- This exam is worth 100 points and has 6 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED <u>AND</u> UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/031225 (10 pts)] Write the word **TRUE** or **FALSE** as appropriate. No work need be shown. No partial credit given. Please write your answers in a single column separate from any work you do to arrive at the answer.
 - (a) If A and B are both $n \times n$ diagonal matrices, then AB = BA always holds.
 - (b) If the characteristic polynomial of a 3×3 matrix is $\lambda^3 3\lambda^2 \lambda + 3$, the eigenvalues of the matrix are 1, 3, -3.
 - (c) Let $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$ be a basis for a vector space \mathbb{V} . Then for any other $\vec{\mathbf{y}} \in \mathbb{V}, \{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n, \vec{\mathbf{y}}\}$ is also a basis for \mathbb{V} .
 - (d) For any $m \times n$ matrix $\mathbf{A}, \mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent if and only if $\vec{\mathbf{b}}$ is in the column space of \mathbf{A} , that is, $\vec{\mathbf{b}} \in \text{Col }\mathbf{A}$
 - (e) If A and B are nonsingular matrices, then $|(\mathbf{AB})^{-1}| = (|\mathbf{A}||\mathbf{B}|)^{-1}$
- - (a) (4 pts) Find the eigenvalues of A and their algebraic multiplicity.
 - (b) (7 pts) Find the geometric multiplicity of the eigenvalue whose algebraic multiplicity from part (a) is one. Find a basis for the eigenspace of this eigenvalue.
 - (c) (8 pts) Find a basis for the solution space of $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$. What is the dimension of the solution space?
 - (d) (4 pts) Is \mathbf{A}^{T} invertible? Explain briefly without doing any calculations.
- 3. [2360/031225 (20 pts)] Consider the linear system

 $x_2 + 2x_3 = 1$ $3x_1 + 15x_2 + 6x_3 = 9$, where k is a real constant. $6x_1 + 29x_2 + 10x_3 = k$

There is a single value of k that makes the system consistent. Find that value and then solve the system using that value for k by finding the RREF of an appropriate matrix. Use the Nonhomogeneous Principle to write the general solution in the form $\vec{\mathbf{x}} = \vec{\mathbf{x}}_h + \vec{\mathbf{x}}_p$, clearly indicating $\vec{\mathbf{x}}_h$ and $\vec{\mathbf{x}}_p$.

MORE PROBLEMS BELOW/ON REVERSE

4. [2360/031225 (16 pts)] Consider the following vectors in \mathbb{R}^3 :

$$\vec{\mathbf{x}} = \begin{bmatrix} 14\\3\\-19 \end{bmatrix}, \vec{\mathbf{u}} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} -2\\1\\3 \end{bmatrix}, \vec{\mathbf{w}} = \begin{bmatrix} 11\\2\\-15 \end{bmatrix}$$

Show all your work to justify your answers to the following questions.

- (a) (8 pts) Is $\vec{\mathbf{x}} \in \text{span} \{\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}\}$?
- (b) (8 pts) Is span $\{\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}\} = \mathbb{R}^3$?
- 5. [2360/031225 (16 pts)] Consider the set $\left\{t^2 + 3t \frac{5}{4}, -2t^2 + t 1, \frac{1}{2} t\right\}$.
 - (a) (8 pts) Show that the Wronskian cannot be used to decide whether or not the set is linearly independent.
 - (b) (8 pts) Does the set form a basis for \mathbb{P}_2 ? Justify your answer.
- 6. [2360/031225 (15 pts)] For each of the following, determine if the given subset, W, is a subspace of the given vector space, V. Assume that standard operations apply in each case. Provide justification for your answers.
 - (a) $(5 \text{ pts}) \mathbb{V} = \mathbb{R}^3$; \mathbb{W} is the set of vectors of the form $\begin{bmatrix} n & n & 2n \end{bmatrix}^T$ where n is an integer.
 - (b) (5 pts) $\mathbb{V} = C(-\infty, \infty)$ (the set of functions that are continuous for all real numbers); \mathbb{W} equals the set of all constant functions.
 - (c) (5 pts) $\mathbb{V} = \mathbb{M}_{nn}$; \mathbb{W} is the set of $n \times n$ matrices with trace equal to -1.