1. Region \mathcal{R} is bounded by the curve $y = (\ln x)/x$ and the x-axis on the interval $[1, e^3]$.

- (a) (24 pts) Set up (but do not evaluate) integrals to find the following quantities.
 - i. The volume of the solid generated by rotating region \mathcal{R} about the y-axis.
 - ii. The volume of the solid with \mathcal{R} as the base and cross-sections perpendicular to the x-axis in the shape of squares.
 - iii. The area of the surface generated by rotating the given curve $y = (\ln x)/x$ on $[1, e^3]$ about the line y = -2.
- (b) (18 pts) A thin metal plate with constant density ρ covers the same region \mathcal{R} shown. The moment about the y-axis of the plate is $M_y = 3 + 6e^3$. Evaluate integrals to solve the following problems.
 - i. Find the value of ρ .
 - ii. Find the mass of the plate.
- 2. (12 pts) Solve the differential equation for y.

$$\sec^4 x \, \frac{dy}{dx} = \frac{\sin^3 x}{y}$$

- 3. The following parts are not related. Justify all answers.
 - (a) (8 pts) Does the sequence $\{m \arctan(5/m)\}\$ converge? If so, what does it converge to?
 - (b) (14 pts) Find the sum of the series $\sum_{n=1}^{\infty} \frac{6}{n^2 + 3n + 2}$ or explain why the sum does not exist.

(Hint: Begin with a partial fraction decomposition.)

4. The following parts are not related. Justify all answers.

(a) (8 pts) Let s_n be the *n*th partial sum of the series $\sum_{n=1}^{\infty} a_n$. Suppose $\lim_{n \to \infty} s_n = 8$.

- i. Find lim_{n→∞} a_n.
 ii. Find the sum of the series.

(b) (8 pts) The *n*th partial sum of the series
$$\sum_{n=1}^{\infty} b_n$$
 is $s_n = 5\left(\frac{2}{5}\right)^n$.

- i. Find the third term of the series.
- ii. Find the sum of the series.
- (c) (8 pts) Find the value of k that satisfies

$$e^{2k} + e^{4k} + e^{6k} + e^{8k} + \dots = \frac{1}{2}.$$