APPM 1360 Exam 2 Spring 2025

1. Region R is bounded by the curve y = (Inz)/x and the z-axis on the interval [1, e3].

(a) (24 pts) Set up (but do not evaluate) integrals to find the following quantities.

i. The volume of the solid generated by rotating region R about the y-axis.

ii. The volume of the solid with R as the base and cross-sections perpendicular to the z-axis in the
shape of squares.

iii. The area of the surface generated by rotating the given curve y = (Inz)/x on [1, 63} about the
line y = —2.

Solution:
i. By the Shell Method,
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ii. Bach square has a side length of (Inz) /2 and area of A(z) = ((Inz)/z)>. Therefore the volume

of the solid is
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iii. The derivative of y = — is ¢/ = 5— and the radius r is — + 2, so the surface area is
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(b) (18 pts) A thin metal plate with constant density p covers the same region R shown. The moment about
the y-axis of the plate is M, = 3 + 6e3. Evaluate integrals to solve the following problems.

i. Find the value of p.
ii. Find the mass of the plate.

Solution:
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Apply Integration by Parts with u = Inz, du = dz/x and dv = dz, v = x.
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It is given that M, = 3 + 6€>, so p = .
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Letu = Inz, du = dx/z. Then the bounds x = 1 to €2 convert to u = 0 to 3.




2. (12 pts) Solve the differential equation for .
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Letu = cosx, du = —sinx dx. Substitute sin® x = 1 — cos® .
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3. The following parts are not related. Justify all answers.
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(a) (8 pts) Does the sequence {m arctan(5/m)} converge? If so, what does it converge to?

o0
(b) (14 pts) Find the sum of the series Z or explain why the sum does not exist.
n=1

n2+3n+2

(Hint: Begin with a partial fraction decomposition.)
Solution:

(a) The limit has the form of an indeterminate product co - 0. Rewrite the product as a quotient, then apply
L’Hopital’s Rule.

arctan(b/m) Lu 1+251,/m2 (_%) bl
lim marctan(5/m) = lim ——————— = lim = lim ——= =35,
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so the sequence converges to .
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(b) The partial fraction decomposition of R T has the form
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Solving A(n+2) + B(n+ 1) = 6 gives A = 6 and B = —6, so the series can be written as
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The series is telescoping with partial sum
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The sum of the series equals li_)m S, = lim <3 — ) =3-0= .
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4. The following parts are not related. Justify all answers.

o
(a) (8 pts) Let s,, be the nth partial sum of the series Z an. Suppose lim s, = 8.
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i. Find lim a,.

n—o0
ii. Find the sum of the series.
Solution:
i. Because the limit of the partial sums exists, the series converges and the sequence a,, converges to
0. Therefore lim a,, = @
n—oo

ii. The sum of the series equals the limit of the partial sums which is .
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(b) (8 pts) The nth partial sum of the series g bpiss, =5 <5) .
n=1
1. Find the third term of the series.

ii. Find the sum of the series.
Solution:

i. Because the partial sum so = by + b and s3 = by + by + bs, the third term is
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ii. The sum of the series equals lim s, = lim 5 <> = @ because s,, corresponds to an r"
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sequence with r = 2/5 < 1.



(c) (8 pts) Find the value of k that satisfies
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Solution: The series on the left side of the equation is geometric with first term a = ¢?* and ratio
r = %!, The sum of the series is
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Set S = 1/2 and solve for k.
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Note that 7 = e?* = 1,50 [r| < 1 and the series converges.



