
Python for Math and Stat Spring 2025
Final Exam

Assume that all necessary packages have been imported.

1. (12 pts) For the following 4 problems, write down what each code block would display if executed in a
Jupyter cell. If the code generates an error or infinite loop, write Error.

(a) num_arr = np.array([1., 2., 3.])
4*num_arr - num_arr**2 - 3

(b) alpha = ’abcdefghijklmnopqrstuvwxyz’
a = {alpha[x]: x+1 for x in range(len(alpha))}
a[’x’]

(c) list(map(lambda x: x**2 + 1, [-3, 0, 4]))

(d) def func(num):
print(num, end=’ ’)
if num <= 0:

return 3
else:

return 2*num + func(num-3)

func(10)

Solution:

(a) array([0., 1., 0.])

(b) 24

(c) [10, 1, 17]

(d) 10 7 4 1 -2
47

2. (10 pts) The following two questions are related.

(a) Write a function called count threes(num) which returns the number of digits in positive
integer num equal to 3. For example count threes(1138) would return 1 while
count threes(234353) would return 3.

(b) Write code to use your function to find the average (mean) number of 3s in all numbers from
1 to 107.

Solution:

(a) def count_threes(num):
strnum = str(num)
return strnum.count(’3’)

def count_threes(num):
strnum = str(num)

ct = 0
for digit in strnum:

if digit == ’3’:
ct += 1

return ct

(b) sum3 = 0

for num in range(1, 10**7 + 1):
sum3 += count_threes(num)

sum3 / 10**7

3. (12 pts) A Pythagorean triple (x, y, z) of three positive integers has the property

x2 + y2 = z2,

corresponding to the sides of a right triangle with hypotenuse z and legs x and y.

Euclid’s method generates a Pythagorean triple by taking any two distinct positive integers a and b and
producing these values for x and y:

x = |a2 − b2|
y = 2ab

(a) Write a function called Pyth trip(a, b) that takes two positive integers a and b and uses Eu-
clid’s method to generate a Pythagorean triple. The function returns the answer in the form of an
(x,y,z) tuple of ints. You may assume a and b are distinct. For example, Pyth_trip(1, 2)
returns (3, 4, 5).

(b) A Pythagorean triple (x, y, z) is primitive if x, y, and z have no common divisor. Write a function
Pyth reduce(triple) that takes an (x, y, z) triple in the form of a tuple and returns
the corresponding primitive triple. You may call the gcd(m, n) function from class to find the
greatest common divisor of x and y. For example, Pyth_reduce((10, 24, 26)) returns
(5, 12, 13).

Solution:

(a) def Pyth_triple(a, b):
x = abs(a**2 - b**2)
y = 2*a*b
z = int(math.sqrt(x**2 + y**2))
return x, y, z

(b) def Pyth_reduce(triple):
(x, y, z) = triple
divisor = gcd(x, y)

return x // divisor, y // divisor, z // divisor

4. (14 pts)

(a) Write a function quad pts(coeffs, npts) that takes the coefficients (a, b, c) of a quadratic
function f(x) = ax2 + bx+ c and returns the function values f(1), f(2), ..., f(npts)
in a numpy array. The code must use numpy features such as arange and vectorization. It should
not use a loop or list comprehension.
Example: quad pts((2, 0, -20), 5) returns array([-18, -12, -2, 12, 30])
corresponding to f(x) = 2x2 − 20, f(1) = 18, . . . , f(5) = 30.

(b) Write a function quad plot(coeffs, npts) that
takes the output of quad pts, plots the points, and
draws a vertical line from each point to the x-axis. The
code should plot a horizontal line to indicate where the
x-axis is. Use default colors.

Solution:

(a) def quad_pts(coeffs, npts):
a, b, c = coeffs
xvals = np.arange(1, npts+1)

return a*xvals**2 + b*xvals + c

(b) def quad_plot(coeffs, npts):
xvals = np.arange(1, npts+1)
yvals = quad_pts(coeffs, npts)

plot the x-axis
plt.plot((0, npts+1), (0, 0))

plot the points
plt.plot(xvals, yvals, ’o’)

plot the vertical lines
for x in xvals:

plt.plot((x, x), (0, yvals[x-1]))

5. (15 pts) Create a class called Date. Each instance of the class corresponds to a date with month, day,
and year attributes

• month: an integer from 1 to 12

• day: an integer from 1 to 31

• year: a 4-digit integer

Example: vars(Date(5, 7, 2025)) returns {’month’: 5, ’day’: 7, ’year’: 2025}.

The class includes these methods:

• month name(): returns the name of the month in string format. The code can reference a global
variable months = [’Jan’, ’Feb’, ..., ’Dec’] which contains the 3-letter abbrevia-
tions for month names in an ordered list.
Example: Date(5, 7, 2025).month name() returns ’May’.

• format(): returns the date in m/d/yy string format.
Example: Date(12, 4, 2025).format() returns ’12/4/25’.

• century(): returns the century the given date is in. (For example, the 21st century includes the
years 2001 to 2100 inclusive.)
Examples:
Date(5, 7, 1776).century() returns 18, representing the 18th century.
Date(5, 7, 2000).century() returns 20, representing the 20th century.

Solution:

class Date:

def __init__(self, month, day, year):
self.month = month
self.day = day
self.year = year

def month_name(self):
return months[self.month - 1]

def format(self):
return f’{self.month:02}/{self.day:02}/{self.year % 100}’

def century(self):
hundred = self.year // 100
if self.year % 100 != 0:

hundred += 1
return hundred

6. (12 pts) The DataFrame dfplanet contains information about the eight planets in our solar system.
The DataFrame has an index column Name and columns Large Moons for the number of large moons,
Icy Moons for the number of smaller icy moons, and Rocks for the number of asteroid-sized (very
small) moons of each planet.

Write code to do the following:

(a) Determine the number of planets in dfplanet that have more Large Moons than Icy Moons.

(b) Select the names of all planets that have moons that are Rocks. The result should be a pandas
index or a list of strings.

(c) Add a new column to the DataFrame called Non Rockswhich equals the number of Large Moons
plus Icy Moons.

(d) Among the planets with Large Moons, one has the largest number of Rocks. Identify the name
of that planet as a string.

Solution:

(a) len(dfplanet[dfplanet.Large_Moons > dfplanet.Icy_Moons])

OR (dfplanet.Large_Moons > dfplanet.Icy_Moons).sum()

(b) dfplanet[dfplanet.Rocks != 0].index

(c) dfplanet[’Non_Rocks’] = dfplanet.Large_Moons + dfplanet.Icy_Moons

(d) dfplanet[dfplanet.Large_Moons > 0].Rocks.idxmax()

