- 1. The following are unrelated:
 - (a) (8 pts) Suppose y is a function of x, find y' if $\sin(xy) = \frac{2}{3}$.
 - (b) (8 pts) Suppose $f(x) = \sqrt[3]{-x + |x|}$. Find the derivative of f(x) for all x < 0.
 - (c) (8 pts) Find $\frac{d^2y}{dx^2}$ at $x = \frac{\pi}{4}$ if $\frac{dy}{dx} = x \sec^2(x) + \tan(x)$.
 - (d) (8 pts) For a differentiable function g(x), find $\frac{d}{dx}\left(\frac{g(x^2)}{x}\right)$.
- 2. (26 pts) Consider the function $y = x\sqrt{2+4x}$, with domain $\left[-\frac{1}{2},\infty\right)$, to answer the following.
 - (a) Find the x and y-intercepts of the function.
 - (b) The first derivative is $y' = \frac{2+6x}{\sqrt{2+4x}}$. On what intervals is y increasing? Decreasing?
 - (c) Find x and y coordinates of the local maximum and minimum extrema, if any.
 - (d) Find the absolute maximum and absolute minimum values of y on the interval $\left[-\frac{1}{2},3\right]$.
- 3. (12 pts) For two resistors, R_1 and R_2 , connected in parallel, the combined electrical resistance, R, is given by $(R)^{-1} = (R_1)^{-1} + (R_2)^{-1}$ where R, R_1 , and R_2 are all functions of time and are measured in ohms. Suppose R_1 and R_2 are each increasing at a rate of $\frac{1}{2}$ ohms per second. At what rate is the combined resistance, R, changing when $R_1 = 2$ ohms and $R_2 = 4$ ohms?
- 4. (8 pts) A company, Better Boulder Dice (BBD), is going to produce new metallic dice in the shape of a cube. Suppose *x* represents the edge length of a metal cube.
 - (a) The volume of a cube is $V(x) = x^3$. Find dV, the differential of V.
 - (b) The edges of each cube are designed to have a length of 2 cm, but the machine creating the cube produces edge lengths of 2.01 cm. Use differentials to estimate ΔV , the difference between the designed volume and the machine-produced volume.

5. (22 points)

Shown above is the graph of y = g(x) and the tangent line to g at (1,0). The function is differentiable on $(-3,-2) \cup (-2,3)$.

- (a) Sketch the graph of y = g'(x). Clearly label the tick marks.
- (b) Use the linearization of g at a = 1 to estimate the value of g(1.3).
- (c) The mean value theorem states that there exists a value of c in (-2,3) such that g'(c) equals a certain value.
 - i. What is the value of g'(c)?
 - ii. Suppose we wish to narrow down the possible values for c. In which of the following six intervals can c be found? Circle all possible answers. No explanation is necessary.

$$(-3, -2)$$
 $(-2, -1)$ $(-1, 0)$

(0,1) (1,2) (2,3)