- 1. [2360/031225 (10 pts)] Write the word **TRUE** or **FALSE** as appropriate. No work need be shown. No partial credit given. Please write your answers in a single column separate from any work you do to arrive at the answer.
 - (a) If A and B are both $n \times n$ diagonal matrices, then AB = BA always holds.
 - (b) If the characteristic polynomial of a 3×3 matrix is $\lambda^3 3\lambda^2 \lambda + 3$, the eigenvalues of the matrix are 1, 3, -3.
 - (c) Let $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$ be a basis for a vector space \mathbb{V} . Then for any other $\vec{\mathbf{y}} \in \mathbb{V}, \{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n, \vec{\mathbf{y}}\}$ is also a basis for \mathbb{V} .
 - (d) For any $m \times n$ matrix $\mathbf{A}, \mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent if and only if $\vec{\mathbf{b}}$ is in the column space of \mathbf{A} , that is, $\vec{\mathbf{b}} \in \text{Col }\mathbf{A}$

(e) If **A** and **B** are nonsingular matrices, then $|(\mathbf{AB})^{-1}| = (|\mathbf{A}||\mathbf{B}|)^{-1}$

SOLUTION:

(a) **TRUE** Although not a general proof, the pattern for the 3×3 case is illustrative.

$$\mathbf{AB} = \begin{bmatrix} a_{11} & 0 & 0\\ 0 & a_{22} & 0\\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & 0 & 0\\ 0 & b_{22} & 0\\ 0 & 0 & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & 0 & 0\\ 0 & a_{22}b_{22} & 0\\ 0 & 0 & a_{33}b_{33} \end{bmatrix}$$
$$= \begin{bmatrix} b_{11}a_{11} & 0 & 0\\ 0 & b_{22}a_{22} & 0\\ 0 & 0 & b_{33}a_{33} \end{bmatrix} = \begin{bmatrix} b_{11} & 0 & 0\\ 0 & b_{22} & 0\\ 0 & 0 & b_{33} \end{bmatrix} \begin{bmatrix} a_{11} & 0 & 0\\ 0 & a_{22} & 0\\ 0 & 0 & a_{33} \end{bmatrix} = \mathbf{BA}$$

- (b) FALSE $\lambda^3 3\lambda^2 \lambda + 3 = \lambda^2(\lambda 3) (\lambda 3) = (\lambda^2 1)(\lambda 3) = (\lambda 1)(\lambda + 1)(\lambda 3) \implies \lambda = -1, 1, 3$ are eigenvalues.
- (c) FALSE Adding another vector to a basis automatically makes the new set linearly dependent and therefore it cannot be a basis.
- (d) **TRUE** The 3×2 system will demonstrate the equivalence. To be consistent, an \vec{x} must exist such that $\vec{A} = \vec{b}$. That is,

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

This can be written as

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

showing that $\vec{\mathbf{b}}$ is in the column space of \mathbf{A} .

(e) TRUE

$$\left| (\mathbf{A}\mathbf{B})^{-1} \right| = \left| \mathbf{B}^{-1}\mathbf{A}^{-1} \right| = \left| \mathbf{B}^{-1} \right| \left| \mathbf{A}^{-1} \right| = \left(\frac{1}{|\mathbf{B}|} \right) \left(\frac{1}{|\mathbf{A}|} \right) = \frac{1}{|\mathbf{A}||\mathbf{B}|} = \left(|\mathbf{A}||\mathbf{B}| \right)^{-1}$$

- (a) (4 pts) Find the eigenvalues of A and their algebraic multiplicity.
- (b) (7 pts) Find the geometric multiplicity of the eigenvalue whose algebraic multiplicity from part (a) is one. Find a basis for the eigenspace of this eigenvalue.
- (c) (8 pts) Find a basis for the solution space of $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$. What is the dimension of the solution space?
- (d) (4 pts) Is \mathbf{A}^{T} invertible? Explain briefly without doing any calculations.

SOLUTION:

- (a) Since this is a lower triangular matrix, the eigenvalues lie along the diagonal. They are $\lambda = 0$ with algebraic multiplicity 3 and $\lambda = 1$ with algebraic multiplicity 1.
- (b) We need to solve $(\mathbf{A} \mathbf{I})\vec{\mathbf{x}} = \vec{\mathbf{0}}$.

$$\begin{bmatrix} -1 & 0 & 0 & 0 & | & 0 \\ 0 & -1 & 0 & 0 & | & 0 \\ 0 & 0 & -1 & 0 & | & 0 \\ 1 & 0 & 1 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 0 & 0 & | & 0 \\ 0 & -1 & 0 & 0 & | & 0 \\ 0 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

A basis for the eigenspace corresponding to $\lambda = 1$ is $\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$. The geometric multiplicity of $\lambda = 1$ is 1.

(c)

- (d) No. Since A contains a row of zeros, its determinant vanishes and therefore the determinant of $|\mathbf{A}^{T}| = |\mathbf{A}|$ also vanishes, implying that \mathbf{A}^{T} is not invertible.
- 3. [2360/031225 (20 pts)] Consider the linear system

 $x_2 + 2x_3 = 1$ $3x_1 + 15x_2 + 6x_3 = 9$, where k is a real constant. $6x_1 + 29x_2 + 10x_3 = k$

There is a single value of k that makes the system consistent. Find that value and then solve the system using that value for k by finding the RREF of an appropriate matrix. Use the Nonhomogeneous Principle to write the general solution in the form $\vec{\mathbf{x}} = \vec{\mathbf{x}}_h + \vec{\mathbf{x}}_p$, clearly indicating $\vec{\mathbf{x}}_h$ and $\vec{\mathbf{x}}_p$.

SOLUTION:

$$\begin{bmatrix} 0 & 1 & 2 & | & 1 \\ 3 & 15 & 6 & | & 9 \\ 6 & 29 & 10 & | & k \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 2 & | & 1 \\ 1 & 5 & 2 & | & 3 \\ 0 & -1 & -2 & | & k - 18 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & 2 & | & 3 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & k - 17 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -8 & | & -2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & k - 17 \end{bmatrix} \implies k = 17 \text{ to be consistent}$$

With k = 17, we have

$$\begin{bmatrix} 1 & 0 & -8 & | & -2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{x_1 = -2 + 8t}_{x_2 = 1 - 2t} \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 8 \\ -2 \\ 1 \\ \vdots \\ \overrightarrow{x_h} \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ 0 \\ \overrightarrow{x_p} \end{bmatrix}, \quad t \in \mathbb{R}$$

4. [2360/031225 (16 pts)] Consider the following vectors in \mathbb{R}^3 :

$$\vec{\mathbf{x}} = \begin{bmatrix} 14\\3\\-19 \end{bmatrix}, \vec{\mathbf{u}} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} -2\\1\\3 \end{bmatrix}, \vec{\mathbf{w}} = \begin{bmatrix} 11\\2\\-15 \end{bmatrix}$$

Show all your work to justify your answers to the following questions.

- (a) (8 pts) Is $\vec{\mathbf{x}} \in \text{span} \{ \vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \}$?
- (b) (8 pts) Is span $\{\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}\} = \mathbb{R}^3$?

SOLUTION:

(a) Can c_1, c_2, c_3 be found such that $c_1 \vec{\mathbf{u}} + c_2 \vec{\mathbf{v}} + c_3 \vec{\mathbf{w}} = \vec{\mathbf{x}}$?

$$c_{1} \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} -2\\ 1\\ 3 \end{bmatrix} + c_{3} \begin{bmatrix} 11\\ 2\\ -15 \end{bmatrix} = \begin{bmatrix} 14\\ 3\\ -19 \end{bmatrix}$$
$$\begin{bmatrix} 1 -2 & 11 & 14\\ 2 & 1 & 2\\ -1 & 3 & -15 & -19 \end{bmatrix} \rightarrow \begin{bmatrix} 1 -2 & 11 & 14\\ 0 & 5 & -20 & -25\\ 0 & 1 & -4 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 4\\ 0 & 1 & -4 & -5\\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow c_{1} = 4 - 3t$$
$$\Rightarrow c_{2} = -5 + 4t$$
$$c_{3} = t$$

From this we can conclude that $\vec{\mathbf{x}} = 4\vec{\mathbf{u}} - 5\vec{\mathbf{v}} + 0\vec{\mathbf{w}}$ showing that $\vec{\mathbf{x}} \in \text{span} \{\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}\}$. Note: there are other choices for c_1, c_2, c_3 based on other values of t.

(b) Since the set contains 3 vectors in a vector space of dimension 3, this is equivalent to asking if $\{\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}\}$ is a basis for \mathbb{R}^3 . This will be the case if the vectors are linearly independent. This, in turn, is equivalent to showing that the only solution to $c_1\vec{\mathbf{u}} + c_2\vec{\mathbf{v}} + c_3\vec{\mathbf{w}} = \vec{\mathbf{0}}$ is $c_1 = c_2 = c_3 = 0$. Furthermore, this can be done by deciding if the trivial solution is the unique solution of

$$\begin{bmatrix} 1 - 2 & 11 \\ 2 & 1 & 2 \\ -1 & 3 - 15 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{vmatrix} 1 - 2 & 11 \\ 2 & 1 & 2 \\ -1 & 3 - 15 \end{vmatrix} = 11(-1)^{1+3} \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 1 & -2 \\ -1 & 3 \end{vmatrix} - 15(-1)^{3+3} \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 11(7) - 2(1) - 15(5) = 0$$

This shows that nontrivial solutions exist, implying that the vectors are linearly dependent and therefore cannot be a basis for \mathbb{R}^3 , implying that span $\{\vec{u}, \vec{v}, \vec{w}\} \neq \mathbb{R}^3$. Note: the RREF from part (a) with the last column containing all zeroes, is also justification for showing that the vectors are linearly dependent and thus cannot form a basis.

- 5. [2360/031225 (16 pts)] Consider the set $\left\{t^2 + 3t \frac{5}{4}, -2t^2 + t 1, \frac{1}{2} t\right\}$.
 - (a) (8 pts) Show that the Wronskian cannot be used to decide whether or not the set is linearly independent.

(b) (8 pts) Does the set form a basis for \mathbb{P}_2 ? Justify your answer.

SOLUTION:

(a)

$$W(t) = \begin{vmatrix} t^2 + 3t - \frac{5}{4} & -2t^2 + t - 1 & -t + \frac{1}{2} \\ 2t + 3 & -4t + 1 & -1 \\ 2 & -4 & 0 \end{vmatrix}$$
$$= \left(-t + \frac{1}{2}\right) (-1)^{1+3} \begin{vmatrix} 2t + 3 & -4t + 1 \\ 2 & -4 \end{vmatrix} - 1(-1)^{2+3} \begin{vmatrix} t^2 + 3t - \frac{5}{4} & -2t^2 + t - 1 \\ 2 & -4 \end{vmatrix}$$
$$= \left(-t + \frac{1}{2}\right) (-8t - 12 + 8t - 2) + \left(-4t^2 - 12t + 5 + 4t^2 - 2t + 2\right)$$
$$= \left(-t + \frac{1}{2}\right) (-14) + (-14t + 7)$$
$$= 14t - 7 - 14t + 7 = 0$$

Since the Wronskian vanishes, this tells us nothing about the linear dependence of the vectors in the set.

(b) There are three vectors in the set and the dimension of \mathbb{P}_2 is 3. If the vectors are linearly independent, they will form a basis, otherwise they will not. We need to determine if the only solution to the following is $c_1 = c_2 = c_3 = 0$.

$$c_{1}\left(t^{2}+3t-\frac{5}{4}\right)+c_{2}\left(-2t^{2}+t-1\right)+c_{3}\left(-t+\frac{1}{2}\right)=0+0t+0t^{2}$$

$$c_{1}-2c_{2}=0$$

$$3c_{1}+c_{2}-c_{3}=0$$

$$-\frac{5}{4}c_{1}-c_{2}+\frac{1}{2}c_{3}=0$$

$$\begin{bmatrix}1&-2&0\\3&1&-1\\-\frac{5}{4}&-1&\frac{1}{2}\end{bmatrix}\begin{bmatrix}c_{1}\\c_{2}\\c_{3}\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

$$1&-2&-\frac{5}{4}=1$$

$$1&-1&-\frac{1}{2}=0$$

$$\frac{1}{2}+3-\frac{5}{2}=3-\frac{6}{2}=0$$

This indicates that the system has nontrivial solutions, implying that the vectors are linearly dependent. Therefore, they cannot form a basis for \mathbb{P}_2 .

- 6. [2360/031225 (15 pts)] For each of the following, determine if the given subset, W, is a subspace of the given vector space, V. Assume that standard operations apply in each case. Provide justification for your answers.
 - (a) $(5 \text{ pts}) \mathbb{V} = \mathbb{R}^3$; \mathbb{W} is the set of vectors of the form $\begin{bmatrix} n & n & 2n \end{bmatrix}^T$ where n is an integer.
 - (b) (5 pts) $\mathbb{V} = C(-\infty, \infty)$ (the set of functions that are continuous for all real numbers); \mathbb{W} equals the set of all constant functions.
 - (c) (5 pts) $\mathbb{V} = \mathbb{M}_{nn}$; \mathbb{W} is the set of $n \times n$ matrices with trace equal to -1.

SOLUTION:

(a) Not a subspace. Not closed under scalar multiplication. For example $\vec{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \in \mathbb{W}$ but $\sqrt{2} \vec{\mathbf{u}} = \begin{bmatrix} \sqrt{2} & \sqrt{2} & 2\sqrt{2} \end{bmatrix}^T \notin \mathbb{W}$. Note that the set is closed under vector addition.

(b) Subspace. Let $\vec{\mathbf{u}} = f(x) = a$ and $\vec{\mathbf{v}} = g(x) = b$ be in \mathbb{W} and let $p, q \in \mathbb{R}$. Then

$$p\vec{\mathbf{u}} + q\vec{\mathbf{v}} = (pf)(x) + (qg)(x) = pf(x) + qg(x) = pa + qb \in \mathbb{W}$$

(c) Not a subspace. The zero vector, $\vec{\mathbf{0}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, is not in \mathbb{W} . The set is also not closed under either vector addition or scalar multiplication. To see this, note that vectors in the set have the form $\begin{bmatrix} a & b \\ c & -(a+1) \end{bmatrix}$, where $a, b, c \in \mathbb{R}$.