APPM 1350 Exam 2 Spring 2025

1. The following are unrelated:

2
(a) (8 pts) Suppose y is a function of z, find y/ if sin(xy) = 3"
(b) (8 pts) Suppose f(z) = V/—x + |z|. Find the derivative of f(x) for all z < 0.
. d%y .. dy 9
(c) (8 pts) Find ) atx = 1 if gy = Lsec (z) + tan(z).

. . . d (g(z?)
(d) (8 pts) For a differentiable function g(x), find ol Bl B
i x

Solution:

(a) Apply implicit differentiation, the chain rule, and the product rule.
d d
[ D)
 [sin(ay)] = < [2/3]

cos(xy) ! [zy] =0
s(zy) - — |zy] =

Yy da Yy

cos(zy) - (z-y' +y-1)=0

Since cos(zy) = /1 — sin?(zy) and sin(zy) = 2/3, the value of cos(xy) can not equal zero. That leads to
the following:

-y +y=0

(b)
x , >0
x| =
- , x<0
In this problem, only negative values of z are considered, so that |z| = —=z.

f(w) = ¥/=z+1a]
g

= (—2:17)1/3



1 d
fl(x) = g(—2$)_2/3 : %[—290]
= é (=1)72B 27 2B (—9)
|2
3 x?
(©)
Z—y = zsec’ + tanx
x
d? d
d—g = (sc . d—[sec2 ] +sec’ x - 1) +sec’ x
x x
(2 ) d [secz] + 2sec?
=ux-(2secx) - —
dz
=2zxsecz - (secrtanx) + 2sec?
=2sec’ z(ztanz + 1)
Therefore,

y'(m/4) = 2sec?(n/4)(7/4 - tan(r /4) + 1)
=2-(V2)% (n/4-1+1)

=|7m+4



(d) Begin with the quotient rule.




1
2. (26 pts) Consider the function y = zv/2 + 4z, with domain [—2, oo> , to answer the following.

(a) Find the z and y-intercepts of the function.

(b) The first derivative is 3y =

2+ 6x
V2 44z

. On what intervals is y increasing? Decreasing?

(c) Find x and y coordinates of the local maximum and minimum extrema, if any.

1
(d) Find the absolute maximum and absolute minimum values of y on the interval [—2, 3} .
Solution:
(a) y(0) = 0 implies that the location of the y-intercept is | (0, 0) |.

(b)

The z-intercepts must be located at values of = for which /2 + 42 = 0. = 0 and = —1/2 are the two
values that satisfy the requirement. So, the z-intercepts are located at’ (0,0) ‘ and‘ (—=1/2,0) ‘

2+ 6x
V2 + 4z

The denominator of y' is positive on (—1/2, 00).

We're given that yy =

The numerator of ' is negative for z < —1/3 and it is positive for x > —1/3.

Therefore, ¥’ < 0on (—1/2,—1/3) and ' > 0 on (—1/3, 00), so that y is decreasing and increasing on those
intervals, respectively.

Finally, although ¢’ is undefined at x = —1/2, we can see that y(—1/2) > y(x) for all = values in
(—1/2,—1/3), so that by the definition of a decreasing function, y is decreasing on the entire interval
[—1/2,—1/3), including the left endpoint.

So, in summary:

y is increasing on | (—1/3, c0)

y is decreasing on | [-1/2, —1/3)



(c) The critical numbers of y are all = values in the domain of y such that either y'(z) = 0 or /() is undefined.
From the derivative expression in part (c), we see that 3'(—1/2) is undefined and y'(—1/3) = 0. Since
x = —1/2 and x = —1/3 are both in the domain of y, they are the critical numbers of y, so that those two
values of x are the only possible locations of local extrema of y.

Since a local extremum can not occur on the boundary of an interval, there is no local extremum at z = —1/2.
Since y is continuous at x = —1/3 and /' transitions from negative to positive at that location, the First
Derivative Test indicates that y has a local minimum at x = —1/3.

y(-1/3) = 3 [24 4. <_;> - _;\/g

v

1
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Therefore, y has a |local minimum at <—

(d) Since y is continuous on the closed interval [—1/2, 3], the Extreme Value Theorem indicates that y attains
absolute maximum and minimum values on that interval, and the Closed Interval Method can be used to
identify them. Specifically, evaluate y at the boundaries of the domain and at the critical number in the
interior of the domain.

y <_;> =0 (from part (a))

1 V2
y <_3> = _ﬁ (from part (c))

y(3) =3v2+ 12 =314

Upon identifying the maximum and minimum of the preceding three values, we conclude the following for
the interval [—1/2, 3]:

y attains a maximum value of | 3v/ 14

_ V2
33

y attains a minimum value of




3. (12 pts) For two resistors, 21 and R, connected in parallel, the combined electrical resistance, R, is given by
(R)™! = (R1)™! + (R2) ! where R, Ry, and R; are all functions of time and are measured in ohms. Suppose R;

. . 1 . . . .
and R are each increasing at a rate of 3 ohms per second. At what rate is the combined resistance, R, changing
when R; =2 ohms and Ry = 4 ohms?

Solution:

Since the goal is to determine the value of dR/dt under the given conditions, we begin by differentiating with
respect to t.

d
S [B] = [Ri + Ry
_p2 AR o din o,y dRp
By =i dt dt

When R; = 2 and Ry = 4, the value of the combined resistance can be determined as follows:

1_1 .1
R R, R
11,13
R 2 4 4
4
R=-
3

The problem statement indicates that the value of both dR; /dt and dRs /dt equals 1/2. Therefore,

1 dR 1 dR, 1 dR»
2.7: 2. _|_ 2.
R? dt R dt R dt

1 drR 1 1 1 1

@pe @ @ ateE s

R _ (4N (11
dt  \3 8 32

dR

dt

ohms per second

_16 5 |5
9 32 |18




4. (8 pts) A company, Better Boulder Dice (BBD), is going to produce new metallic dice in the shape of a cube
Suppose z represents the edge length of a metal cube.

(a) The volume of a cube is V (z) = x3. Find dV/, the differential of V.

(b) The edges of each cube are designed to have a length of 2 cm, but the machine creating the cube produces

edge lengths of 2.01 cm. Use differentials to estimate AV, the difference between the designed volume and
the machine-produced volume.

Solution:
(a)

- = 2
I 3

av =32 da

(b) The value of x is 2 and the value of dx is 2.01 — 2 = 0.01. Therefore,

AV ~dV =3-22-0.01 =|0.12 cm’?|



5. (22 points)

[e})

g(x)

N

3
&)

Shown above is the graph of y = g(x) and the tangent line to g at (1,0). The function is differentiable on
(—=3,-2)U (-2,3).

(a) Sketch the graph of y = ¢’(z). Clearly label the tick marks.

(b) Use the linearization of g at @ = 1 to estimate the value of g(1.3).

(c) The mean value theorem states that there exists a value of ¢ in (—2, 3) such that ¢’(c¢) equals a certain value.

i. What is the value of ¢'(c)?

ii. Suppose we wish to narrow down the possible values for c. In which of the following six intervals can ¢
be found? Circle all possible answers. No explanation is necessary.

(—3,-2) (—2,-1) (—1,0)

(0,1) (1,2) (2,3)



Solution:

(a)

Note that ¢'(1) is the slope of the tangent line in the y = g(z) graph, which is

Ay 0-3

!
1) = =2 - -
g(1) Az 1-0 3

(b)

g(z) =~ L(x) = g(1) + ¢'(1)(z — 1) “near” z = 1

The point of tangency in the y = g(z) graph is (1,0). Therefore, g(1) = 0.
The value ¢'(1) = —3 was determined in part (a).

It follows that the linearization of g(x) “near” x = 1 is given by
glx) =~ L(x)=0—-3(z—1)=—-3(x — 1)

Therefore,

g(1.3) ~ L(1.3) = —3(1.3 - 1) =



(c) 1. Since g(z) is continuous on [—2, 3] and is differentiable on (—2, 3), the Mean Value Theorem can be
applied to g() on the interval [—2, 3] to state hat there exists some number c in the interval (—2, 3) such
that

o 9B3) —9(=2)  —2-2 | 4
9O="3"1s -~ 5 |5

ii. The graph of y = ¢’(z) that was constructed in part (a) indicates that ¢’(x) can only attain a value of

—4/5 on the intervals’ (0,1) ‘and‘ (1,2) ‘

10



