Applied Analysis Preliminary Exam (Hints/solutions)
9:00 AM - 12:00 PM, Thursday May 22, 2025

Instructions You have three hours to complete this exam. Work all five problems; there are no optional
problems. Each problem is worth 20 points. Please start each problem on a new page. Please clearly indicate
any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST
prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs,
you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a
theorem (when in doubt, ask the proctor). If you cannot finish part of a question, you may wish to move on
to the next part; problems are graded with partial credit. Write your student number on your exam,
not your name.

Problem 1 (20 points)

(a) [10] Let pg, k € N,k > 1 be a sequence of seminorms defined on a real vector space X. In other words,
Py satisfies:
(P1) pi(z) >0 for all z € X;
(P2) pi(cx) = |c|pr(z) for all z € X and ¢ € R;
(P3) pr(z+y) < pr(@) + pr(y);

for all k € N,k > 1. Assume that for every x € X with x # 0 there exists at least one index k& such
that pg(z) > 0 (we say that this sequence is separating). Define

oo

N G E))
d(z,y) = LA VA 1
) = S R W
prove that d defines a distance on X.

(b) [10] Let Q C R™ be an open set with boundary 9. Let C'(2) be the space of all continuous functions
on . For every k > 1 consider the compact subset:

Ay ={z € Q: ||z <k, B(z,1/k) C Q}, (2)
where B(z,1/k) = {z e R", ||z — z|| < 1/k}, and || - || is the Euclidean norm. Define the seminorm on
c©),

pu() = s 1) ®)

and d the corresponding metric defined by (1). Prove that the space C(2) equipped with the metric d
is a complete metric space.

Solution:

(a) From (1) we see that d(z,z) = 0 follows from (P2) by taking ¢ = 0 for all k. Taking ¢ = —1 in (P2)
for all k, we obtain that d(x,y) = d(y,z). To prove the triangle inequality, note that if ¢ < a 4 b then

it holds that
c a+b

<
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as the function g(s) = s/(1 + s) is increasing. Moreover,
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because g is concave down on (—1,00). Let ¢ = pr(x — 2), a = pp(z — y), and b = pr(y — z) and
consider:

ok (2 — 2)
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ok [ Prlz—y) prly — 2)
§;2 <1+pk(w—y)+1+pk(y— )>
:d( )+d(y’ )

(b) By problem (a), we now know that C(€2) equipped with d is a metric space and so we only need to
show completeness. For this purpose, consider a Cauchy sequence { fj} C C(Q). Thus, for any € > 0
there exists a K. such that d(f;, f;) < e, for all 4,5 > K.. Thus, for all k& (in the definition of d) we
have that

limsup pi(fi — f;) = limsup sup |f;(z) — f;(z)| = 0. (4)

1,j—00 i,j—00 TEAg

We have Aj 1 €2, so any point x € €2 belongs in a set Ay for some k and thus we conclude that the
sequence {f;(z)} is Cauchy and hence converges to some limit point f(z). In fact, every compact
subset of  is contained in some subset Ay, hence by (4) the convergence f; — f must be uniform on
compact subsets of ). This implies that the limiting function f is a continuous function.

We are left to prove that lim;_,. d(f;, f) — 0. For this purpose, fix m > 1 and consider that
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R S ey AU e s

<0427
Taking m — oo gives the result.

Problem 2 (20 points)

(a) [4] Let f : X — X be a contraction on a complete metric space and Y C X be a closed subset such
that f(Y) C Y. Prove that the unique fixed point of f is in Y.
(b) [51 Let the contraction constant of f be ¢ and its fixed point a. Show that any zg € X and f-iterates

{xn } satisfy:
¢

1—c¢c

d(xp,a) < d(Tp—_1,Ty).

(c) [11] Let X be a complete metric space and f : X — X be a mapping such that some iterate fV :
X — X is a contraction. Prove that f has a unique fixed point. Moreover, show that the fixed point
of f can be obtained by iteration of f starting from any zg € X.

Solution:

(a) Since Y is a closed subset of a complete metric space, it is also complete. Thus, we can apply the
contraction mapping theorem to f : Y — Y and we get a unique fixed point in Y.

(b) Let ¢ be the contraction constant. Since a is the fixed point and f is a contraction we see that

d(xpn,a) = d(f(zn-1), f(a))
S Cd(xnflv a)
< cld(xp-1,2n) + d(xn,a)].

Solving for d(x,,a) gives the desired inequality.



(c) Applying the contraction mapping theorem to the function fV gives a unique fixed point, a, in X. If
f has a fixed point b, note that f~(b) = b and so by uniqueness b = a. Moreover, f(a) is also a fixed
point of fN as fN(f(a)) = f(f¥(a)) = f(a) and thus we have that f(a) = a.

Next, let g € X be arbitrarily chosen. We will show that lim, . f™(x¢) = a. For this purpose,
let 0 <r < N —1 and consider:

FY (o) = FYR(fT (x0)) = (FY)(f7 (20))-

Let yo = f"(wg). Since fV is a contraction, these iterates must converge to a as k — oo. This limit is
independent of the value r such that 0 < r < N — 1. Thus, all sequences {ka"‘T(a:o)}k tend to a as
k — oo. Thus, we have that

Jin (o) =

independent of z.

Problem 3 (20 points) Let K be a real-valued function continuous on [0, 1] x [0, 1]. We define the linear
operator, T : (%([0,1]), | [lc) = (€'([0,1]), | [|oc), such that

vf e #(0,1)), Yz € [0,1], [Tf}(:z:):/om K(,6)f()dt. (5)

(a) [2] Prove that T is a bounded operator from (¢ ([0,1]), || |ls) to (€°([0,1]), | [lsc)-
(b) [6] Prove that T is compact.

(¢) [12] Compute the spectral radius of T, and find o(T'), the spectrum of T. Hint: you may prove the
following intermediate estimate, Vn € N,n > 1,Vx € [0,1], |[T" f](z)| < || f]ls [x||K||OO]n/n'

Solution:

(a) A quick calculation shows that
veye 0], 1@~ AW < (1K]wlz 3l + s K@t~ K@ o)) 7w ©)
t€(0,1]

The function K is continuous on [0, 1] x [0, 1] so it is uniformly continuous, and therefore Ve > 0,35 > 0
such that
Vot € 0,1 x 0,1],  (jz -yl < 5= Kz 1) — K(3,6)] < /2). (7)

Now take 8’ = min (6,2/(2[|K||~)), we have
Va,y, |z —yl <& = [[Tf](@) = [T < (/2 + 1K) 1l < ellfll (8)

We conclude that T'f is (uniformly) continuous; in fact we have T'(B #(10.1) (0,1)) is equicontinuous.

We will need this later. T is obviously linear. Also, we have ||T'f o < [[K||oollf|lo0, so T € B(€([0,1])).

(b) Let B = B%([O ) (0,1) be the unit ball in € ([0, 1]). We use the Ascoli & Arzela theorem to prove that

T'(B) has compact closure. This involves proving that
o T(B) is equicontinuous, which was proved in the previous question;
o T(B) is uniformly bounded in €([0,1]): we have f € B = ||Tf|loc < ||K||oc-
(¢) We can prove by induction that

VneNn>1vee 0,1, [T f@)] < I llKm L (9)

n!

whence n
[ s]

n! '
We conclude that r(T) = lim,_e |77]|"/™ = 0. We have o(T) C B(0,7(T)) = {0}. But T is compact
so 0 is always part of the spectrum. We conclude o(T') = {0}.

VneNn > 1, |17 < (10)



Problem 4 (20 points)

(a)

(b)

()

[8] Let H be a Hilbert space and let T : H — H be a linear map. Prove that

T is selfadjoint = T is continuous. (11)

[2] Let C[X] be the vector space of polynomials on [0, 1] with complex coefficients, equipped with the
inner product

(P.Q) = / POQDr, (12)

and let H the pre-Hilbert subspace of C[X] defined by H = {P € C[X], P(0)=P(1) = 0}. We
consider the linear map T defined by

T :H — C[X], (13)
PP, (14)

where P’ is the derivative of P. Prove that
VP,QeH, (I'(P),Q)=(P,T(Q)). (15)

[10] Prove that T is not continuous, and resolve the apparent contradiction with (11).

Solution:

(a)

First proof (from a student). We use the closed graph theorem. Let {z,} C H, such that lim, o , =
0. We prove lim, oo Tz, = 0. We have Vy € H,(Tx,,y) = (z,,Ty). Then by continuity of
the inner product, lim, e (z,,Ty) = 0. We conclude that Yy € H,lim, oo (Txy,y) = 0, whence
lim,_, Tz, = 0.

Second proof (more elaborate). We first prove a small result. Let T : H — H be a linear map. Then,
T is continuous <= |[Vp € H',poT € H' (16)

where H’ is the topological dual of . The reverse direction is the only interesting direction. The closed
graph theorem allows us to conclude using a standard elementary proof (left as an exercise).

We now prove (11). Let ¢ € H', we need to prove that ¢ o T € H’. We use Riesz’s representation
theorem to find u € H such that ¢(x) = (z,u). Therefore p(T'z) = (T'z,u) = (x,Tu) by assumption,
and we conclude that ¢ o T € H’ so T is continuous.

Integration by part yields the result.

We define the following sequence of polynomials, P, (t) £ t"(1 —t). An elementary calculation yields

V2 1

1Pl = g7 A+ o (1), (a7)
\/((Qn +1)(2n +2)(2n + 3))
Also, . .
IPoll = (¢ 1] = nll Pa—a || = (ﬁ - g)n_m(l + 0 (1)). (18)
We conclude that ,
H?H > (V2-1)n(1+0(1)) (19)

and therefore the operator is not bounded. The result (11) does not apply since H is not complete (it
is not even closed). We note in passing that C[X] is not complete either.



Problem 5 (20 points) Let (Q,d,u) be a measure space, such that u(Q) < co. Let f: Q — R be a
measurable function. We define

Vn € N, An:{wGQ; n§|f(w)} and Bn:{weQ; n<|f(w)|§n+1}. (20)

[10 + 10] Prove that
/|f\du<oo<:>2n,u <oo<:>ZM (21)

Solution:
(a) Because f is measurable, the sets A,,, B, € &/. Also,
Vwe Q> nlp, (W) < [fw) <D (n+1)1p, (). (22)
neN neN

The monotone convergence theorem (applied to the first and last terms) and the monotonicity of the

integral yield
S nuBa) < [ 1fldu< Y n D (23)

neN neN

Whence, [, |fldu < oo = >, cynu(By) < oo. To prove the converse, we observe that B, N By, = 0 if
n # m. Therefore

(U Bn) =D u(Bn) < u(€) < oo (24)
neN neEN
Whence,
> np(Bn) <oo= Y (n+1) (Bn)<oo:>/|f|du<oo. (25)
neN neN Q

Now, for the second equivalence, we modify B,, ever so slightly and define
Cn:{weQ; n<|f(a))|<n+1}. (26)

The same proof (mutatis mutandis) yields,

/|f\du<oo<:>2nu(0n)<oo. (27)
n=0

Now observe that C,, is the thin slice that one can add to A,4+1 to get A4,. To wit, A, = 4,11 UC,
and Ap41 NCp, = 0. Therefore u(Cp) = u(An) — p(Ant1). A small computation shows

Z 1(A Z npu(Crn) +np(An11). (28)

n=1 n=0

Thus,

oo

Zu <oo:>Zn,u 'n <oo:>/|f|d,u<oo (29)
n=0

Conversely, if [|f|duy < oo then > 7 i nu(C,) < co. But we always have N14,., < |f], so
nu(Ans1) < [|fldp < oo, whence

> (A Znu ) +np(Ay) < nu(Cn)+/|f\du, (30)
n=1 n=0

and we conclude that >~ 7 | u(4,) < cc.



