- This exam is worth 100 points and has 8 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED <u>AND</u> UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting. Remote students cannot interact with anyone except the proctor during the exam.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/062725 (18 pts)] Consider the vectors $\left\{ \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, \begin{bmatrix} 5\\-4\\-7 \end{bmatrix}, \begin{bmatrix} -3\\1\\0 \end{bmatrix} \right\}$ in \mathbb{R}^3 .
 - (a) (6 pts) Do the vectors form a basis for \mathbb{R}^3 . Why or why not?
 - (b) (6 pts) Find all solutions of $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where the columns of \mathbf{A} are the vectors in the set in the order shown.
 - (c) (6 pts) Based on your answer in (b), find the dimension of and a basis for the subspace of \mathbb{R}^3 consisting of all solutions of the equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$.
- 2. [2360/062725 (10 pts)] Consider the linear system

Use Cramer's Rule to find x_2 . No points will be awarded for using any other technique.

- [2360/062725 (10 pts)] Given that M₂₂ is the vector space of all 2 × 2 matrices, determine if the following subsets, W, are subspaces of M₂₂. Justify your answers.
 - (a) (5 pts) \mathbb{W} is the set of matrices of the form $\begin{bmatrix} a & -b \\ b & c \end{bmatrix}$ where a, b, c are real numbers.
 - (b) (5 pts) \mathbb{W} is the set of matrices of the form $\begin{bmatrix} 2 & a \\ -a & 3 \end{bmatrix}$ where *a* is a real number.
- 4. [2360/062725 (18 pts)] If $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$, calculate the following, if possible. If not possible, simply write "not possible".

Hint: for part (f), consider using properties of determinants.

(a) \mathbf{AB} (b) $\mathbf{B}^{\mathrm{T}}\mathbf{A}$ (c) \mathbf{AA}^{-1} (d) $|\mathbf{A}^{\mathrm{T}}\mathbf{A}|$ (e) $(\mathbf{BA})^{\mathrm{T}}$ (f) $|\mathbf{BB}^{\mathrm{T}}\mathbf{B}^{-1}|$

MORE PROBLEMS BELOW/ON REVERSE

5. [2360/062725 (12 pts)] You are given the matrices C, D and column vector \vec{u} as follows:

$$\mathbf{C} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} -\frac{5}{2} & \frac{3}{2} & \frac{1}{2} \\ 2 & -1 & -1 \\ 2 & -1 & 0 \end{bmatrix} \qquad \vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

- (a) (5 pts) Compute DC. Be sure to check your answer carefully.
- (b) (7 pts) Without performing any elementary row operations or Gauss-Jordan Elimination, and applying what you found in part (a), find the solution of $\mathbf{C}\vec{\mathbf{x}} = \vec{\mathbf{u}}$. No points awarded if directions are not followed.
- 6. [2360/062725 (12 pts)] The augmented matrix of the linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has been transformed, through a number of elementary row operations, to the following:

$$\left[\begin{array}{ccc|c} 1 & 1 & 0 & 1 \\ 0 & k & 1 & 2 \\ 0 & 0 & k-1 & k^2 - 1 \end{array}\right]$$

where k is a real number parameter. For which value(s) of k, if any, does the system have ...

- (a) (4 pts) exactly one solution?
- (b) (4 pts) no solution?
- (c) (4 pts) infinitely many solutions?
- 7. [2360/062725 (10 pts)] Determine if the set of vectors $\{1, 1 t, 2 4t + t^2, 6 18t + 9t^2 t^3\}$ forms a basis for \mathbb{P}_3 . Be sure to provide correct justification.
- 8. [2360/062725 (10 pts)] Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 1 & 1 & 0 \end{bmatrix}$.
 - (a) (4 pts) Find all the eigenvalues of A and state the multiplicity of each.
 - (b) (6 pts) For the eigenvalue with algebraic multiplicity greater than 1, find its geometric multiplicity and a basis for its eigenspace.