APPM 1360 Exam 3 Spring 2024

1. (16 points) Determine whether each of the following series is absolutely convergent, conditionally conver-
gent, or divergent. For this problem, and all subsequent problems, explain your work and name any test or
theorem that you use.

WS (Y
n=2

= n + 2
(b) ——
Solution:
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(a) Apply the Ratio Test with a,, = (—2) n3.

1\n+l 3 3 3
—5 n+1 1 1 1 1 1
lim |22 = fim (2)151 T Gt R TNY  FIED
n—o0o | Ay, n—00 (_5) n3 n—oo | 2 n n—oo | 2 n 2
Thus the series is ‘ absolutely convergent ‘
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(b) Apply the Limit Comparison Test and compare to the divergent p-series Z T (p = %)
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Therefore the given series also is .
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2. (12 points) Use the Maclaurin series for In(1+2) and In(1 —z) to find the Maclaurin series for In < . + :c) .
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Write your answer using sigma notation and include the radius of convergence.
(Hint: Write out the first few terms of the In(1 4 z) and In(1 — z) series.)

Solution:
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Note: (—1)""1(—=1)" = (~=1)?"~! = —1. Then
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Because both In(1 + x) and In(1 — x) series have a radius of R = 1, their difference also has a radius of
R=1]

3. (18 points)
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(a) Find a series representation for / e " dx.
0

(b) Use the Alternating Series Estimation Theorem to approximate the value of the definite integral from
part (a) with an error less than 1/20. Fully simplify your answer. (You may assume that the hypotheses
of the Alternating Series Estimation Theorem are satisfied.)

Solution:

(a) According to the list of frequently-used Maclaurin series on the cover page of the exam, the Maclaurin
series for e® is

Therefore,
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(b) The result from part (a) indicates that

oo
4. (28 points) Define a function f(z) = Z
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This is an alternating series with b, = #
n!(3n + 1)

The problem statement ensures that the hypotheses of the Alternating Series Estimation Theorem are
satisfied, so that the following result holds:

lerror| = |s — sp| < bpt1

where s is the infinite sum and s,, is the nth partial sum. Since bs = 1/60 < 1/20, then using s to
estimate the value of s produces an acceptable error. Therefore,
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(a) Determine the values of x for which the series is absolutely convergent.
(b) Find a Taylor series for f/(x).

(c) Find a closed form (non-series) expression for x f/(—x).

Solution:

(a) Apply the Ratio Test.

(b)
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The series has a radius R = 1 and is absolutely convergent for |z| < 1. Next consider the endpoints of
the interval (—1,1).
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At x = 1, the series g —5 is the absolutely convergent p-series (p = 2).
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Atz = —1, the series E ( 2) also is absolutely convergent based on the previous result.
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Therefore the given series is absolutely convergent for x in | [—1,1] |
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5. (26 points) The following problems are not related.

(a) Find T (x), the second order Taylor polynomial, centered at 7 /4, for f(x) = sin(x).
(b) Write the series in sigma notation and find its sum.
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Solution:
(a)
f(z) =sinzx f(%):%
f'(z) = cosz (%) = %
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The series sums to | e'/? — 1|because Z l = " which implies Z =e® — 1.
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(c) Consider the parametric equations given by x = 1 + cost and y = ¢ 4+ 7 for —m < ¢ < 7. Eliminate
the parameter and sketch the curve. Indicate with an arrow the direction in which the curve is traced as
t increases.

Solution:

Eliminating the parameter givesy =t +7 =— t =y — 7, s0 ‘ x =1+ cos(y — ) ‘

Note that eliminating the parameter from the = equation, then substituting into the y equation, leads to the
function iy = cos ™! (x — 1)+, which will produce only the top half of the parametric curve. This is because
the cos™! () function has a range of [0, ], yielding a y-range of [, 27], not [0, 27].
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