
APPM 2350 Final Exam Fall 2024

1. [2350/121824 (24 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given. Please write
your answers in a single column separate from any work you do to arrive at the answer.

(a) The function f(x, y) =
√

x2 + y2 has no critical points.

(b) For any smooth path, r(t), in R3, the volume of the parallelepiped formed by T,N,B is 1.

(c) The first degree Taylor polynomial centered at the origin of any function of the form f(x, y) = ax+ by + c is f(x, y).

(d) The graph of the equation ρ2 − 2ρ sinϕ cos θ = 0 is a sphere of radius 1 centered at (0, 1, 0).

(e) The line with symmetric equations x− 4 =
y + 1

−2
= z − 3 never intersects the plane x+ y + z = 1.

(f) Suppose that for a given function fx(x, y) = (x − 1)2 − y and fy(x, y) = y − x + 1. Then f(x, y) has a local maximum at
(2, 1).

(g) lim
(x,y)→(0,0)

3x2

x2 + y3
does not exist.

(h) The vertical traces of z − y − x2 = 0 in planes parallel to the yz-plane are lines.

SOLUTION:

(a) FALSE fx =
x√

x2 + y2
and fy =

y√
x2 + y2

which both fail to exist at (0, 0), implying that (0, 0) is a critical point.

(b) TRUE The volume is given by, for example, |T · (N×B)| = |T ·T| = 1

(c) TRUE fx(0, 0) = a, fy(0, 0) = b, f(0, 0) = c and T1(x, y) = f(0, 0)+fx(0, 0)(x−0)+fy(0, 0)(y−0) = c+ax+by = f(x, y).

(d) FALSE It is a sphere of radius 1 centered at (1, 0, 0). Convert to cartesian coordinates.

ρ2 − 2ρ sinϕ cos θ = 0 =⇒ x2 + y2 + z2 − 2x = (x− 1)2 + y2 + z2 = 1

(e) TRUE The direction vector of the line is v = ⟨1,−2, 1⟩ and the normal vector to the plane is n = ⟨1, 1, 1⟩ with v · n = 0.
These vectors are orthogonal, implying that the line is parallel to the plane but could lie in the plane, in which case the two would
intersect. However, since (4,−1, 3) is on the line and not in the plane, there is no intersection.

(f) FALSE

fy = 0 =⇒ x = y + 1 =⇒ fx = y(y − 1) = 0 =⇒ y = 0, 1 =⇒ x = 1, 2, respectively =⇒ (2, 1), (1, 0) critical points

fxx(x, y) = 2(x− 1) =⇒ fxx(2, 1) = 2

fyy(x, y) = 1 =⇒ fyy(2, 1) = 1

fxy(x, y) = −1 =⇒ fxx(2, 1)fyy(2, 1)− [fxy(2, 1)]
2 = 1 > 0 and fxx(2, 1) > 0 =⇒ f(2, 1) is a local minimum

(g) TRUE

lim
(0,y)→(0,0)

3(0)2

02 + y3
= 0 ̸= 3 = lim

(x,0)→(0,0)

3x2

x2 + 03

(h) TRUE Planes parallel to the yz-plane have equations x = x0 where x0 is a constant. This gives z − y = x2
0 which describes a

line.

■

2. [2350/121824 (15 pts)] The area of a triangle is A(a, b, C) =
1

2
ab sinC where a and b are two sides of the triangle and C is the angle

between the sides of length a and b. In surveying a particular triangular plot of land, the sides a and b are measured to be 120 and 200
feet, respectively, and C is read to be π/3 radians. By how much is the computed area in error if the sizes of each side are in error by
0.1 foot and C is in error by π/60 radians?

SOLUTION:



We use differentials.

dA =
∂A

∂a
da+

∂A

∂b
db+

∂A

∂C
dC =

1

2
b sinC da+

1

2
a sinC db+

1

2
ab cosC dC

dA =
1

2
(200)

√
3

2

(
1

10

)
+

1

2
(120)

√
3

2

(
1

10

)
+

1

2
(120)(200)

(
1

2

)( π

60

)
= 5

√
3 + 3

√
3 + 100π = 8

√
3 + 100π ft2

■

3. [2350/121824 (17 pts)] Ralphie the buffalo is part of a herd on the eastern plains of Colorado containing δ(x, y) = 60y buffalo per square
kilometer. A ranch on the plains is given by the region, D, bounded by the x- and y-axes and the line x+ y = 1 where distances are
measured in kilometers.

(a) (5 pts) Fully set up, but do not evaluate, an integral that computes the number of buffalo on the ranch.

(b) (12 pts) Ralphie decides to lead a stampede of the buffaloes to Folsom Field with the velocity vector field of the herd given by

V =
(
2x− y4

)
i+ x2 j km/hour

The flux vector field, F = δV, gives the number of buffaloes per hour per kilometer and can be used to determine the flux
(buffaloes per hour) of the herd passing across a curve in the plane. Use one of the Fundamental Theorems that we studied this
semester to find the net number of buffaloes per hour exiting across the boundary of the ranch (region D).

SOLUTION:

(a)

N =

∫∫
D
δ(x, y) dA =

∫ 1

0

∫ 1−y

0

60y dx dy =

∫ 1

0

∫ 1−x

0

60y dy dx

(b) We need to find the flux of F across the boundary, ∂D, of the region D. This quantity is given by
∮
∂D

F · nds. We use Green’s

Theorem to compute this, that is,

Flux =

∮
∂D

F · nds =

∫∫
D
∇ · F dA =

∫∫
D
∇ · 60⟨2xy − y5, x2y⟩dA

= 60

∫ 1

0

∫ 1−x

0

(
2y + x2

)
dy dx = 60

∫ 1

0

(
y2 + x2y

) ∣∣∣1−x

0
dx

= 60

∫ 1

0

(
1− 2x+ x2 + x2 − x3

)
dx = 60

(
x− x2 +

2

3
x3 − 1

4
x4

) ∣∣∣∣∣
1

0

= 25 buffaloes per hour

■

4. [2350/121824 (18 pts)] Some friends of yours are running laps in a counterclockwise direction around the unit circle in the presence of the
force field F =

(
Axy − y3

)
i+

(
4y + 3x2 − 3xy2

)
j where A is a constant.

(a) (6 pts) Having gone from (1, 0) to (0, 1), they are complaining about how much work they have done. You tell them to stop
whining because when they get back to (1, 0) they will have done no work at all. Indeed, they could walk in any closed path and
not do any work. What is A?

(b) (12 pts) To get their minds off all the work they are doing, you ask them to walk along the path, C, parameterized by

r(t) =
(
2et

2−t + t
)
i+ t cos(πt) j, 0 ≤ t ≤ 1

instead. Find the work done by the force field on your friends during that adventure.

SOLUTION:



(a) The fact that every closed path results in zero work means that the vector field is conservative. Therefore is has zero curl. Thus

∂

∂x

(
4y + 3x2 − 3xy2

)
− ∂

∂y

(
Axy − y3

)
= 0

6x− 3y2 − (Ax− 3y2) = 0

6x = Ax

A = 6

(b) We need to compute
∫
C
F · dr. However, doing this directly will be nightmarish, perhaps impossible. However, we can use the

Fundamental Theorem for Line Integrals to simplify the work by finding a potential function, f , such that F = ∇f .

∂f

∂x
= 6xy − y3 =⇒ f(x, y) =

∫ (
6xy − y3

)
dx = 3x2y − xy3 + g(y)

∂f

∂y
= 3x2 − 3xy2 + g′(y) = 4y + 3x2 − 3xy2 =⇒ g′(y) = 4y

g(y) =

∫
4y dy = 2y2 + c =⇒ f(x, y) = 3x2y − xy3 + 2y2 + c

Work =

∫ (3,−1)

(2,0)

∇f · dr = f(3,−1)− f(2, 0) = 3(32)(−1)− 3(−1)3 + 2(−1)2 − 0 = −22

Alternatively, one could choose to integrate along a different path, C1, perhaps a straight line segment between the points, and

then evaluate
∫
C1

F · dr directly. That involves more work (pun not intended).

■

5. [2350/121824 (31 pts)] A cooling tower is in the shape of (z − 2)2 = x2 + y2 − 1, 0 ≤ z ≤ 3. The vector field describing the movement
of heat is H =

〈
2xz + y2, exz, z2

〉
. Your mission is to compute the heat flux through the top, bottom and side of the tower, a closed

surface.

(a) (3 pts) Name the surface.

(b) (4 pts) Without evaluating any integrals, describe in words why
∫∫

Sb

H · ndS = 0, where Sb is the portion of the tower in the

xy-plane.

(c) (12 pts) By direct calculation, find the upward heat flux through the top, St, of the tower.

(d) (12 pts) With the aid of one of the Fundamental Theorems that we have studied, find the heat flux through the side, S, of the tower.
The following diagram shows a cross section (constant θ) through the tower.

1
√
5

2

3

r

z

SOLUTION:

(a) Rewriting, we have x2 + y2 − (z − 2)2 = 1, a hyperboloid of one sheet.

(b) There is no k-component in the vector field in the xy-plane where z = 0 so H · n = 0 since n = −k.

(c) The top of the tower is given by g(x, y, z) = z = 3 =⇒ ∇g = k. Project onto the xy-plane so that p = k and |∇g · p| = 1
and the region of integration, R, is x2 + y2 ≤ 2. For upward flux we use +∇g for n and thus

Flux =

∫∫
St

H · ndS =

∫∫
R

〈
2xz + y2, exz, z2

〉
· ⟨0, 0, 1⟩dA =

∫∫
x2+y2≤2

z2 dA =

∫∫
x2+y2≤2

9 dA = 18π



(d) Let E be the solid region inside the tower with the boundary of E given by ∂E = S ∪St ∪Sb. Then Gauss’ Divergence Theorem
gives ∫∫∫

E
∇ ·H dV =

∫∫
∂E

H · dS =

∫∫
S
H · dS+

∫∫
St

H · dS+

∫∫
Sb

H · dS

Since this is a closed region, the outward pointing normal will be used. From parts (b) and (c) we know that
∫∫

St

H · dS = 18π

and
∫∫

Sb

H · dS = 0 so that
∫∫

S
H · dS = −18π +

∫∫∫
E
∇ ·H dV . We’ll use cylindrical coordinates to evaluate the triple

integral after noting that

∇ ·
〈
2xz + y2, exz, z2

〉
= 4z∫∫∫

E
∇ ·H dV =

∫ 2π

0

∫ 3

0

∫ √
(z−2)2+1

0

4zr dr dz dθ

= 2

∫ 2π

0

∫ 3

0

z
(
z2 − 4z + 5

)
dz dθ

= 2

∫ 2π

0

∫ 3

0

(
z3 − 4z2 + 5z

)
dz dθ

= 4π

(
z4

4
− 4z3

3
+

5z2

2

) ∣∣∣∣∣
3

0

= 36π

(
9

4
− 4 +

5

2

)
= 36π

(
3

4

)
= 27π

Finally then
∫∫

S
H · dS = −18π + 27π = 9π.

Alternatively (ouch!):∫∫∫
E
∇ ·H dV =

∫ 2π

0

∫ 1

0

∫ 3

0

4zr dz dr dθ +

∫ 2π

0

∫ √
2

1

∫ 3

2+
√
r2−1

4zr dz dr dθ +

∫ 2π

0

∫ √
5

0

∫ 2−
√
r2−1

0

4zr dz dr dθ

= 18π +
11π

3
+

16π

3
= 27π

■

6. [2350/121824 (27 pts)] Let F = y i− x j− z2 k.

(a) (12 pts) Directly evaluate
∫∫

S
∇×F ·ndS, where S is the portion of the sphere of radius 2 centered at the origin below the plane

z = −1 oriented with an upward pointing normal.

(b) (12 pts) Directly evaluate
∫
C
y dx − x dy − z2 dz, where C is the circle of radius

√
3 centered at the origin in the plane z = −1

oriented counterclockwise when viewed from above.

(c) (3 pts) Why are the answers to parts (a) and (b) the same?

SOLUTION:



(a)

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

y −x z2

∣∣∣∣∣∣∣ = −2k

g(x, y, z) = x2 + y2 + z2 =⇒ ∇g = ⟨2x, 2y, 2z⟩ (−∇g for proper orientation since z < 0)

project S onto xy-plane =⇒ p = k and R : x2 + y2 ≤ 3 and |∇g · p| = |2z| = −2z since z < 0

∇× F · −∇g

|∇g · p|
= ⟨0, 0,−2⟩ · ⟨−2x,−2y,−2z⟩

−2z
= −2∫∫

S
∇× F · ndS =

∫∫
R
−2 dA =

∫∫
x2+y2≤3

−2 dA = −2 area(R) = −2π
(√

3
)2

= −6π

(b) C can be parameterized as (x(t), y(t), z(t)) =
(√

3 cos t,
√
3 sin t,−1

)
, 0 ≤ t ≤ 2π. Then

dx = −
√
3 sin tdt, dy =

√
3 cos tdt, dz = 0dt∫

C
y dx− x dy − z2 dz =

∫ 2π

0

[(√
3 sin t

)(
−
√
3 sin t

)
−

(√
3 cos t

)(√
3 cos t

)]
dt =

∫ 2π

0

−3 dt = −6π

(c) The curve, C, in part (b) represents the boundary of the surface, S, in part (a). The integrals represent the two sides of Stokes’s
theorem and thus must be equal.

■

7. [2350/121824 (18 pts)] You have just purchased a piece of land on which to build a ski resort. The piece of land can be described as the
region in the xy-plane satisfying the inequalities |x| ≤ 10 and |y| ≤ 9. The elevation of the terrain in the resort is

f(x, y) = x− 1

12
x3 − 1

4
y2 + 6

(a) (4 pts) You want to place some weather instruments on the highest point and a restaurant at the lowest point in the ski resort.
Without doing any calculations, can this be accomplished? Why or why not?

(b) (7 pts) The midpoint of one of the ski runs will be above the point (x, y) = (4, 2). Find a unit vector giving the direction that will
produce the “most downhill” (i.e. “most negative”, minimum) slope of the run at that point. What will the minimum slope be?

(c) (7 pts) Suppose you are cross-country skiing on the path whose projection on the xy-plane is r(t) = t i+
t2

2
j, −4 ≤ t ≤ 4. Use

an appropriate Calculus 3 chain rule to determine your rate of change of elevation when you are at the point
(
1, 1

2 ,
329
48

)
.

SOLUTION:

(a) Yes. The ski area’s elevation is a continuous function throughout R2 and the ski resort is a closed, bounded set. Thus the Extreme
Value Theorem guarantees the existence of a highest and lowest point in the ski resort.

(b) We need the negative of the gradient at the point.

−∇f(x, y) = −
〈
1− 1

4
x2,−1

2
y

〉
=⇒ −∇f(4, 2) = −⟨−3,−1⟩ = ⟨3, 1⟩ unit vector is

〈
3√
10

,
1√
10

〉
The minimum slope will be −∥∇(4, 2)∥ = −

√
10.

(c) The rate of change of elevation is
df

dt
= ∇f(x, y) · r′(t). You will arrive at the point in question when t = 1 and r′(t) = ⟨1, t⟩.

df

dt

∣∣∣
t=1

= ∇f
(
1, 1

2

)
· r′(1) =

〈
3

4
,−1

4

〉
· ⟨1, 1⟩ = 1

2

■


