
Applied Analysis Preliminary Exam (Hints/solutions)
9:00 AM – 12:00 PM, Thursday May 22, 2025

Instructions You have three hours to complete this exam. Work all five problems; there are no optional
problems. Each problem is worth 20 points. Please start each problem on a new page. Please clearly indicate
any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST
prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs,
you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a
theorem (when in doubt, ask the proctor). If you cannot finish part of a question, you may wish to move on
to the next part; problems are graded with partial credit. Write your student number on your exam,
not your name.

Problem 1 (20 points)

(a) [10] Let pk , k ∈ N, k ≥ 1 be a sequence of seminorms defined on a real vector space X. In other words,
pk satisfies:

(P1) pk(x) ≥ 0 for all x ∈ X;
(P2) pk(cx) = |c|pk(x) for all x ∈ X and c ∈ R;
(P3) pk(x + y) ≤ pk(x) + pk(y);

for all k ∈ N, k ≥ 1. Assume that for every x ∈ X with x ̸= 0 there exists at least one index k such
that pk(x) > 0 (we say that this sequence is separating). Define

d(x, y) =
∞∑

k=1
2−k pk(x − y)

1 + pk(x − y) . (1)

prove that d defines a distance on X.
(b) [10] Let Ω ⊂ Rn be an open set with boundary ∂Ω. Let C(Ω) be the space of all continuous functions

on Ω. For every k ≥ 1 consider the compact subset:

Ak =
{

x ∈ Ω : ∥x∥ ≤ k, B(x, 1/k) ⊂ Ω
}

, (2)

where B(x, 1/k) def=
{

z ∈ Rn, ∥x − z∥ < 1/k
}

, and ∥ · ∥ is the Euclidean norm. Define the seminorm on
C(Ω),

pk(f) = max
x∈Ak

|f(x)| (3)

and d the corresponding metric defined by (1). Prove that the space C(Ω) equipped with the metric d
is a complete metric space.

Solution:

(a) From (1) we see that d(x, x) = 0 follows from (P2) by taking c = 0 for all k. Taking c = −1 in (P2)
for all k, we obtain that d(x, y) = d(y, x). To prove the triangle inequality, note that if c ≤ a + b then
it holds that

c

1 + c
≤ a + b

1 + a + b

as the function g(s) = s/(1 + s) is increasing. Moreover,

a + b

1 + a + b
≤ a

1 + a
+ b

1 + b
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because g is concave down on (−1, ∞). Let c = pk(x − z), a = pk(x − y), and b = pk(y − z) and
consider:

d(x, z) =
∞∑

k=1
2−k pk(x − z)

1 + pk(x − z)

≤
∞∑

k=1
2−k

(
pk(x − y)

1 + pk(x − y) + pk(y − z)
1 + pk(y − z)

)
= d(x, y) + d(y, z).

(b) By problem (a), we now know that C(Ω) equipped with d is a metric space and so we only need to
show completeness. For this purpose, consider a Cauchy sequence

{
fj

}
⊂ C(Ω). Thus, for any ϵ > 0

there exists a Kϵ such that d(fi, fj) < ϵ, for all i, j > Kϵ. Thus, for all k (in the definition of d) we
have that

lim sup
i,j→∞

pk(fi − fj) = lim sup
i,j→∞

sup
x∈Ak

|fi(x) − fj(x)| = 0. (4)

We have Ak ↑ Ω, so any point x ∈ Ω belongs in a set Ak for some k and thus we conclude that the
sequence

{
fj(x)

}
is Cauchy and hence converges to some limit point f(x). In fact, every compact

subset of Ω is contained in some subset Ak, hence by (4) the convergence fj → f must be uniform on
compact subsets of Ω. This implies that the limiting function f is a continuous function.

We are left to prove that limj→∞ d(fj , f) → 0. For this purpose, fix m ≥ 1 and consider that

lim sup
j→∞

d(fj , f) ≤ lim sup
j→∞

m∑
k=1

2−k pk(fj − f)
1 + pk(fj − f) + lim sup

j→∞

∞∑
k=m+1

2−k pk(fj − f)
1 + pk(fj − f)

≤ 0 + 2−m.

Taking m → ∞ gives the result.

Problem 2 (20 points)

(a) [4] Let f : X → X be a contraction on a complete metric space and Y ⊂ X be a closed subset such
that f(Y ) ⊂ Y . Prove that the unique fixed point of f is in Y.

(b) [5] Let the contraction constant of f be c and its fixed point a. Show that any x0 ∈ X and f -iterates{
xn

}
satisfy:

d(xn, a) ≤ c

1 − c
d(xn−1, xn).

(c) [11] Let X be a complete metric space and f : X → X be a mapping such that some iterate fN :
X → X is a contraction. Prove that f has a unique fixed point. Moreover, show that the fixed point
of f can be obtained by iteration of f starting from any x0 ∈ X.

Solution:

(a) Since Y is a closed subset of a complete metric space, it is also complete. Thus, we can apply the
contraction mapping theorem to f : Y → Y and we get a unique fixed point in Y .

(b) Let c be the contraction constant. Since a is the fixed point and f is a contraction we see that

d(xn, a) = d(f(xn−1), f(a))
≤ cd(xn−1, a)
≤ c[d(xn−1, xn) + d(xn, a)].

Solving for d(xn, a) gives the desired inequality.
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(c) Applying the contraction mapping theorem to the function fN gives a unique fixed point, a, in X. If
f has a fixed point b, note that fN (b) = b and so by uniqueness b ≡ a. Moreover, f(a) is also a fixed
point of fN as fN (f(a)) = f(fN (a)) = f(a) and thus we have that f(a) = a.

Next, let x0 ∈ X be arbitrarily chosen. We will show that limn→∞ fn(x0) = a. For this purpose,
let 0 ≤ r ≤ N − 1 and consider:

fNk+r(x0) = fNk(fr(x0)) = (fN )k(fr(x0)).

Let y0 = fr(x0). Since fN is a contraction, these iterates must converge to a as k → ∞. This limit is
independent of the value r such that 0 ≤ r ≤ N − 1. Thus, all sequences

{
fNk+r(x0)

}
k

tend to a as
k → ∞. Thus, we have that

lim
n→∞

fn(x0) = a

independent of x0.

Problem 3 (20 points) Let K be a real-valued function continuous on [0, 1] × [0, 1]. We define the linear
operator, T : (C

(
[0, 1]

)
, ∥ ∥∞) → (C

(
[0, 1]

)
, ∥ ∥∞), such that

∀f ∈ C
(
[0, 1]

)
, ∀x ∈ [0, 1], [Tf ](x) =

ˆ x

0
K(x, t)f(t)dt. (5)

(a) [2] Prove that T is a bounded operator from (C
(
[0, 1]

)
, ∥ ∥∞) to (C

(
[0, 1]

)
, ∥ ∥∞).

(b) [6] Prove that T is compact.
(c) [12] Compute the spectral radius of T , and find σ(T ), the spectrum of T . Hint: you may prove the

following intermediate estimate, ∀n ∈ N, n ≥ 1, ∀x ∈ [0, 1],
∣∣[T nf ](x)

∣∣ ≤ ∥f∥∞
[
x∥K∥∞

]n
/n!

Solution:

(a) A quick calculation shows that

∀x, y ∈ [0, 1],
∣∣[Tf ](x) − [Tf ](y)

∣∣ ≤
(

∥K∥∞|x − y| + sup
t∈[0,1]

|K(x, t) − K(y, t)|
)

∥f∥∞ (6)

The function K is continuous on [0, 1]× [0, 1] so it is uniformly continuous, and therefore ∀ε > 0, ∃δ > 0
such that

∀x, y, t ∈ [0, 1] × [0, 1],
(
|x − y| < δ ⇒ |K(x, t) − K(y, t)| < ε/2

)
. (7)

Now take δ′ = min
(
δ, ε/(2∥K∥∞)

)
, we have

∀x, y, |x − y| < δ′ ⇒
∣∣[Tf ](x) − [Tf ](y)

∣∣ ≤
(
ε/2 + δ′∥K∥∞

)
∥f∥∞ ≤ ε∥f∥∞ (8)

We conclude that Tf is (uniformly) continuous; in fact we have T
(
B

C
(

[0,1]
)(0, 1)

)
is equicontinuous.

We will need this later. T is obviously linear. Also, we have ∥Tf∥∞ ≤ ∥K∥∞∥f∥∞, so T ∈ B(C
(
[0, 1]

)
).

(b) Let B
def= B

C
(

[0,1]
)(0, 1) be the unit ball in C

(
[0, 1]

)
. We use the Ascoli & Arzelà theorem to prove that

T (B) has compact closure. This involves proving that
• T (B) is equicontinuous, which was proved in the previous question;
• T (B) is uniformly bounded in C

(
[0, 1]

)
: we have f ∈ B ⇒ ∥Tf∥∞ ≤ ∥K∥∞.

(c) We can prove by induction that

∀n ∈ N, n ≥ 1, ∀x ∈ [0, 1],
∣∣[T nf ](x)

∣∣ ≤ ∥f∥∞∥K∥n
∞

xn

n! (9)

whence
∀n ∈ N, n ≥ 1, ∥T n∥ ≤

[
∥K∥∞

]n

n! . (10)

We conclude that r(T ) = limn→∞ ∥T n∥1/n = 0. We have σ(T ) ⊂ B(0, r(T )) = {0}. But T is compact
so 0 is always part of the spectrum. We conclude σ(T ) = {0}.
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Problem 4 (20 points)

(a) [8] Let H be a Hilbert space and let T : H → H be a linear map. Prove that

T is selfadjoint =⇒ T is continuous. (11)

(b) [2] Let C[X] be the vector space of polynomials on [0, 1] with complex coefficients, equipped with the
inner product

⟨P, Q⟩ =
ˆ 1

0
P (t)Q(t)dt, (12)

and let H the pre-Hilbert subspace of C[X] defined by H =
{

P ∈ C[X], P (0) = P (1) = 0
}

. We
consider the linear map T defined by

T :H −→ C[X], (13)
P 7−→ iP ′, (14)

where P ′ is the derivative of P . Prove that

∀P, Q ∈ H, ⟨T (P ), Q⟩ = ⟨P, T (Q)⟩. (15)

(c) [10] Prove that T is not continuous, and resolve the apparent contradiction with (11).

Solution:

(a) First proof (from a student). We use the closed graph theorem. Let {xn} ⊂ H, such that limn→∞ xn =
0. We prove limn→∞ Txn = 0. We have ∀y ∈ H, ⟨Txn, y⟩ = ⟨xn, T y⟩. Then by continuity of
the inner product, limn→∞ ⟨xn, Ty⟩ = 0. We conclude that ∀y ∈ H, limn→∞ ⟨Txn, y⟩ = 0, whence
limn→ Txn = 0.

Second proof (more elaborate). We first prove a small result. Let T : H → H be a linear map. Then,

T is continuous ⇐⇒
[
∀φ ∈ H′, φ ◦ T ∈ H′

]
(16)

where H′ is the topological dual of H. The reverse direction is the only interesting direction. The closed
graph theorem allows us to conclude using a standard elementary proof (left as an exercise).
We now prove (11). Let φ ∈ H′, we need to prove that φ ◦ T ∈ H′. We use Riesz’s representation
theorem to find u ∈ H such that φ(x) = ⟨x, u⟩. Therefore φ(Tx) = ⟨Tx, u⟩ = ⟨x, Tu⟩ by assumption,
and we conclude that φ ◦ T ∈ H′ so T is continuous.

(b) Integration by part yields the result.
(c) We define the following sequence of polynomials, Pn(t) def= tn(1 − t). An elementary calculation yields

∥Pn∥ =
√

2√(
(2n + 1)(2n + 2)(2n + 3)

) = 1
2n−3/2(1 + O (1)). (17)

Also,
∥P ′

n∥ ≥ ∥tn∥ − n∥Pn−1∥ ≥
( 1√

2
− 1

2
)
n−1/2(1 + O (1)). (18)

We conclude that
∥P ′

n∥
∥Pn∥

≥ (
√

2 − 1)n(1 + O (1)) (19)

and therefore the operator is not bounded. The result (11) does not apply since H is not complete (it
is not even closed). We note in passing that C[X] is not complete either.
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Problem 5 (20 points) Let
(
Ω, A , µ

)
be a measure space, such that µ(Ω) < ∞. Let f : Ω 7→ R be a

measurable function. We define

∀n ∈ N, An =
{

ω ∈ Ω; n ≤ |f(ω)|
}

and Bn =
{

ω ∈ Ω; n < |f(ω)| ≤ n + 1
}

. (20)

[10 + 10] Prove that ˆ
|f |dµ < ∞ ⇔

∞∑
n=0

n µ(Bn) < ∞ ⇔
∞∑

n=0
µ(An) < ∞. (21)

Solution:

(a) Because f is measurable, the sets An, Bn ∈ A . Also,

∀ω ∈ Ω,
∑
n∈N

n1Bn
(ω) ≤ |f(ω)| ≤

∑
n∈N

(n + 1)1Bn
(ω). (22)

The monotone convergence theorem (applied to the first and last terms) and the monotonicity of the
integral yield ∑

n∈N

n µ(Bn) ≤
ˆ

Ω
|f |dµ ≤

∑
n∈N

(n + 1)µ(Bn). (23)

Whence,
´

Ω |f |dµ < ∞ ⇒
∑

n∈N n µ(Bn) < ∞. To prove the converse, we observe that Bn ∩ Bm = ∅ if
n ̸= m. Therefore

µ
( ⋃

n∈N

Bn

)
=

∑
n∈N

µ(Bn) ≤ µ(Ω) < ∞. (24)

Whence, ∑
n∈N

n µ(Bn) < ∞ ⇒
∑
n∈N

(n + 1)µ(Bn) < ∞ ⇒
ˆ

Ω
|f |dµ < ∞. (25)

Now, for the second equivalence, we modify Bn ever so slightly and define

Cn =
{

ω ∈ Ω; n ≤ |f(ω)| < n + 1
}

. (26)

The same proof (mutatis mutandis) yields,
ˆ

|f |dµ < ∞ ⇔
∞∑

n=0
n µ(Cn) < ∞. (27)

Now observe that Cn is the thin slice that one can add to An+1 to get An. To wit, An = An+1 ∪ Cn

and An+1 ∩ Cn = ∅. Therefore µ(Cn) = µ(An) − µ(An+1). A small computation shows

n∑
n=1

µ(An) =
N∑

n=0
n µ(Cn) + n µ(AN+1). (28)

Thus,
∞∑

n=1
µ(An) < ∞ ⇒

∞∑
n=0

n µ(Cn) < ∞ ⇒
ˆ

|f |dµ < ∞. (29)

Conversely, if
´

|f |dµ < ∞ then
∑∞

n=0 n µ(Cn) < ∞. But we always have N1AN+1 ≤ |f |, so
n µ(AN+1) ≤

´
|f |dµ < ∞, whence

n∑
n=1

µ(An) =
N∑

n=0
n µ(Cn) + n µ(AN+1) ≤

N∑
n=0

n µ(Cn) +
ˆ

|f |dµ, (30)

and we conclude that
∑∞

n=1 µ(An) < ∞.
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