
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

Solution guide May 2025

Instructions
You have three hours to complete this exam. Submit solutions to four (and no more) of the
following six problems. Please start each problem on a new page. You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. Write your
student ID number (not your name!) on your exam.

Problem 1: Rootfinding methods
Suppose we want to compute the square root x =

√
a for some a > 0. We can do this by using Newton’s

method to solve x2 = a.

(a) Set up the problem outlined above as a rootfinding problem for a function f(x). Suppose that α is a
root of f(x) and that the initial guess x0 is sufficiently close to α. What are sufficient conditions
required for local convergence of Newton’s method? Check that this problem satisfies those
requirements.

(b) Beginning with some x0 > 0, the iteration formula for this is

xk+1 =
1

2

(
xk +

a

xk

)
.

Derive this iteration formula.

(c) Suppose that the conditions in part (a) are satisfied. Show that Newton’s method converges locally
for x0 sufficiently close to α.

(d) Show that the sequence of iterations is locally quadratically convergent. (Solving this part (d)
correctly also gives full credit for part (c).)

Proposed solution:

(a) We have f(x) = x2 − a with root
√
a. We check that f has continuous first and second derivatives

and that f ′(
√
a) ̸= 0. We have f ′(x) = 2x and f ′′(x) = 2 so these are continuous on R. Also, we have

f ′(
√
a) = 2

√
a ̸= 0 since a > 0.

(b) We have f(x) = x2 − a and f ′(x) = 2x. Therefore, we have

xk+1 = xk − f(xk)

f ′(xk)
= xk − x2

k − a

2xk
=

1

2

(
2xk − xk +

a

xk

)
=

1

2

(
xk +

a

xk

)
.

(c) Let ϕ(x) = x− f(x)
f ′(x) . Then ϕ′(x) = f(x)f ′′(x)

[f ′(x)]2 so that ϕ′(x) is continuous. Also, notice that ϕ′(α) = 0

since α is a root of f . Since ϕ′(α) is continuous at α, ∃δ > 0 such that for all
x ∈ B(α, δ) = {x : |x− α| < δ},

|ϕ′(x)− ϕ′(α)| = |ϕ′(x)| < C,

where 0 < C < 1. Let xk ∈ B(α, δ) and let ek+1 = xk+1 − α be the error at the (k + 1)th iteration.
Then

ek+1 = ϕ(xk)− ϕ(α).

Using the first order Taylor expansion of ϕ about α, we have

ek+1 = ϕ′(ξk)ek

for ξk ∈ B(α, xk). Since xk ∈ B(α, δ) and ξk ∈ B(α, xk), ξk ∈ B(α, δ). So |ϕ′(ξk)| < C < 1. Also,
ek = xk − α gives us |ek| < δ and therefore,

|ek+1| ≤ |ϕ′(ξk)||ek| < C |ek| < δ.

Therefore, if x0 ∈ B(α, δ), then xk ∈ B(α, δ) for k = 1, 2, Beginning with k = 0 and applying this
recursively over k iterations, we have

|ek| ≤ C |ek−1| < Ck |e0|.

Since Ck → 0, this means that ek → 0. So the iterate sequence converges to the root α.

2

(d) To get the rate of convergence, we again examine ek+1 = ϕ(xk)− ϕ(α). After applying the second
order Taylor expansion of ϕ around α, we have

ek+1 =
1

2
ϕ′′(ηk)e

2
k

for ηk ∈ B(α, xk). Notice that the second derivative of ϕ(x) is ϕ′′(x) = f ′′(x)
2f ′(x) . Since f has continuous

first and second derivatives, ϕ′′(x) is also continuous.
Dividing both sides of the above equation by e2k and taking the limit as k → ∞ gives us

lim
k→∞

ek+1

e2k
= lim

k→∞

1

2
ϕ′′(ηk).

Since xk → α, and ηk ∈ B(α, xk), we have ηk → α. Combining this with the fact that ϕ′′(x) is
continuous gives us

lim
k→∞

ek+1

e2k
=

1

2
ϕ′′(α).

Therefore, the iterate sequence is quadratically locally convergent.

3

Problem: Interpolation and Approximation
We consider in this problem cubic splines.

(a) Determine how many extra end conditions are needed to determine a cubic spline uniquely. Also,
describe two common ways to ensure this uniqueness.

(b) Define what is meant by a B-spline (also known as a basis spline).

(c) The cubic spline that transitions the fastest from identically one to identically zero on a unit-spaced
grid looks graphically as follows:

Determine the exact function values for this spline at the two internal node points (located at x = 1
and x = 2).

Proposed Solution:

(a) With n nodes, continuity of function and of its first and second derivative at (n− 2) interior nodes
gives 3(n− 2) relations. We also need to provide n function values, for a total of 4n− 6 relations.
The n− 1 cubics have in all 4n− 4 parameters. For uniqueness, one typically supplies two more
conditions (or arranges to remove two freedoms).
Common ways to handle this end condition issue include: (i) Enforce zero second derivative at both
ends (giving what is called a natural spline), (ii) Disallow a discontinuity in the third derivative one
step in from each end (not-a-knot condition), and (iii) Make the derivative at each end point match
that of a cubic that interpolates at the four nodes nearest each end.

(b) The B-spline is the spline that non-trivially transitions from identically zero back to identically zero
over the fewest possible number of nodes. It is typically also normalized so that its integral evaluates
to one.

(c) Each time we pass a node, a cubic spline can feature a jump in its third derivative (but not in any
lower order derivatives). In the present example, the functional form in the successive subintervals
thus becomes:

(−∞, 0] 1

[0, 1] 1 + αx3

[1, 2] 1 + αx3 + β(x− 1)3

[2, 3] 1 + αx3 + β(x− 1)3 + γ(x− 2)3

[3,∞) 1 + αx3 + β(x− 1)3 + γ(x− 2)3 + δ(x− 3)3 = 0

The last expression should evaluate to identically zero. It can be expanded as

x3(α+ β + γ + δ) + x2(−3β − 6γ − 9δ) + x(3β + 12γ + 27δ) + (1− β − 8γ − 27δ) = 0

4

All the coefficients being zero gives the linear system:
1 1 1 1
0 −3 −6 −9
0 3 12 27
0 −1 −8 −27



α
β
γ
δ

 =


0
0
0
−1


with solution [α, β, γ, δ] = [− 1

6 ,
1
2 ,−

1
2 ,

1
6]. Thus, we obtain: Spline value at x = 1 is 1− 1

6 = 5
6 . .

Spline value at x = 2 is 1− 1
68 +

1
2 = 1

6 . . The solution of the linear system can be simplified by
noting that, by (anti-) symmetry of the spline around (x, y) = (3/2, 1/2), it will hold that δ = −α
and γ = −β.

5

Problem 3: Numerical integration
Gaussian quadrature is commonly used for numerical approximation of integrals. One generalization is to
instead apply it to approximate infinite sums. Determine the nodes x1, x2 and weights w1, w2 so that the
formula

∞∑
n=0

f(n)

n!
= w1f(x1) + w2f(x2)

becomes exact for polynomials f(x) of as high degree as possible.
Hint: The inner product to use becomes

< f, g >=

∞∑
n=0

1

n!
f(n)g(n)

Sums of the form
∑∞

n=0
np

n! can be found in closed form by considering the derivative of ex =
∑∞

n=0
xn

n! at
x = 1, multiplying by x and differentiating, etc.
Proposed Solution:

• Determine the nodes: The first few orthogonal polynomials are of the form

p0(n) = 1

p1(n) = n+ a

p2(n) = n2 + bn+ c

Orthogonality (with 1
n! as weight function) implies:

< p0, p1 > =
∑ 1

n!
(n+ a) = 0 (1)

< p0, p2 > =
∑ 1

n!
(n2 + bn+ c) = 0 (2)

< p1, p2 > =
∑ 1

n!
(n+ a)(n2 + bn+ c) = 0 (3)

Using the hint, we find that
∑

1
n! = e,

∑
n
n! = e,

∑
n2

n! = 2e and
∑

n3

n! = 5e. We then get from (1)
that a = −1, and then from (2) and (3) we get a 2× 2 system of equations: 2 + b+ c = 0 and
3 + b = 0, which means b = −3, c = 1.
Hence, p2(n) = n2 − 3n+ 1, with roots x1 = 3−

√
5

2 and x2 = 3+
√
5

2 . There are therefore the node
locations for the quadrature formula.

• Determine the weights: It suffices to impose that we get the exact result in the cases of f(n) = 1 and
f(n) = n, giving the system:

w1 + w2 = e

(
3−

√
5

2

)
w1 +

(
3 +

√
5

2

)
w2 = e

with solution w1 = e
2

(
1 + 1√

5

)
and w2 = e

2

(
1− 1√

5

)
.

6

Problem 4: Numerical Linear Algebra
Let A ∈ Rn×n be a diagonalizable matrix with eigenvalues

|λ1| > |λ2| ≥ · · · ≥ |λn| > 0,

and corresponding linearly independent eigenvectors v1,v2, . . . ,vn, such that

Avi = λivi, for i = 1, 2, . . . , n.

(a) State the condition(s) required for convergence of the Power Method to the dominant eigenvector.
Write pseudocode for the Power Method to approximate the eigenvector associated with the largest
magnitude eigenvalue of A.

(b) Assume that the condition(s) in part (a) are satisfied. Show that the Power Method converges to the
dominant eigenvector. (For simplicity, you can assume that λ1 > 0.)

(c) Using your solution in part (b), show that the Rayleigh Quotient converges to the dominant
eigenvalue.

(d) Suppose |λn−1| > |λn|. Modify the Power Method to approximate an eigenvector corresponding to
the smallest magnitude eigenvalue. Explain why your modification works. State the condition(s)
required for convergence and write pseudocode for this procedure.

Solution:

(a) The initial vector x(0) needs to have a nonzero component in the direction of the dominant
eigenvector.
Pseudocode: Starting with initial vector x(0), repeat until convergence:

• Compute y = Ax(k)

• Normalize: x(k+1) = y
∥y∥ .

(b) Let the initial vector x(0) be a linear combination of the eigenvectors so that

x(0) = c1v1 + c2v2 + · · ·+ cnvn,

where c1 ̸= 0. At the kth iteration, the Power Method update is

x(k) =
Akx(0)

∥Akx(0)∥
.

Focusing on Akx(0), we have

Akx(0) = Ak(c1v1 + c2v2 + · · ·+ cnvn)

= c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

= λk
1

(
c1v1 + c2

(
λ2

λ1

)k

v2 + · · ·+ cn

(
λn

λ1

)k

vn

)
.

As k → ∞, all the
(

λi

λ1

)k
→ 0 for i ≥ 2 since |λi/λ1| < 1. Therefore,

lim
k→∞

x(k) = lim
k→∞

Akx(0)

∥Akx(0)∥
= lim

k→∞

λk
1c1 v1

|λk
1c1| ∥v1∥

= sign(c1)v1.

7

(c) The Rayleigh quotient at the kth iteration of the Power Method is

µ(k) =
(x(k))T Ax(k)

(x(k))T x(k)
.

Since Av1 = λ1v1 and since we saw in part (b) that x(k) → sign(c1)v1, we have

lim
k→∞

µ(k) =
λ1∥v1∥2

∥v1∥2
= λ1.

(d) We apply the Power Method to A−1. Since the eigenvalues of A−1 are 1
λ1
, 1
λ2
, . . . , 1

λn
, the largest

magnitude eigenvalue of A−1 is the smallest magnitude eigenvalue of A.
Pseudocode: Starting with initial vector x(0), repeat until convergence:

• Solve Ay = x(k).
• Normalize: x(k+1) = y

∥y∥ .

8

Problem 5: Numerical ODE (25 points)
We wish to solve an IVP for a system of N 1st order ODEs {y⃗′(t) = f(t, y⃗), y⃗(0) = y⃗0}. We consider four
linear, multistep methods (LMMs) derived from finite difference formulas:

FDF2 :
1

2
(−3yn + 4yn+1 − yn+2) = ∆tf(tn, yn)

CDF2 :
1

2
(−yn + yn+2) = ∆tf(tn+1, yn+1)

BDF2 :
1

2
(yn − 4yn+1 + 3yn+2) = ∆tf(tn+2, yn+2)

BDF4 :
1

12
(3yn − 16yn+1 + 36yn+2 − 48yn+3 + 25yn+4) = ∆tf(tn+4, yn+4)

(a) Write down a definition of the truncation error for the FDF2 multistep method. This method is
obtained from a formula for the derivative of a smooth function Y (t), satisfying:

Y ′(t)− −3Y (t) + 4Y (t+∆t)− Y (t+ 2∆t)

2∆t
= O(∆t2)

What can you conclude about the truncation errors for FDF2 from this? If FDF2 converges, what is
expected for the global error?

(b) Recall that for LMM
∑p

m=0 amyn+m = ∆t
∑p

m=0 bmf(tn+m, yn+m) we can use ρ(w) =
∑p

m=0 amwm

and σ(w) =
∑p

m=0 bmwm to analyze its properties.

In each of these plots, roots of ρ(w) are denoted as circles, and roots of σ(w) as squares. If the root is
simple, the marker face is empty. If it is repeated, it is filled with color.
Assume all of the methods presented above are consistent. Using the information in these plots or
otherwise, indicate what you know about each method’s (i) stability, (ii) convergence and (iii) relative
(strong) stability. Be sure to justify each of these conclusions.

(c) Write down a simple pseudocode for a function using BDF2 to integrate the IVP for the system of N
ODEs from time 0 to time T taking nt time steps. Be sure to indicate inputs and outputs required
for this routine.

9

Proposed Solution:

(a) The definition of truncation (local) error is the error we make by taking one step in our method using
exact initial data. Let Y (t) denote the exact solution of our IVP. Plugging it into the FDF2 method,
we get:

Tn+2(Y) = (−3Y (tn) + 4Y (tn+1)− Y (tn+2))− 2∆tf(tn, Y (tn))

= (−3Y (tn) + 4Y (tn+1)− Y (tn+2))− 2∆tY ′(tn)

Multiplying both sides of the given result for the forward difference formula by 2∆t, we see this implies
that our truncation error Tn+2(Y) = O(∆t3). Given that we add O(∆t−1) local errors integrating our IVP,
if this method converges, the global error is expected to be one power less of ∆t, that is, O(∆t2).

(b) We will use three main results from the theory of stability and convergence of LMMs:

1. We say an LMM satisfies the root condition (RC) if, for all roots ρi of ρ(w), it is either true that
|ρi| < 1 or |ρi| = 1 and it is a simple root (ρ′(ρi) ̸= 0). A consistent LMM is stable if and only if it
satisfies the RC.

2. Dahlquist Equivalence Theorem: a consistent LMM is convergent if and only if it satisfies RC.

3. We say an LMM satisfies a strong root condition (SRC) if it satisfies RC and the only root of
magnitude 1 is the principal root ρ0 = 1. SRC implies relative (strong) stability. If SRC is not
satisfied, this is evidence that our method might not be relatively stable; we then would have to
investigate further.

Armed with these three, we can then state what we know for each method based on the information given:

• FDF2: One of the roots of ρ(w) is clearly outside the unit disk. By (1), it is unstable. By (2), it
does not converge. Instability implies our method cannot be relatively stable.

• CDF2: This method has two simple roots on the boundary of the unit disk, so by (1), it is stable.
By (2), it is convergent. Since it does not satisfy SRC, by (3), this is evidence it might not be
relatively stable.
Note: This is the famous Midpoint method, which is given as an example of a method which is not
weakly stable, since the root of ρ(w)− λ∆tσ(w) of the form −1+O(∆t2) is always comparable to the
principal one.

• BDF2: This method has two simple roots, one of which is magnitude 1 and one which is inside the
disk. This means it satisfies both RC and SRC. By (1), it is stable. By (2), it is convergent. By (3),
it is relatively stable.

• BDF4: This method has 4 simple roots, one of magnitude 1, and 3 inside the disk. This means it
satisfies both RC and SRC. By (1), it is stable. By (2), it is convergent. By (3), it is relatively stable.

(c) BDF2 is an implicit method (A-stable, part of a family widely used to tackle stiff systems) of order 2.
So, the step to go from data yn, yn−1 to yn+1 will involve a (potentially non-linear) solve for a system of
equations. We assume f(t,y) is non-linear, access to a formula or routine to evaluate ∂f

∂y , and that we have
a routine for Newton, and use it as our solver.

• Inputs: Final time T , number of timesteps nt, functions f and Jacobian ∂f
∂y , initial guess y0.

• Output: Array containing yk for k = 0, . . . , nt as its columns.

• Initialize necessary quantities and arrays, e.g ∆t = T/nt.

10

• Take the first step to obtain y1 using an implicit method with truncation error at least O(∆t2) (e.g.
Backward Euler). Here it’s acceptable (but unnecessary) to take a more expensive step to ensure y1
is accurate to near machine precision.

• FOR k = 1 to nt − 1:

• Define g(y) = 3y − 2∆tf(tk+1, y) + (yk−1 − 4yk).

• Define Jg(y) = 3I− 2∂f
∂y (tk+1, y).

• Set initial guess z0 = yk, TOL near machine precision and a reasonable MAXIT, e.g. 10-50
(maximum iterations).

• yk+1 = NewtonSolver(g, Jg, z0,TOL,MAXIT)

• END

11

Problem 6: Numerical PDE (25 points)
Consider the following elliptic two-point Boundary Value Problem (BVP) on (0, 1):

−auxx(x) = −k2u(x) + f(x) x ∈ (0, 1)

u(0) = g0 u(1) = g1

with a > 0, k ≥ 0, g0, g1 ∈ R and f smooth.

(a) For a regular grid of points xi = ih, with i = 0, 1, . . . , n and spacing h = 1/n, we denote our
approximation Ui ≃ u(xi). Using second differences for uxx, write down a system of equations for
each unknown Ui. Indicate how the boundary data is incorporated.

(b) Note that by collecting all unknown entries in a vector U , we can write the equations above as a
linear system of the form MU = b. Describe the entries and structure of matrix M. If possible,
provide an estimate for its condition number κ(M).

(c) Consider the associated parabolic problem:

ut(x, t) = auxx(x)− k2u(x) + f(x) x ∈ (0, 1), t ∈ (0, T)

u(0, t) = g0 u(0, t) = g1, t ∈ (0, T)

u(x, 0) = ϕ(x) x ∈ (0, 1)

for ϕ smooth. Use the same discretization in space as in (a)-(b) to define a linear IVP on the vector
U(t) with entries Ui(t) ≃ u(xi, t). Then, use a Backward Euler method in time to write down a
time-stepping formula for U(tk+1) in terms of U(tk), for tk = k∆t, ∆t = T/nt.

(d) Assume M is Symmetric Positive Definite (SPD), with eigenvalues in the interval (η1, η2) where
η1, η2 ≥ 0, η1 ≤ λmin(M) and η2 ≥ λmax(M). Explain how you can use this information to perform a
stability analysis on the scheme proposed in (c). Indicate what restriction (if any) there is on
timestep size ∆t.

Proposed Solution:

(a) We set U0 = g0 and Un = g1 to satisfy boundary conditions, so our (n− 1) unknowns are Ui for
i = 1, . . . , n− 1. Using the standard second difference formula for uxx, we obtain the following
equation for unknown Ui:

a

h2
(−Ui+1 + 2Ui − Ui−1) + k2Ui = f(xi) i = 1, . . . , n− 1

we note that for i = 1 and i = n− 1, one of the terms is known (given by boundary data). We send it
to the right hand side:

a

h2
(−U2 + 2U1) + k2U1 = f(x1) +

ag0
h2

a

h2
(2Un−1 − Un−2) + k2Un−1 = f(xn−1) +

ag1
h2

12

(b) Writing the n− 1 linear equations in (a) in the form MU = b gives us a system with associated
matrix M which is tri-diagonal and SPD, and a right-hand-side containing data from f(xi) and
boundary conditions. Our matrix is

M =
a

h2



2 + k2h2

a −1 0 · · · 0 0

−1 2 + k2h2

a −1 · · · 0 0

0 −1 2 + k2h2

a · · · 0 0
...

...
...

...
0 0 0 · · · 2 + k2h2

a −1

0 0 0 · · · −1 2 + k2h2

a


Using Gershgorin disks, we can conclude that all eigenvalues of M are contained on the interval
a
h2 (

k2h2

a , 4 + k2h2

a) = (k2, 4a
h2 + k2). So, an upper bound for condition number would be

κ(M) = λmax

λmin
≤

4a
h2 +k2

k2 = 4a
k2h2 + 1.

Note: We can write down formulas for the eigenvalues of M if we know those of the matrix for the
second derivative matrix D2, which were derived on class; these yield λk = 4

h2 sin
2(kπ2n) for

k = 1, . . . , n− 1.

(c) Applying the discretization and notation used above, we first get the linear IVP:

U ′(t) = −MU(t) + b t ∈ (0, T)

U(0) = ϕ

where vector ϕ has entries ϕ(xi). Applying Backward Euler in time for timesteps tk = k∆t, with
∆t = T/nt, k = 0, 1, . . . , nt gives us:

Uk+1 = Uk +∆t
(
−MUk+1 + b

)
We send all terms with superindex k + 1 (corresponding to future time tk+1) to the left-hand-side,
which gives us a linear equation. Our time-stepping is given by

(I+∆tM)Uk+1 = Uk +∆tb t ∈ (0, T)

U0 = ϕ

To implement this, we would use a linear system solver to solve the system of equations for Uk+1

defined above.

(d) We note that both the discrete solution Uk and the corresponding error at discretization points Ek

satisfy equations of the form

Uk+1 = (I+∆tM)
−1 (

Uk +∆tb
)

Ek+1 = (I+∆tM)
−1 (

Ek +∆tT k
)

13

with T k vector of truncation errors. Given eigenvalues λi(M) > 0, the eigenvalues of the matrix
”propagating” the error from time tk to time tk+1 are 1

1+∆tλi(M) which are also positive, and smaller
than 1 in magnitude for all ∆t ≥ 0. This means the method is unconditionally stable, and so, we have
no restriction on ∆t in terms of h2 (as we would had we used an explicit method like Forward Euler).

14

