+ (xey + sin z) j+ y cos z k.

(a) (6 pts) Show that F is conservative.

(b) (12 pts) Find the work done by F on an object that moves from (0, 0, 0) to (1,−1, 3).

SOLUTION:

(a)

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

ey xey + sin z y cos z

∣∣∣∣∣∣∣
=

[
∂

∂y
(y cos z)− ∂

∂z
(xey + sin z)

]
i+

[
∂

∂z
(ey)− ∂

∂x
(y cos z)

]
j+

[
∂

∂x
(xey + sin z)− ∂

∂y
(ey)

]
k

= (cos z − cos z) i+ (0− 0) j+ (ey − ey)k = 0

Since the vector field is defined on all of R3, which is simply connected, F is conservative.

(b) Since F is conservative a potential function, f , exists such that F = ∇f . Moreover, the work done by the force is independent
of the path and is simply equal to the difference between the value of the potential function at the end of the path and that at the
beginning. Find the potential function:

∂f

∂x
= ey =⇒ f(x, y, z) =

∫
ey dx = xey + g(y, z)

∂f

∂y
= xey + gy(y, z) = xey + sin z =⇒ gy(y, z) = sin z =⇒ g(y, z) =

∫
sin z dy = y sin z + h(z)

=⇒ f(x, y, z) = xey + y sin z + h(z)

∂f

∂z
= y cos z + h′(z) = y cos z =⇒ h′(z) = 0 =⇒ h(z) = constant (which we can set to zero)

giving the potential function as f(x, y, z) = xey + y sin z. Using this we have

Work =

∫
C
F · dr =

∫ (1,−1,3)

(0,0,0)

∇f · dr = f(1,−1, 3)− f(0, 0, 0) = e−1 − sin 3

Remark: Since the vector field is conservative, you could compute a line integral using the line segment between the two points,
but even with that simple path the line integral requires more work (no pun intended).

■

2. [2350/072525 (16 pts)] Consider the function f(x, y) = x+xy− y. For the following questions, you don’t need to find any actual values,
simply justify your answers.

(a) (8 pts) Does f(x, y) possess any local (relative) extreme values on R2?

(b) (8 pts) Does f(x, y) possess any extreme values (local/relative or global/absolute) on the region |x− 1| ≤ 1, |y + 1| ≤ 1?

SOLUTION:

(a)

fx = 1 + y = 0 =⇒ y = −1 fy = x− 1 = 0 =⇒ x = 1 =⇒ (x, y) = (1,−1) is the sole critical point

fxx = fyy = 0 fxy = 1 =⇒ D(x, y) = −1 < 0 =⇒ (1,−1) is a saddle point

No local extreme values exist on R2.



(b) Since f(x, y), a polynomial, is continuous everywhere, it is continuous on the region. The given region is a closed, bounded
region and the Extreme Value Theorem applies, guaranteeing the existence of global extreme values.

■

3. [2350/072525 (20 pts)] Let S be the first octant portion of the plane with intercepts (2, 0, 0), (0, 4, 0) and (0, 0, 1). Its surface area is
√
21.

Using this information, find the average value of f(x, y, z) = 1 + x on S.

SOLUTION:
Since we know the intercepts of the plane, we can immediately write its equation as x

2 + y
4 + z = 1. (Note that one can also

use the vectors ⟨2, 0,−1⟩ and ⟨2,−4, 0⟩ that lie in the plane to find its equation.) Since the surface is a function we can use the
parameterization r(u, v) =

〈
u, v, 1− u

2 − v
4

〉
with parameter domain 0 ≤ u ≤ 2, 0 ≤ v ≤ 4− 2u. This domain comes from the fact

that the plane’s first octant portion lies above the triangle with vertices (0, 0), (2, 0) and (0, 4).

ru(u, v) =

〈
1, 0,−1

2

〉
, rv(u, v) =

〈
0, 1,−1

4

〉
=⇒ ru × rv =

〈
1

2
,
1

4
, 1

〉
=⇒ ∥ru × rv∥ =

√
21

4

f(u, v) = 1 + u∫∫
S
(1 + x) dS =

∫ 2

0

∫ 4−2u

0

(1 + u)

(√
21

4

)
dv du =

√
21

4

∫ 2

0

(1 + u)(4− 2u) du

=

√
21

4

∫ 2

0

(
4 + 2u− 2u2

)
du =

√
21

4

(
4u+ u2 − 2u3

3

) ∣∣∣2
0
=

√
21

4

(
8 + 4− 16

3

)
=

5
√
21

3

The average value we seek is thus 5
√
21
3 /

√
21 =

5

3
.

■

4. [2350/072525 (18 pts)] Use Green’s Theorem to find the outward flux of the vector field F = x2y i+ 3xy2 j through the boundary of the
second quadrant portion of the circle of radius 3 centered at the origin. No points awarded if Green’s Theorem is not used.

SOLUTION:
The boundary, ∂D, consists of three piecewise smooth curves, two lines and a quarter circle surrounding the region D. With F =
⟨P,Q⟩ =

〈
x2y, 3xy2

〉
we have

∂P

∂x
+

∂Q

∂y
= 2xy + 6xy = 8xy

and using Green’s Theorem gives

Flux =

∫
∂D

F · nds =

∫
∂D

x2y dy − 3xy2 dx =

∫∫
D
8xy dA = 8

∫ 0

−3

∫ √
9−x2

0

xy dA switch to polar coordinates

= 8

∫ π

π/2

∫ 3

0

r3 cos θ sin θ dr dθ = 8

∫ π

π/2

r4

4

∣∣∣∣∣
3

0

1

2
sin 2θ dθ =

81

2
cos 2θ

∣∣∣π/2
π

= −81

Remark: The integration in rectangular coordinates isn’t too bad, making the switch to polar coordinates somewhat optional. ■

5. [2350/072525 (20 pts)] Use Gauss’ Divergence Theorem to find the outward flux of the vector field F = x3 i + y3 j + z3 k through the
boundary of the solid region above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 4. No points awarded if Gauss’

Divergence Theorem is not used.

SOLUTION:
Let E be the region over whose boundary (S) we wish to compute the flux of F. A sketch of the region in the rz-plane (constant θ):

√
2

2

r

z



∇ · F = 3
(
x2 + y2 + z2

)
Using Gauss’ Divergence Theorem we have∫∫

S
F · dS =

∫∫∫
E
∇ · FdV

=

∫ √
2

−
√
2

∫ √
2−x2

−
√
2−x2

∫ √
4−x2−y2

√
x2+y2

3
(
x2 + y2 + z2

)
dz dy dz rectangular coordinates

=

∫ 2π

0

∫ √
2

0

∫ √
4−r2

r

3
(
r2 + z2

)
r dz dr dθ cylindrical coordinates

=

∫ 2π

0

∫ π/4

0

∫ 2

0

3
(
ρ2
)
ρ2 sinϕdρdϕ dθ spherical coordinates

=
96π

5

(
2−

√
2
)

■

6. [2350/072525 (18 pts)] A piece of wire is in the shape of (et, t2) with its left end at the point (1, 0). The charge density on the wire is

q(x, y) =
3y√

x2 + 4y
Coulombs per meter. If the total charge on the wire is 8 Coulombs, find the coordinates of the right end of the

wire.

SOLUTION:
We need to compute the scalar line integral

Total Charge =

∫
C
q(x, y) ds

The left point of the wire occurs when t = 0 and we need to find the upper bound, say b, for t which we then can use to find the
coordinates of the other end of the wire. The curve (wire) is

r(t) =
〈
et, t2

〉
, 0 ≤ t ≤ b

r′(t) =
〈
et, 2t

〉
∥r′(t)∥ =

√
e2t + 4t2

q[r(t)] =
3t2√

e2t + 4t2

We then have

8 =

∫
C

3y√
x2 + 4y

ds =

∫ b

0

q[r(t)] ∥r′(t)∥ dt =
∫ b

0

3t2 dt = b3 =⇒ b = 2

giving the coordinates of the right end of the wire as r(2) = (e2, 4).

■

7. [2350/072525 (40 pts)] Let V = y i + yz j − 1
2x

2 k be the velocity of a fluid and consider the surface, S, given by x2 + y2 − z2 = −1,
1 ≤ z ≤

√
5 with upward pointing normal.

(a) (5 pts) Name the surface.

(b) (15 pts) Find the circulation of V on the boundary of S by direct computation. The identity 1− 2 sin2 t = cos 2t may be helpful.

(c) (20 pts) Find the circulation of V on the boundary of S using Stokes’ Theorem. No points awarded if Stokes’ Theorem not used.

SOLUTION:

(a) The surface is the upper branch of a hyperboloid of two sheets.



(b) The boundary of the surface, ∂S, is obtained by setting z =
√
5, that is, x2 + y2 = 4. The upward pointing normal induces a

counterclockwise (when viewed from above) orientation on the boundary. Parameterizing this boundary gives

r(t) = ⟨2 cos t, 2 sin t,
√
5⟩ 0 ≤ t ≤ 2π

r′(t) = ⟨−2 sin t, 2 cos t, 0⟩

V[r(t)] = 2 sin t i+ 2
√
5 sin t j− 2 cos2 tk

V[r(t)] · r′(t) = ⟨2 sin t, 2
√
5 sin t,−2 cos2 t⟩ · ⟨−2 sin t, 2 cos t, 0⟩ = −4 sin2 t+ 4

√
5 sin t cos t

Circulation =

∫
∂S

V · dr =

∫ 2π

0

(
−4 sin2 t+ 4

√
5 sin t cos t

)
dt

= 2

∫ 2π

0

(
cos 2t− 1 +

√
5 sin 2t

)
dt = −4π

(c) We need the curl of the vector field

∇ × V =

∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

y yz − 1
2x

2

∣∣∣∣∣∣∣ = ⟨−y, x,−1⟩

We can parameterize the surface (hyperboloid) in two natural ways.

Method 1:

r(u, v) =
〈
u, v,

√
1 + u2 + v2

〉
, 0 ≤ u2 + v2 ≤ 4

ru =

〈
1, 0,

u√
1 + u2 + v2

〉
, rv =

〈
0, 1,

v√
1 + u2 + v2

〉
, ru × rv =

〈
−u√

1 + u2 + v2
,

−v√
1 + u2 + v2

, 1

〉
This has the correct orientation. Then

∇×V[r(u, v)] · (ru × rv) = ⟨−v, u,−1⟩ ·
〈

−u√
1 + u2 + v2

,
−v√

1 + u2 + v2
, 1

〉
= −1

Circulation =

∫
∂S

V · dr =

∫∫
S
∇×V · ndS =

∫∫
u2+v2≤4

−1 dA = −4π

Method 2:

r(u, v) =
〈
v cosu, v sinu,

√
1 + v2

〉
, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2

ru = ⟨−v sinu, v cosu, 0⟩ , rv =

〈
cosu, sinu,

v√
1 + v2

〉
, ru × rv =

〈
v2 cosu√
1 + v2

,
v2 sinu√
1 + v2

,−v

〉
This has the incorrect orientation so we’ll use −ru × rv . Then

∇×V[r(u, v)] · (−ru × rv) = ⟨−v sinu, v cosu,−1⟩ ·
〈
−v2 cosu√

1 + v2
,
−v2 sinu√

1 + v2
, v

〉
= −v

Circulation =

∫
∂S

V · dr =

∫∫
S
∇×V · n dS =

∫ 2π

0

∫ 2

0

−v dv du = −4π

Note that the horizontal “cap” on the hyperboloid (a disk of radius 2 in the plane z =
√
5) shares the boundary with the

hyperboloid itself.. Therefore, this can be used as the surface in Stokes’ Theorem. It, too, can be parameterized two ways:

r(u, v) = ⟨u, v,
√
5⟩, u2 + v2 ≤ 4 or

r(u, v) = ⟨v cosu, v sinu,
√
5⟩, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2

■


