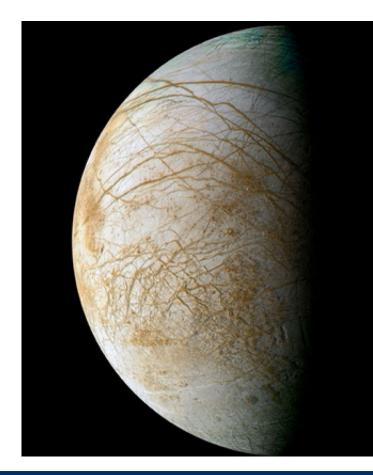
YELLOW Submarine FOR

Forrest Barnes Benjamin Bruce Colin Claytor Alexander Gill Samuel Kersting Griffith Kull Daniel Liebert Christian Mitchell Matthew Ryan Jacob Siegel Caleb Sytner Micah Zhang

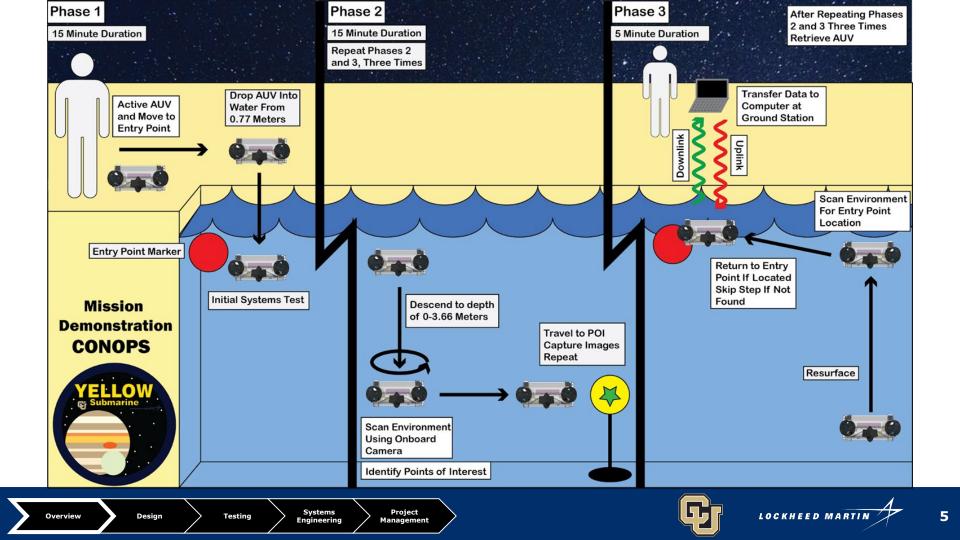
Project Purpose and Objectives


			-		_
Overview	Design	Testing	Systems Engineering	Project Management	

Motivation

- Exploration of Europa's subsurface ocean
- Autonomous Underwater Vehicle (AUV)
 - Navigate
 - Identify points of interest (POI)
 - Downlink data to orbiter

Project Description


- Proof-of-concept
- Technology demonstrator in a pool environment
 - Autonomously explore
 - Find POIs
 - Take images of POIs
 - Resurface to communicate data
 - Repeat for an hour

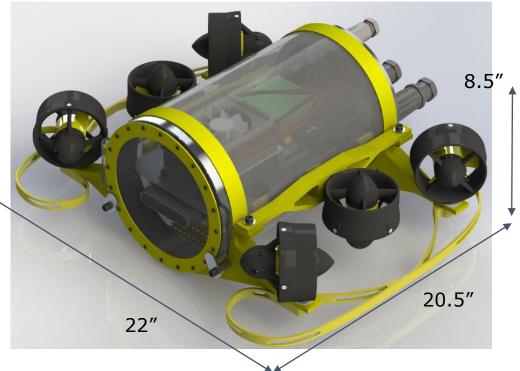
Mission Objectives/Levels of Success

- Detect stationary simple objects of different colors
- Rotate in place scanning environment and move toward POIs
- Avoid collision with objects within field of view
- Capture images of POIs and environmental data
- Surface and transfer data to ground station every 20 minutes 3 times

Main Metrics							
Level	1	2	3	4	5		
Object Detection	-Single-class (1 color) -Stationary -Simple object (uniform dimensions)	-Multi-class (more than 1 color) -Stationary -Simple object (uniform dimensions)	-Multi-class (more than 1 color) -Stationary -Complex object (non-uniform dimensions)	-Moving objects (non-stationary) -Multi-class (more than 1 color) -Complex object (non-uniform dimensions)	-		
Navigation	-Rotates in place (without explicitly commanded translation)	-Rotates in place then moves towards POI	-Rotates in place -Moves towards POI -Repeat for mulitple POIs	-Rotates in place -Moves towards POI -Repeats for multiple POIs -For each POI, orbit keeping the area of the bounding box of the POI wtihin 30-40% of the total image area	-		
Collision avoidance (needs Navigation level 2)	-	in view of front RGB camera -Holds position	-Navigates around "junk" object in view -Detects "junk" object in view of front RGB camera and moves to the left or right until junk is out of frame -Moves forward past obstacle	-Can navigate around multiple "junk" objects in view -Detects "junk" objects in view of front RGB camera -Moves left or right until all obstacles are out of frame or if there's sufficient space between there, then move sideways until the AUV is between the obstacles -Proceeds to move forward past obstacle	-Avoids walls even when not in view -In addition to level 4 capabilities, AUV can avoid walls that are not view of the front RGB camera		
Imaging	-Capture at least 1 image of POI, where POI is at least partly in the frame	-Capture at least 1 image of POI, where POI is fully in frame	-Capture multiple images of POI, where POI is fully in frame	-Capture image of POI from multiple angles	-		
Downlink	-AUV health packet reported to ground station during communication period	-Images, temperature data, and pressure data reported to ground station	-	-	-		
Uplink	-Can recieve kill-switch command from ground station during communication period	-Can be commanded to return to a specific search depth	-Can be commanded to look for a specific class of object	-	-		
Surfacing		-Rotates once to look for drop point marker -If found, returns to within 2 m of drop point before surfacing -Otherwise, resurfaces in place	-Returns to drop area using IMU data while looking for drop point marker -If marker found, returns to within 2 m of drop point before surfacing -If marker not found within 2 minutes, surface in place	-Returns to within 2 m of drop point without a marker, then surfaces	-		

Design Description

Critical Project Elements


- Structural Integrity
 - Ensures system can survive the mission environment
- Power
 - Keeps system active for duration of mission
- C&DH
 - Necessary for navigation, relaying data to ground station
- Autonomous Navigation
 - Human input impossible in mission environment
- Image Processing
 - Used in Autonomous Navigation, reporting of Points of Interest to the ground station

Baseline Design

- Weight: 12.6kg (27.8lbs)
- Buoyant Force: 124.6N (28.0lbs)
- 6 Thrusters (5 DOF)
- Yaw rate: 0.1028-0.7rad/s
- Max Cruise velocity: 0.48 m/s
- Intel RealSense D435 Camera
- NVIDIA Jetson Xavier
- 12.8V 12Ah LiFePO₄ Battery

Physical Design

6 T200 Thrusters

- 49 N thrust each
- 5 degrees of freedom
- Acrylic tube dry space
 0.00868 m³ internal volume
- Positively Buoyant
 - 124.6 N buoyant force
 - 1 N net buoyant force

Rear Aluminum Endcap

- Sealed by 2 static radial O-rings
- Bulkhead wire passthroughs

• Front Endcap

Design

Overview

- Clear acrylic front plate
- Sealed by 2 static radial O-rings and gasket

Systems

3D Printed Bumpers

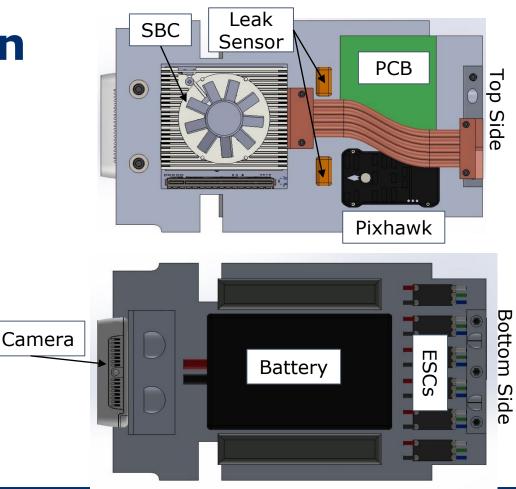
Electrical Design

- Power System
 - 12.8V 12Ah lithium iron phosphate battery
 - Custom PCB for distributing power and kill switch
 - Step-down buck converters
 - Motor ESCs

Design

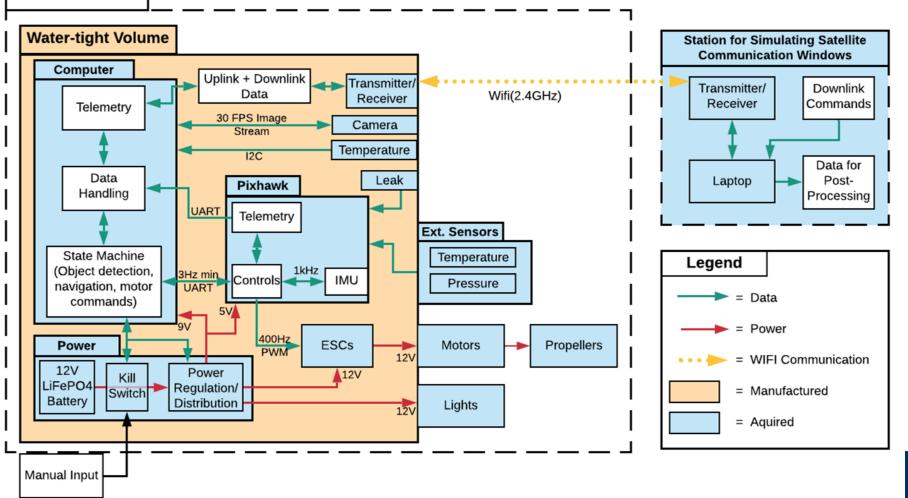
Overview

- Environmental Sensors
 - Leak Detection
 - Temperature and pressure (internal and external)


Testing

Systems

Engineering


Project

Management

LOCKHEED MARTIN

YELLOWSub

Software Design

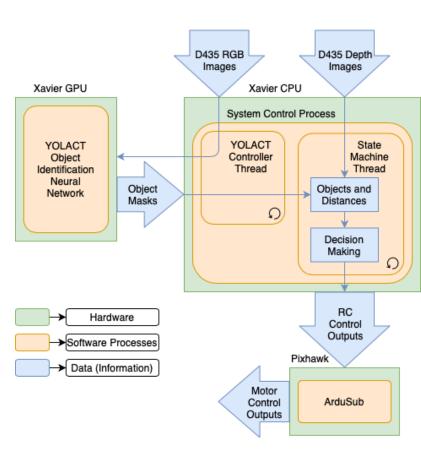
- Visual Distance Sensing Camera
 - Intel RealSense D435
- Powerful NVIDIA Single-Board Computer
 - NVIDIA Jetson XAVIER
 - Runs YOLACT Neural Network Image
 Processing Algorithm
- YOLACT image processing algorithm

Testing

- Instance segmentation to identify POIs
- 3.2 FPS
- Pixhawk Autopilot

Design

Overview


Runs ArduSub motor control software

Systems

Engineering

Project

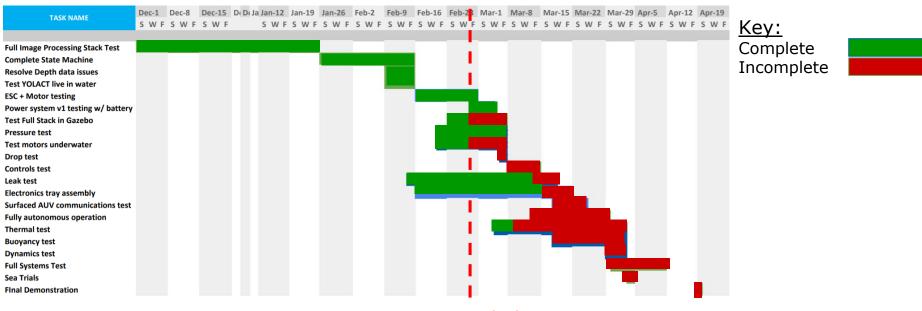
Management

LOCKHEED MARTIN

Updates from TRR

- The 6-motor systems test was successfully troubleshooted
 - ArduSub motor initialization/arming issue
- AUV structure and internals were assembled
- 1st systems integration test was conducted
 - Potential short in the motor wires \rightarrow unsuccessful test
- Due to ongoing COVID-19 pandemic, all development on the project was ordered to be halted on Friday, March 13th

Updates from TRR


Project Halted

Updates from TRR

Project Halted

Test Overview & Results

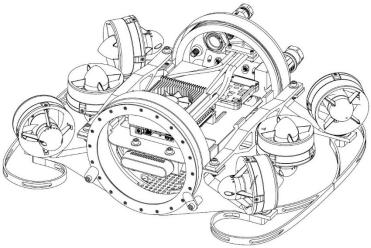
Verification and Validation

Completed

- Leak Test
- Full Power System Test
- Six Motor Bench Test
- In Progress
 - Dynamics/Controls Test

To be completed

- Drop Test and Leak Test 2
- Thermal Test
- Live YOLACT and Xavier Integration Test
- Full Software Simulation Test
- Sea Trials
- Demonstration



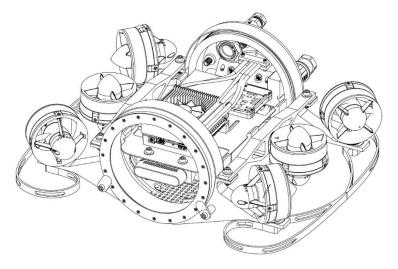
Mechanical Testing

Completed/In progress:

- Leak Test
- Pressure Test

To be completed:

- Drop test
- Thermal test
- Buoyancy test



Mechanical Testing

Completed/In progress:

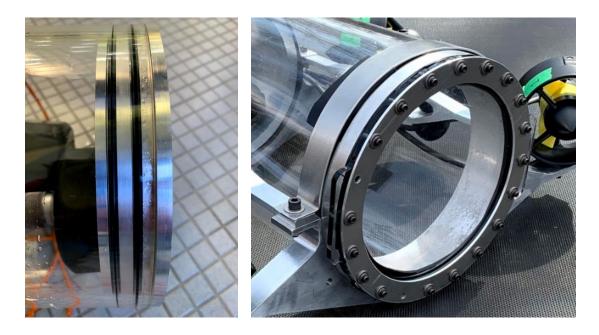
- Leak Test
- Pressure Test

To be completed:

- Drop test
- Thermal test
- Buoyancy test

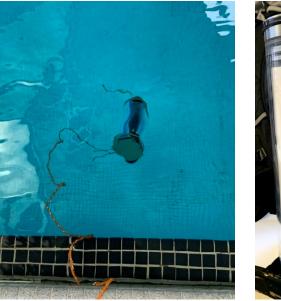
Leak Test

- Scheduled: 2/14 3/18 (Multiple leak tests will take place)
- Completion Status: In progress
- Test Readiness
 - Rationale: Testing whether end caps provide waterproof seal
 - Location: Rec center pool
- Risk Reduction
 - Water Intrusion, Corrosion Damage
- Requirement Verification
 - Requirement 1.5.3: Vehicle shall be waterproof


Overview	Design	Testing	Systems	Project
		resting	Engineering	Management

Water Sealing the Housing

- O-rings
- Rubber gasket w/ aluminum ring mount

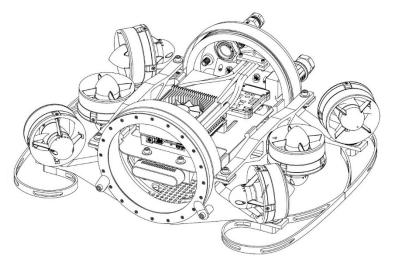


Leak Test - Procedure

- Paper inside of the housing along the acrylic tube
- Let housing sit at operating depth for at least 15 minutes
- Success: If paper remains dry

Leak Test (Full System)

- Included bulkhead wire connections and endcap penetrations
- Small leak in bulkhead wire connectors



Mechanical Testing

Completed/In progress:

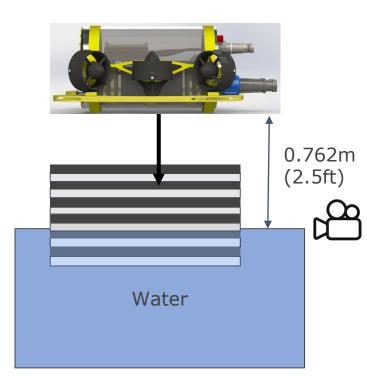
- Leak Test
- Pressure Test

To be completed:

- Drop test
- Thermal test
- Buoyancy test

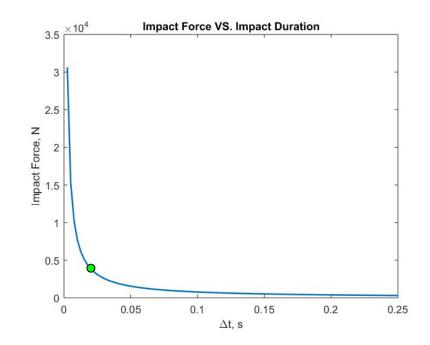
Drop Test

- Scheduled: 3/6 3/8
- Completion Status: **To be completed**
- Test Readiness
 - Rationale: Determine if the AUV can survive the 2.5 ft drop requirement
 - Location: Rec center pool
- Risk Reduction
 - Impact damage
- Requirement Validation
 - Requirement 5.3: The vehicle shall withstand impact to surface of body of water from 2.5 ft above the surface



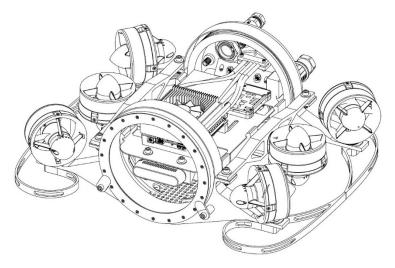
Drop Test - Procedure

- Paper inside of acrylic tube
- Load electronics tray with weight
- Film impact site
- Drop AUV
- Inspect structure for damage and inspect paper for wetness
- **Success:** If structure is undamaged and paper has no wet spots



Drop Test - Expected Results

- Expected AUV structure to survive fall without damage
- Planned to use camera footage to validate impact model assumptions
 - Impact time
 - Impact velocity
- Expected model to be an overestimate of impact force



Mechanical Testing

Completed/In progress:

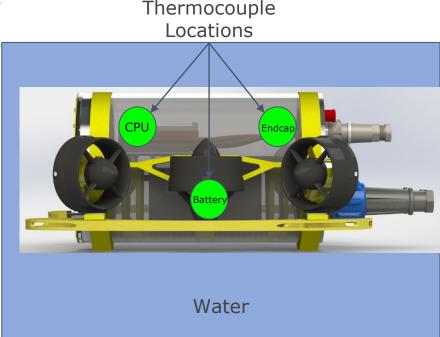
- Leak Test
- Pressure Test

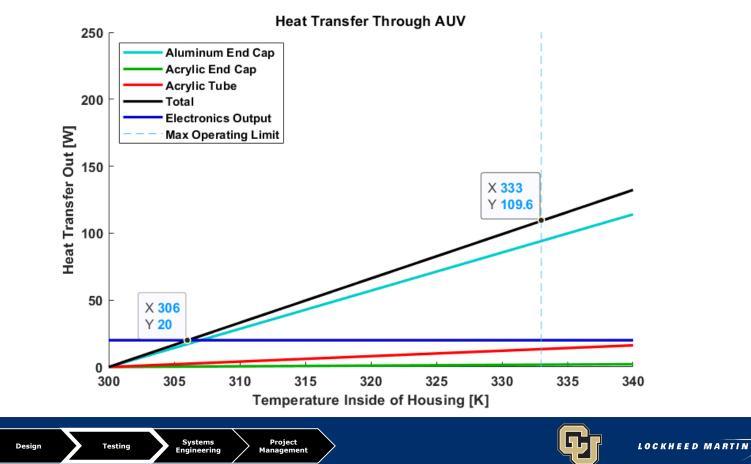
To be completed:

- Drop test
- Thermal test
- Buoyancy test

Thermal Test

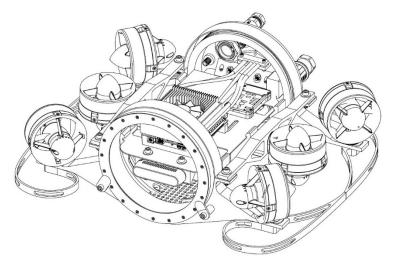
- Scheduled: 3/5 4/2
- Completion Status: **To be completed**
- Test Readiness
 - Rationale: Determine whether steady state temperature is low enough such that all electronics stay operational
 - Location: Rec center pool
- Risk Reduction
 - Compartment Temperature
- Requirement Verification
 - Requirement 1.6.1: The vehicle shall be thermally tested in an aquatic environment




Thermal Test - Procedure

- Run AUV under steady operation for 10 minutes
- Record internal temperature of all thermocouples
- Repeat two additional times with longer durations
- **Success:** If internal temperature values stay under 333K (60°C)

Thermal Test - Expected Results



Overview

Mechanical Testing

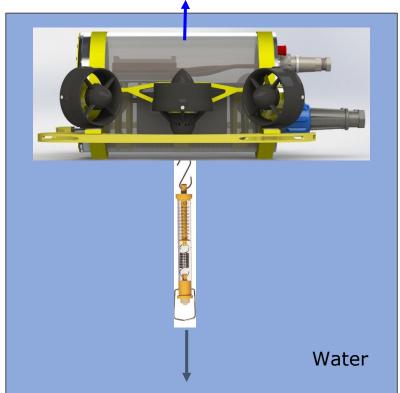
Completed/In progress:

- Leak Test
- Pressure Test

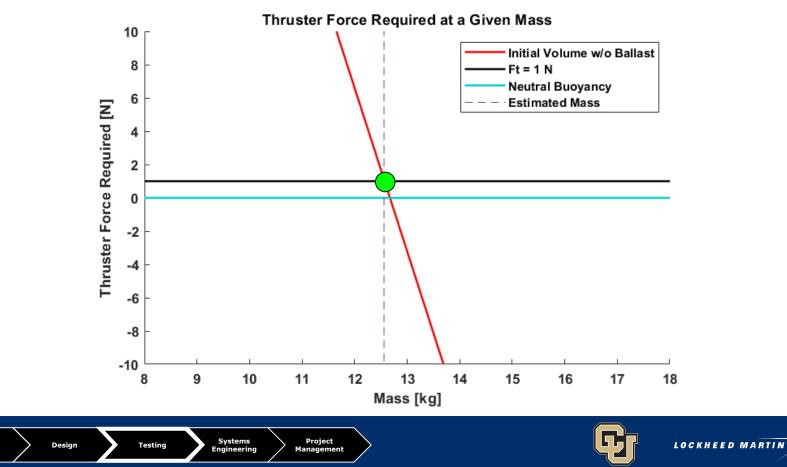
To be completed:

- Drop test
- Thermal test
- Buoyancy test

Buoyancy Test

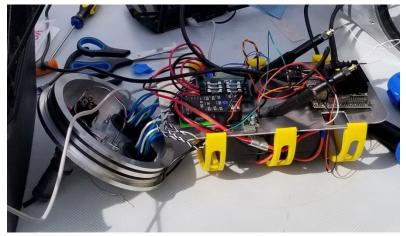

- Scheduled: 3/18 4/2
- Completion Status: **To be completed**
- Test Readiness
 - Rationale: Testing whether positive buoyancy is 1N
 - Location: Rec center pool
- Risk Reduction
 - Battery Usage
- Requirement Verification
 - Requirement 6.5: The vehicle shall weigh no more than 20kg

Buoyancy Test - Procedure


- Weigh fully assembled AUV before placing in water
- Attach a spring scale to the bottom of the AUV and submerge to at least 1m
- Record spring scale value
- **Success:** If spring scale reads 1N±0.5N

Buoyancy Test - Expected Results

Overview

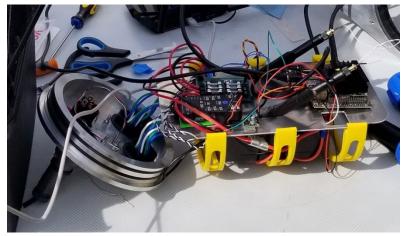

Electronics Testing

Completed/In progress:

- Motor + ESC initial test
- Basic communications
- Battery under load
- Regulators under load
- PCB v1 test
- Leak sensor test
- Full power system

To be completed:

- PCB v2 test
- Full vehicle integration
- More full power system tests

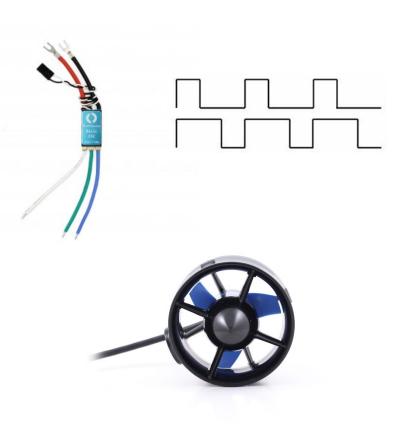

Electronics Testing

Completed/In progress:

- Motor + ESC initial test
- Basic communications
- Battery under load
- Regulators under load
- PCB v1 test
- Leak sensor test
- Full power system

To be completed:

- PCB v2 test
- Full vehicle integration
- More full power system tests

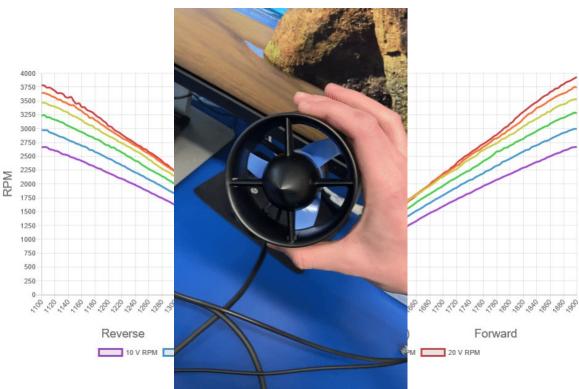


Motor + ESC Tests

- Scheduled: 2/17 2/28
- Completion Status: **Complete**
- Test Readiness
 - Rationale: Ensure all motors and ESCs function as expected
- Risk Reduction
 - Control failure
- Requirements Validation
 - 5.1.2: The vehicle shall navigate an underwater course

Overview Design	Testing	Systems Engineering	Project Management	
-----------------	---------	------------------------	-----------------------	--

Motor + ESC initial test

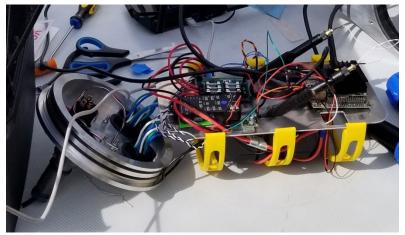

Procedure

- Connect ESCs to waveform generator and motors
- Send PWM signals and observe results

Expectations

• Roughly linear trend

Success: All motors followed trend

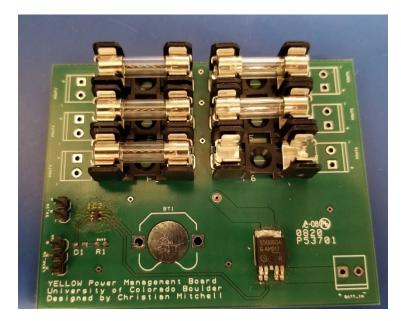

Electronics Testing

Completed/In progress:

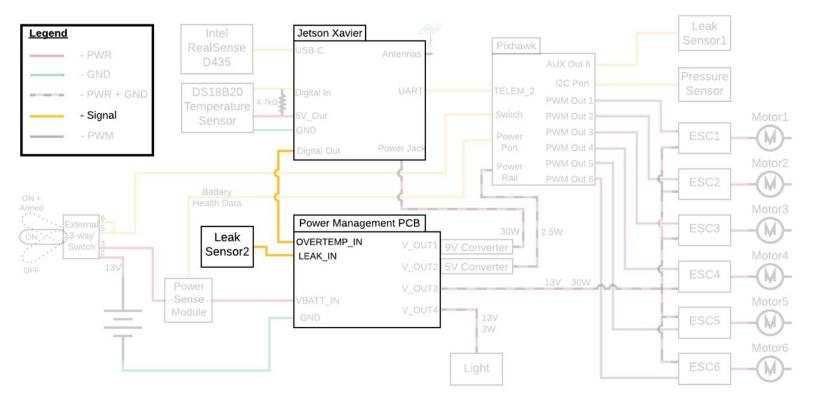
- Motor + ESC initial test
- Basic communications
- Battery under load
- Regulators under load
- PCB v1 test
- Leak sensor test
- Full power system

To be completed:

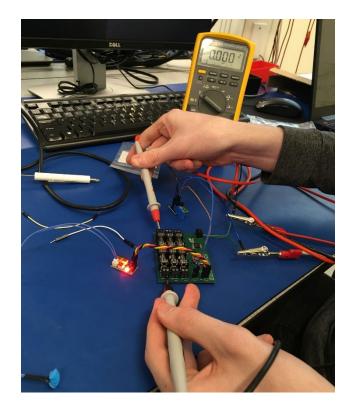
- PCB v2 test
- Full vehicle integration
- More full power system tests



PCB v1 Test


- Scheduled: 2/26 2/28
- Completion Status: Complete
- Test Readiness
 - Rationale: Ensure PCB distributes power as expected
- Risk Reduction
 - Power overload
- Requirements Validation
 - 6.2: The vehicle shall prevent circuit overloads

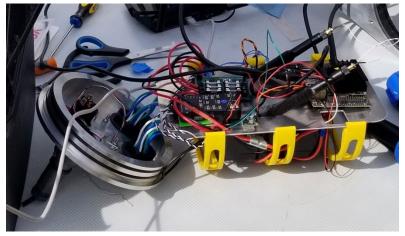
PCB v1 Test - Expected Results



PCB v1 Test - Results

- Operating voltage
 - Mostly successful
 - Fuses did not break when expected
- Leak signal
 - Power was cut to leak sensor as well
 - Reduced power (2.4 V) with leak

Partial Success: Updated design needed

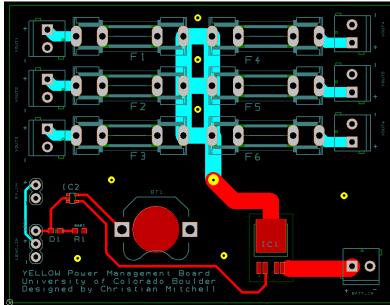

Electronics Testing

Completed/In progress:

- Motor + ESC initial test
- Basic communications
- Battery under load
- Regulators under load
- PCB v1 test
- Leak sensor test
- Full power system

To be completed:

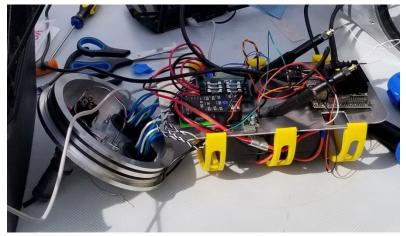
- PCB v2 test
- Full vehicle integration
- More full power system tests



Overview Design	Testing	Systems Engineering	Project Management
-----------------	---------	------------------------	-----------------------

PCB v2 Test

- Scheduled: 3/6 3/20
- Completion Status: **To be completed**
- Test Readiness
 - Rationale: Ensure PCB consistently distributes power as expected
- Risk Reduction
 - Power overload
- Requirements Validation
 - 6.2: The vehicle shall prevent circuit overloads


Electronics Testing

Completed/In progress:

- Motor + ESC initial test
- Basic communications
- Battery under load
- Regulators under load
- PCB v1 test
- Leak sensor test
- Full power system

To be completed:

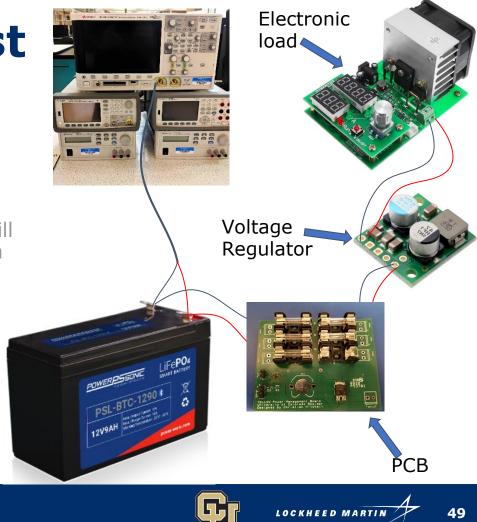
- PCB v2 test
- Full vehicle integration
- More full power system tests

Power System Test

- Scheduled: 2/28 3/4
- Completion Status: Complete
- Test Readiness
 - Rationale: Ensure power system will function for entire mission duration
- Risk Reduction

Design

Overview


- Power budget (008-a)
- Power regulation (009-a)
- Requirements Validation
 - 1.1: The vehicle shall be selfpowered

Systems

Engineering

Project

Management

Power System Test - Procedure

Procedure

- Connect battery though PCB to electronic load
- Monitor power until 85% nominal voltage

Vehicle State	Current (A)	Power (W)	Time Spent in State (hrs)	Weighted Average Total Current (A)	Weighted Average Total Power (W)
Total:			1.00	6.85	66.5
Battery Characteristics				Peak Current (A)	Peak Power (W)
Voltage (V)	13			8.17	83.7
Depth of Discharge	0.75				
Temperature Correction Factor	1			Total Consumption (Ah)	Battery capacity required (Ah)
Design Margin	1.2			7.44	11.9
Regulator Character	ristics				
Efficiency	0.92				

LOCKHEED MARTIN

Power System Test - Results

Expected Results

- Near 13V for first hour
- Cutoff at 1 hour, 20 minutes

Results

- Somewhat lower average voltage (12.8V)
- 7 Amps for 1.5 hours

Success: Power system lasts for mission duration

Different Rate Discharge Curve @25°C - 0.2C _____ 0.5C _____ 1C 15.0 14.5 14.0 DischargeVolatge(V) 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 60% 80% 100% 0% Capacity(%)

LOCKHEED MARTIN

Software Testing

Completed/In progress:

- Simulated controls test
- Live in-water YOLACT/Xavier test
- Ground Station WiFi transfer test
- Full-stack simulation test

To be completed:

• Collision avoidance test

Software Testing

Completed/In progress:

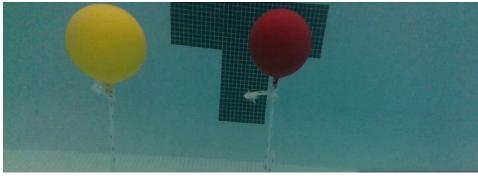
- Live in-water YOLACT/Xavier test
- Simulated controls test
- Ground Station WiFi transfer test
- Full-stack simulation test

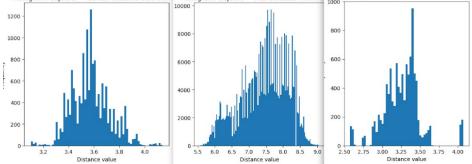
To be completed:

• Collision avoidance test

Live in-water YOLACT and Xavier Integration Test

- Scheduled: 2/15
- Completion Status: Complete
- Test Readiness
 - Rationale: Prove and evaluate YOLACT in live testing environment
 - Location: Rec center pool
- Risk Reduction
 - Lack of capability to conduct mission, unproven test set-up, poor integration
- Requirement Verification
 - Requirement 5.2: The vehicle shall mark points of interest

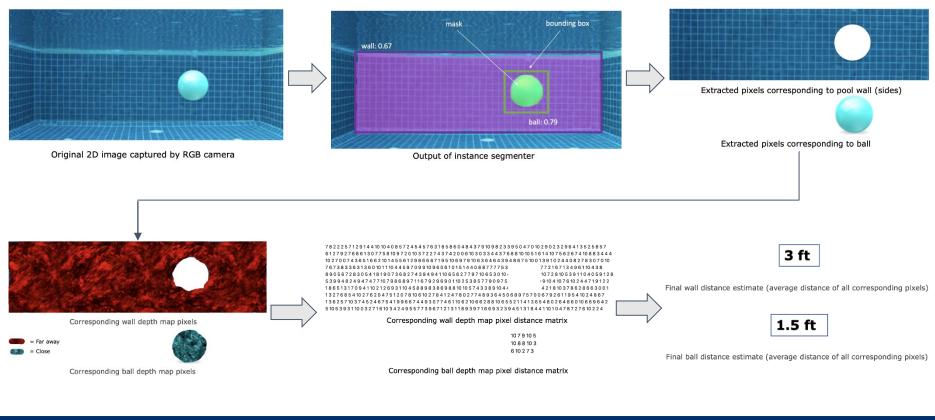


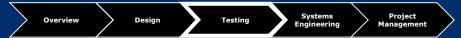


Live in-water YOLACT and Xavier **Integration Test - Procedure and Results**

- Connect Xavier to camera and monitor
- Place POI 5 ft from wall
- Place camera in box
- Submerge underwater
- Power on Xavier
- Run live image processing script
- Confirm measured distance with actual distance

Success: Accurate distance estimates within 1 ft tolerance

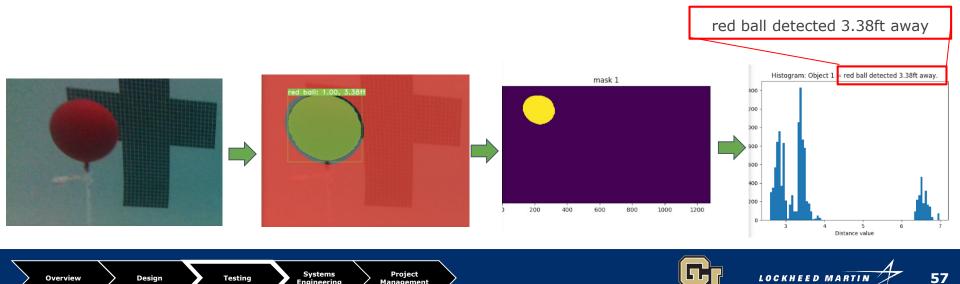


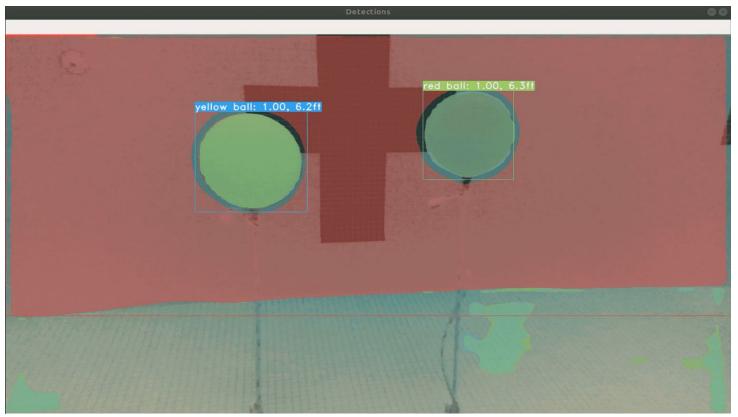


LOCKHEED MARTIN

Histogram: Object 1 = red ball detected 3.59ft awa Histogram: Object 0 = wall detected 7.66ft a istogram: Object 2 =

Expected Results - Image Processing

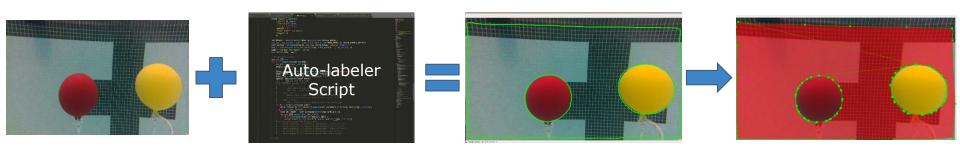



Actual Results - Image Processing

Successfully identifies objects in front of AUV and estimates their distances within 1 ft accuracy in pseudo-real time 3.2 FPS Algorithm:

- 1. Identify objects and corresponding masks
- 2. Sample subset of points in each mask
- 3. Extract distance estimates of each point in subset
- 4. Use mode of distances as final distance estimate

Actual Results - Image Processing



Additional Results - Image Processing

Successfully created auto-labeler that can label 125 images/minute

Algorithm:

- 1. Use OpenCV Contour on object masks
- 2. Uniformly sample points from each contour
- 3. Convert and output as JSON file

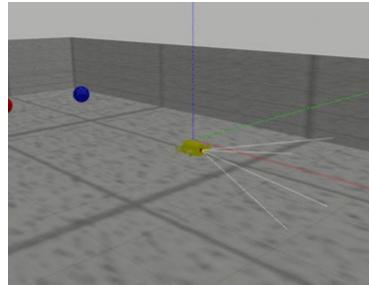
LOCKHEED MARTIN

Software Testing

Completed/In progress:

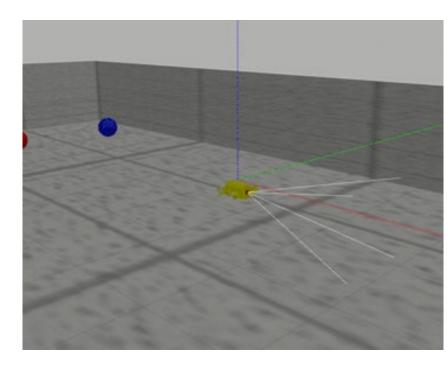
- Live in-water YOLACT/Xavier
 test
- Simulated controls test
- Ground Station WiFi transfer
 test
- Full-stack simulation test

To be completed:


• Collision avoidance test

Simulated Controls Test

- Scheduled: 1/20 2/13
- Completion: Complete
- Test Readiness
 - Rationale: Ensure we can achieve control of AUV before attempting a pool test
- Risk Reduction
 - Controls Failure, Unexpected Behavior
- Requirement Verification
 - Requirement 2.1.1: Vehicle shall autonomously navigate underwater



Simulated Controls Test - Procedure and Results

- Open simulation environment
- Start ArduSub control software
- Start control test script
- Verify that control test script controls simulated AUV as expected

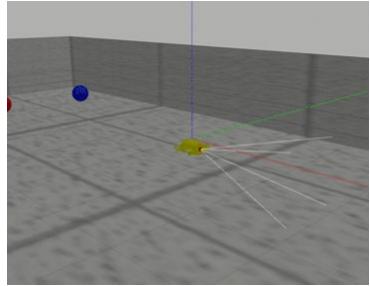
Success: Can control all 5 DOF in simulation

Software Testing

Completed/In progress:

- Live in-water YOLACT/Xavier test
- Simulated controls test
- Ground Station WiFi transfer test
- Full-stack simulation test

To be completed:


• Collision avoidance test

Full Stack Simulation Tests

- Scheduled: 2/24 3/15
- Completion: In Progress
- Test Readiness
 - Rationale: Test the decision-making process and state machine in simulation before attempting a pool test
- Risk Reduction
 - Controls Failure, Unexpected Behavior
- Requirement Verification
 - Requirement 2.1.1: Vehicle shall autonomously navigate underwater

Full-Stack Simulation Test -Procedure and expected Results

Procedure:

- Start simulation, ArduSub code, state machine
- Verify AUV completes the mission with visual data from simulation

Expected Results:

• AUV successfully completes mission without human input

In progress: Encountered difficulties retrieving camera images from simulation

Systems Testing

Completed/In progress:

- 6-motor integration test
- Controls/dynamics test

To be completed:

• Full systems test

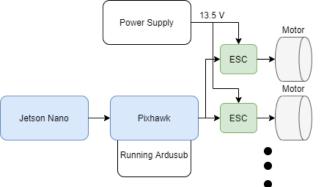
Systems Testing

Completed/In progress:

- 6-motor integration test
- Controls/dynamics test

To be completed:

• Full systems test


6 Motor and Ardusub Test Procedure and Results

- Connect all electrical components
- Run controls script in MANUAL mode
 - Visually verify appropriate motor response for each channel

Project

- Run controls script in STABILIZE mode
 - Tip Pixhawk about the front-back axis
 - Verify that side motors produce appropriate response to instability

SUCCESS: Verified the simulation model and the ArduSub control system

LOCKHEED MARTIN

68

Systems Design Testing Engineering Management

Overview

Systems Testing

Completed/In progress:

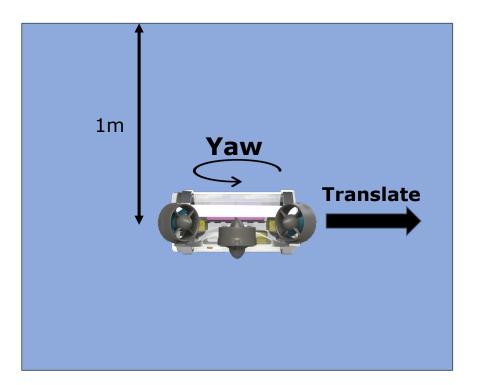
- 6-motor integration test
- Controls/dynamics test

To be completed:

• Full systems test

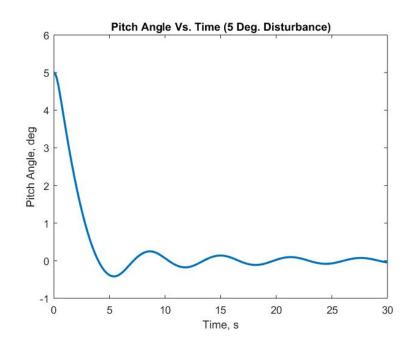
Dynamics Test

- Scheduled: 3/7 3/15
- Completion: To be completed
- Test Readiness
 - Rationale: Testing whether AUV is statically and dynamically stable
 - Location: Rec center pool
- Risk Reduction
 - Instability of AUV
 - Instability of controls system
- Requirement Validation
 - Requirement 2.1.1: The vehicle shall autonomously navigate underwater



Dynamics Test - Procedure

- Start filming with GoPro
- Command AUV to descend to 1m depth and hold
- Disturb AUV to test static stability
- Command AUV to yaw in place for 1
 minute
- Command AUV to translate forward for 15 seconds



Dynamics Test - Expected Results

- If signs of instability
 - Move weights inside AUV to adjust CG location
- Planned to use IMU measurements to validate dynamics model
 - Time constant
 - Damping
 - Amplitude
- Camera footage as backup

Systems Project Overview Design Testing Engineering Management

Systems Testing

Completed/In progress:

- 6-motor integration test
- Controls/dynamics test

To be completed:

• Full systems test

Full Systems Test

• "Sea Trials" planned for April 3-5

- Entire system integrated, POIs laid out in obstacle course
- Was to be used to debug the system and verify requirements
- Only our team present

• Demonstration planned for April 18-19

- AUV run through its paces for Lockheed Martin advisors, faculty members
- Purpose is to validate requirements
- Was in process of reserving the Dive Well at the Rec Center

Full Systems Test - Procedure

- Lay out course
- Activate AUV

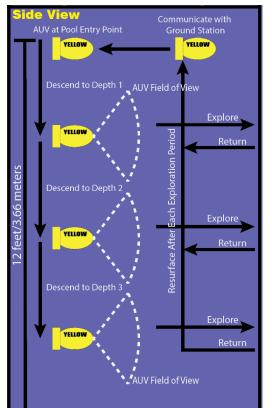
Overview

 Gently set it in pool - Lockheed suggestion after testing drop separately

Systems

Enaineerina

Project

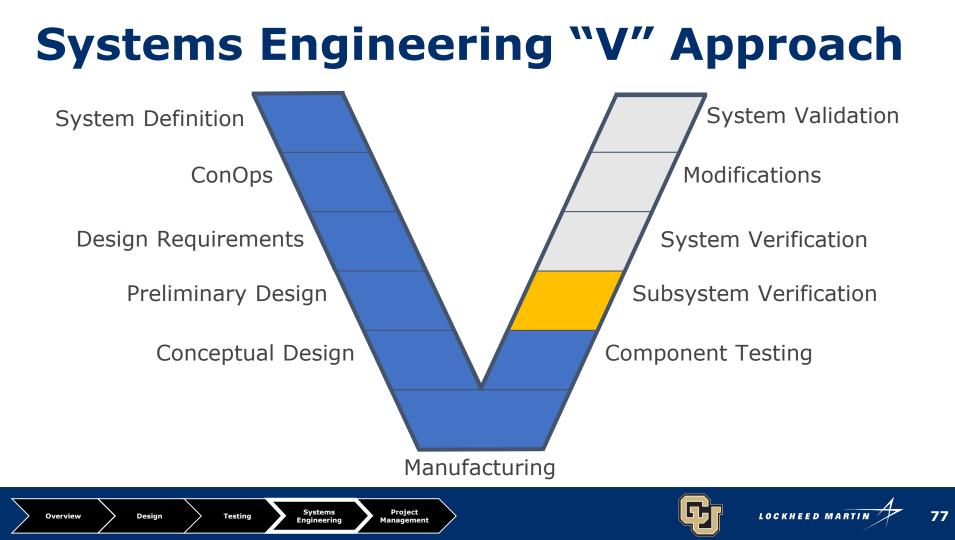

Management

- Monitor during operations
- Receive data during surface intervals

Testing

• Retrieve upon surfacing

Design



Systems Engineering

Trade Studies

- Vehicle Shape
 - Informed the layout of our AUV, how it would move
- Localization
 - Learned that it would not have been feasible to make the AUV spatially aware

Traditional Torpedo with Control Fins			Non-Torpedo (6 DOF)	Gimbaling Motors (6 DOF)	
1	3	4	5	5	
1	3	3	5	3	
1	2	3	5	4	
5	3	2	2	3	
5	4	3	1	1	
5	3	3	2	2	
5	4	2	1	1	
2.8	3.1	3.1	3.4	3	

IMU	360 Camera	Landmark Detection	Scanning Imaging Sonar	SONAR Triangulation	LIDAR Triangulation	DVL
5	3	3	5	2	1	5
3	2	4	3	3	2	5
1	3	5	5	4	2	3
5	1	1	3	1	1	5
5	4	2	4	4	1	5
0	5	0	4	3	4	0
2	3	4	5	3	2	2
5	5	4	2	4	0	0
3.5	3.4	3.15	3.6	3.05	1.4	2.75

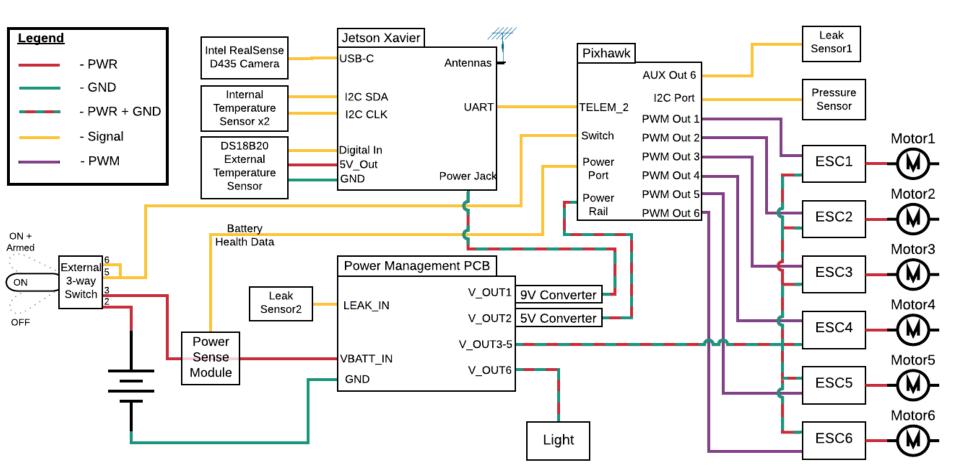
360 Action Camera	Intel RealSense D435i & T265	Ping360 & Science Camera
2	3	4
1	3	3
2	4	4
1	2	4
1	3	4
5	4	1
2.4	3.35	2.85

LOCKHEED MARTIN

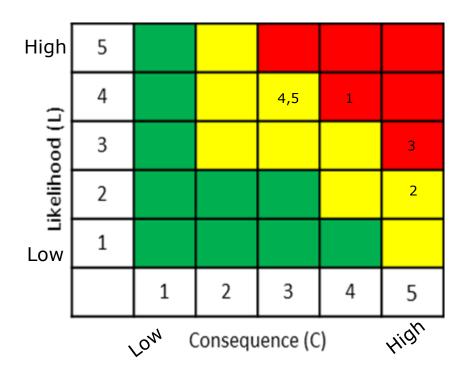
Imaging

 Informed development of the obstacle course, the use of depth perception

Design Requirements


- Functional Objective: Operate without human control
 - 2.1.1 The vehicle shall autonomously navigate underwater
 - 2.1.2 The vehicle shall perform computations onboard
- Functional Objective: Navigate through an unfamiliar environment
 - 5.1.1 The vehicle shall detect and avoid the walls of a closed body of water
 - 5.1.2 The vehicle shall navigate an underwater course of our design
 - 5.1.2.1 The underwater course shall contain points of interest for the vehicle to find
- Functional Objective: Utilize a "Kill Switch"
 - 6.6.1 The kill switch shall detect water
 - 6.6.2 The kill switch shall cut power to all subsystems and surface the vehicle

Interconnection Diagram


Risks

Risk	Color
1) Object Misidentification	
2) Sealing Main Compartment	
3) Stability of AUV	
4) Compartment Temperature	
5) Camera Integration	

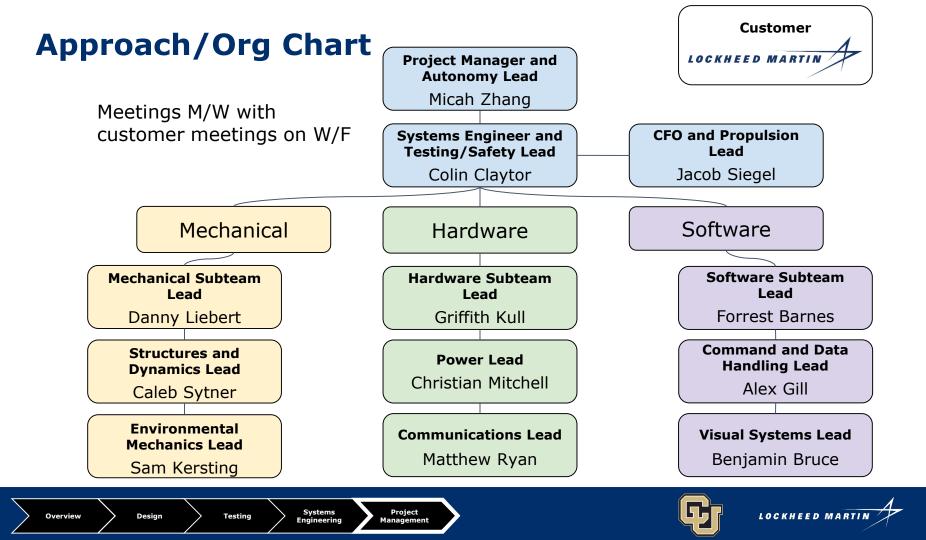
- Wire pass-throughs presented a leaking point
- Testing vehicle stability

On track to mitigate red risks

LOCKHEED MARTIN

Lessons Learned - Engineering

- Integrate early
- Test often, test early
- Acrylic is prone to cracking
- Human factors in seal development make access inside easier, more margin in internal space allocation
- Consider all electrical connections and wiring requirements early
- Wire pass throughs are difficult to successfully implement
- Simulations and version control are very valuable
- Be mindful of compute power requirements early



Project Management

Overview	\geq	Design	\geq	Testing	\geq	Systems Engineering	2	Project Management	

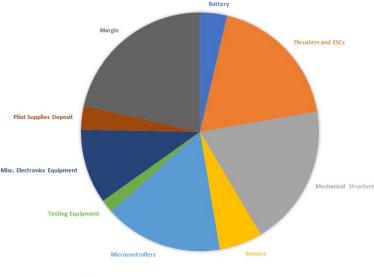
Successes and Lessons Learned - Management

• Successes:

- Semi-autonomous sub-team management allowed for simultaneous development on multiple critical areas of the project
- Subteam leads being field-experts facilitated rapid development
- Hierarchical org-chart allowed for efficient operation and management

• Lessons Learned:

- Subteams may have conflicting priorities and/or timelines
- Open, transparent, and frequent communication between subteams is critical



Planned vs. Actual Budget

*Shipping cost: \$380.06

Planned Cost at CDR	\$3700.33
Total Expenditure at Cancellation	\$4917.98*
Total Budget	\$6202.36

YELLOW SUBMARINE BUDGET

Project upgrades after EEF:

- Higher performance computer (better FPS)
- New model vertical thrusters
- Ability to test and add features

Calculation of Effort

- Combined 1st + 2nd Semester:
 - Total: 3767 hours
 - Average/week: 157 hours
 - Estimated cost: \$358075
 - \$31.25/hour

As of March 13:

- Approx Hours of Code: 150

 Approx lines of Code: 2000
- Approx Hours of CAD: 80
- Approx Hours of Manufacturing: 60
 - Approx hours of Machine time: 40
- Approx Hours of Electronics Manufacturing/integration: 30
- Approx Hours of Image Processing work: 80

Thank You

Backup

Backup Table of Contents

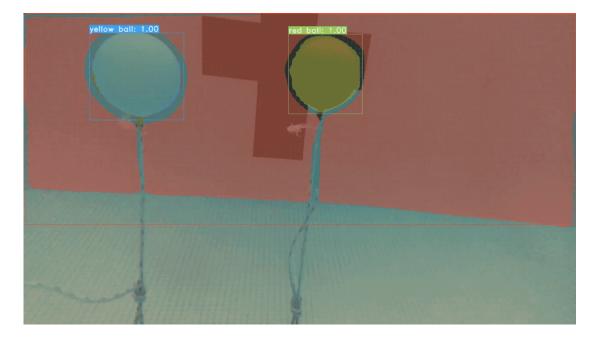
- Mechanical
- <u>Electrical</u>
- <u>Software</u>
- <u>Miscellaneous</u>

Critical Project Elements

- **Structural Integrity** -- 1.5.1: Water Pressure, 5.3.1: Drop Survival, 1.6.1: Thermal Testing
 - Ensures system can survive the mission environment
- **Power --** 1.1.1: Onboard Batteries, 1.4.1: Electrically Driven
 - Keeps system active for duration of mission
- C&DH -- 3.2.1: Image and Data Packets, 3.3.1: Onboard Data Storage, 4.1.1: Complete Data Transmittal
 - Necessary for navigation, relaying data to ground station
- Autonomous Navigation -- 1.5.2: Depth Control, 2.1.1: Underwater Movement
 - Human input impossible in mission environment
- Image Processing -- 2.1.1.4: Collision Avoidance, 5.2.1: POI Data
 - Used in Autonomous Navigation, reporting of Points of Interest to the ground station

Overview	Design	Testing	Systems Engineering	Project Management	
	,		/	//	<u> </u>

Approach


General Structure:

- 3 semi-autonomous subteams software, mechanical, electrical
- Each subteam has a subteam lead
- Mon., Wed. meetings are group meetings
- Customer meetings held 1/week alternating b/t Wed. and Fri.
- Fri. meetings reserved for either customer meetings or individual team meetings on an as-needed basis
- 1 PM
- 1 Systems Engineer
- 1 CFO

						,	
Overview	Design	Testing	Systems Engineering	Project Management	> 9	LOCKHEED MARTIN	92

General Results - Image Processing

Successfully recognizes POIs and pool wall in pseudo-real time 3.2FPS with high accuracy

Calculation of Effort

- 1st Semester:
 - Total: 2205 hours
 - Average/week: 157 hours
 - Estimated cost: \$68906
- 2nd Semester:
 - Total: 1562 hours
 - Average/week: 156 hours
 - Estimated cost: \$48813

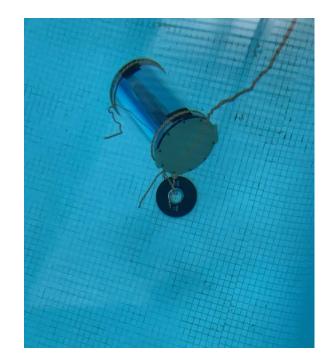
Possible addition:

- Approx Hours of Code:
 - Approx lines of Code:
- Approx Hours of CAD: 80
- Approx Hours of Manufacturing: 60
 - Approx hours of Machine time: 40
- Approx Hours of Electronics Manufacturing/integration:
- Approx Hours of Image Processing work:

LOCKHEED MARTIN

Mechanical

Pressure Test


- Scheduled: 2/21 3/6
- Completion Status: Completed on 3/1
- Test Readiness
 - Rationale: Testing whether housing can withstand pressure at maximum operating depth
 - Location: Rec center pool
- Risk Reduction
 - Buckling
- Requirement Verification
 - Requirement 1.5.1: Vehicle shall withstand water pressure at its mission depth

Pressure Test - Results

- AUV housing submerged at 3.66m in rec center pool
- This will determine if the housing will buckle at deepest operational depth
- Result: Housing did not buckle and there were no signs of structural damage
- Time Elapsed: 15 minutes

Success

Leak Test 1 - Results

- First leak test consisted of main housing (tube and endcaps) floating in a sink
- This determined if there were any high level leaks while floating
- Completed: 2/29
- Result: Minimal leakage found along the gasket
- Time Elapsed: 1 hour
- Solution: Try a softer rubber gasket, add silicone grease

Leak Test 2 - Results

- Consisted of main housing (tube and endcaps) located at 3.66m depth in the rec center pool
- High level leak test
- Completed: 3/1
- Result: Small leakage found along the gasket and acrylic bowed between bolts
- Time Elapsed: 15 minutes
- Solution: Increase number of bolts along acrylic plate, try a harder rubber gasket, and add silicone grease

Leak Test (Preliminary) - Results

- Multiple preliminary leak tests
- Tests resulted in leaks
- Solution:
 - Increased number of bolts
 - Added aluminum ring
 - Increased o-ring size

Preliminary Leak Validation

- With the mitigations, the tube and endcaps (with no passthroughs) successfully passed the preliminary leak test.
- This allowed for the penetrations and holes to be cut in the endcap to progress with leak testing

Success

Electrical

Electronics Testing

Completed:

- Motor + ESC initial test
 - 2/17 2/28
 - Basic communications
 - 2/17 2/28
 - Battery under load
 - 2/10 3/6
 - PCB v1 test
 - 2/26 2/28
 - Full power system
 - 2/28 3/13

| Overview | Design | Testing | Systems
Engineering | Project
Management | |
|----------|--------|---------|------------------------|-----------------------|--|
| / | / | / | | // | |

LOCKHEED MARTIN

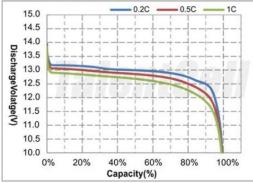
Electronics Testing

To be completed: PCB V2 test

- 3/16 3/27
 - Environmental sensor test
 - 3/16 3/20
 - Full vehicle integration
 - 3/20 3/31
 - Surfaced communication test
 - 3/28 4/4

Power System Test - Expected Results

Procedure


- Connect battery though PCB to electronic load
- Monitor power until 85% nominal voltage

Expected Results

- Near 13V for first hour
- Cutoff at 1.3 hours

| Vehicle State | Current (A) | Power (W) | Time Spent in
State (hrs) | Weighted Average
Total Current (A) | Weighted Average
Total Power (W) |
|----------------------------------|-------------|-----------|------------------------------|---------------------------------------|-------------------------------------|
| Total: | | | 1.00 | 6.85 | 66.5 |
| | | | | | |
| Battery Characteristi | cs | | | Peak Current (A) | Peak Power (W) |
| Voltage (V) | 13 | | | 8.17 | 83.7 |
| Depth of Discharge | 0.75 | | | | |
| Temperature
Correction Factor | 1 | | | Total
Consumption (Ah) | Battery capacity
required (Ah) |
| Design Margin | 1.2 | | | 7.44 | 11.9 |
| Regulator Characteri | stics | | | | |
| Efficiency | 0.92 | | | | |
| | | | | | |

Different Rate Discharge Curve @25°C

LOCKHEED MARTIN

Software

WiFi Transfer Tests

- Mostly completed
- First test was to send 1-3 images over the school network
 - Successful
- Second test was to send around 300 images over the new router acquired
 - Transfer time was approximately 5-7 seconds
- Third test would have been sending images from the AUV to the ground station from the pool
 - Incomplete, but expected to succeed due to the addition of the antenna to the AUV

Collision Avoidance Test

- Scheduled: 3/13 3/20
- Completion Status: To be completed
- Test Readiness
 - Rationale: Verify that the vehicle will avoid collisions without interrupting its mission.
 - Location: Rec center pool
- Risk Reduction
 - Harm to vehicle, failure to complete mission
- Requirement Verification
 - 2.1.1.4: The vehicle shall avoid collisions within its field of view

Collision Avoidance Test - Procedure and Expected Results

Procedure:

- Place AUV in pool
- Begin running mission
- Place unexpected object in FOV of AUV during mission
- Observe AUV behavior

Expected Results:

- AUV avoids objects with a clearance of 0.3m without interrupting mission
- Verify that the vehicle passes requirement 2.1.1.4 Collision Avoidance

Not completed: Awaiting full system integration test

Systems Tests

Controls/Dynamics Test

- Scheduled: 3/7 3/15
- Completion: In Progress
- Test Readiness
 - Rationale: Compare real controls behavior to simulation
 - Location: Rec center pool
- Risk Reduction

Design

Overview

- Motor Failure, Controls Failure, Unexpected Behavior
- Requirement Verification

Testing

• Requirement 2.1.1: Vehicle shall autonomously navigate underwater

Systems

Engineering

Controls/Dynamics Test - Procedure and Expected Results

Procedure:

- Integrate AUV with motors and basic control functionality
- Connect to Nano over WiFi/SSH
- Insert AUV into pool and activate

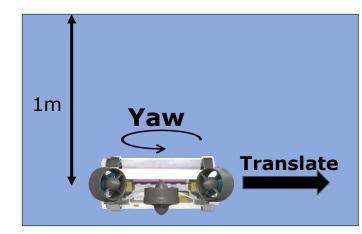
Testina

- Run preset script from laptop
- Observe AUV behavior
- Deactivate and remove AUV

Expected Results:

Design

Overview


• Verify the simulation with visual and IMU data of the reactions of the vehicle to control inputs

Systems

Engineering

Project

lanagement

LOCKHEED MARTIN

Miscellaneous

Mechanical Schedule

| | TASK NAME | START DATE | END DATE | DURATION
(WORK | TEAM | PERCENT |
|--------|--|------------|-----------|-------------------|--------|----------|
| | | | | DAYS) | MEMBER | COMPLETE |
| Spring | Purchase Materials | - | - | - | Jake | 90 |
| | Laser cut acrylic front panel and gasket | 1/24/2020 | 2/1/2020 | 6 | Danny | 100 |
| | Machine Al end-cap | 2/1/2020 | 2/14/2020 | 10 | Danny | 80 |
| | Machine front ring seal | 2/1/2020 | 2/14/2020 | 10 | Danny | 95 |
| | 3D Print elec tray mounts | 2/14/2020 | 2/18/2020 | 3 | Danny | 90 |
| | Leak test | 2/14/2020 | 3/18/2020 | 24 | Sam | 20 |
| | Machine AL bottom clamps | 2/14/2020 | 3/3/2020 | 13 | Danny | 100 |
| | Machine AL Vertical Motor Mounts | 2/14/2020 | 3/3/2020 | 13 | Danny | 100 |
| | Pressure test | 2/21/2020 | 3/6/2020 | 5 | Sam | 100 |
| | Test motors underwater | 2/21/2020 | 3/6/2020 | 11 | Caleb | 10 |
| | 3D Print bumpers | 2/21/2020 | 3/20/2020 | 21 | Danny | 45 |
| | 3D Print water baffle | 2/22/2020 | 3/5/2020 | 9 | Danny | 100 |
| | Role and Bend AL top clamps | 3/1/2020 | 3/4/2020 | 3 | Danny | 0 |
| | Water jet AL motor shims and clips | 3/4/2020 | 3/11/2020 | 6 | Danny | 0 |
| | Water jet AL electronics tray | 3/4/2020 | 3/11/2020 | 6 | Danny | 0 |
| | Mount motors and structure to tube | 3/5/2020 | 3/8/2020 | 2 | Danny | 0 |
| | Thermal test | 3/5/2020 | 4/2/2020 | 4 | Sam | 0 |
| | Drop test | 3/6/2020 | 3/8/2020 | 3 | Caleb | 0 |
| | Machine elec tray-endcap interface | 3/9/2020 | 3/13/2020 | 5 | Danny | 0 |
| | Manufacture thermal strap | 3/13/2020 | 3/20/2020 | 6 | Sam | 0 |
| | Buoyancy test | 3/18/2020 | 4/2/2020 | 7 | Sam | 0 |
| | Dynamics test | 3/30/2020 | 4/2/2020 | 4 | Caleb | 0 |

Overview Design

Testing

Systems

Engineering

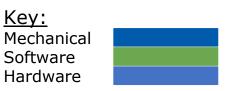
Project Management

Electrical Schedule

| | TASK NAME | START DATE | END DATE | DURATION
(WORK
DAYS) | TEAM
MEMBER | PERCENT
COMPLETE |
|--------|--|------------|-----------|----------------------------|----------------|---------------------|
| Spring | Electronics tray assembly | 2/17/2020 | 3/20/2020 | 25 | Hardware | 10 |
| | Battery testing | 2/10/2020 | 3/6/2020 | 20 | Matt | 15 |
| | ESC + Motor testing | 2/17/2020 | 2/28/2020 | 10 | Christian | 90 |
| | PCB v1 order + assembly | 2/17/2020 | 2/26/2020 | 8 | Matt | 100 |
| | Power system v1 testing w/ stable power supply | 2/26/2020 | 2/28/2020 | 3 | Christian | 20 |
| | Power system v1 testing w/ battery | 2/28/2020 | 3/4/2020 | 4 | Christian | 0 |
| | Calibrate and test temperature sensor | 2/26/2020 | 3/4/2020 | 6 | Griff | 0 |
| | Calibrate and test pressure sensor | 2/26/2020 | 3/4/2020 | 6 | Griff | 0 |
| | PCB v2 design buffer | 3/4/2020 | 3/6/2020 | 3 | Christian | 0 |
| | PCB v2 order + assembly buffer | 3/6/2020 | 3/11/2020 | 4 | Griff | 0 |
| | PCB v2 + converters testing buffer | 3/11/2020 | 3/13/2020 | 3 | Christian | 0 |
| | PCB v2 + converters + battery testing buffer | 3/11/2020 | 3/13/2020 | 3 | Griff | 0 |
| | Out of water communications testing | 2/17/2020 | 2/28/2020 | 10 | Matt | 100 |
| | Surfaced AUV communications test | 3/18/2020 | 3/25/2020 | 6 | Matt | 0 |

Software Schedule

| | | | | DURATION | TEAM | PERCENT |
|--------|-------------------------------------|------------|-----------|-------------|-------------|----------|
| | TASK NAME | START DATE | END DATE | (WORK | MEMBER | COMPLETE |
| Spring | Full Image Processing Stack Test | 12/2/2019 | 1/24/2020 | DAYS)
40 | Software | 100 |
| | Gazebo Controls Test | 1/20/2020 | 2/13/2020 | 19 | Software | 100 |
| | Integrate D435 w/ Jetson TX2 | 1/24/2020 | 2/1/2020 | 6 | Software | 100 |
| | Benchmark TX2 | 1/26/2020 | 2/1/2020 | 5 | Micah | 100 |
| | Complete State Machine | 1/26/2020 | 2/14/2020 | 15 | Alex | 100 |
| | Integrate Python with ArduSub | 1/26/2020 | 2/1/2020 | 5 | Forrest | 100 |
| | Import AUV model into Gazebo | 1/29/2020 | 2/8/2020 | 8 | Forrest/Ale | 100 |
| | Integrate camera into Gazebo | 2/8/2020 | 2/22/2020 | 10 | Alex | 80 |
| | Resolve Depth data issues | 2/9/2020 | 2/15/2020 | 5 | Software | 100 |
| | Test YOLACT live in water | 2/9/2020 | 2/15/2020 | 5 | Software | 100 |
| | Create ground station software | 2/16/2020 | 3/4/2020 | 13 | Benjamin | 85 |
| | Optimize YOLACT | 2/16/2020 | 3/13/2020 | 20 | Micah | 20 |
| | Single Motor Integration Test | 2/17/2020 | 2/21/2020 | 5 | Forrest | 100 |
| | WIFI Transfer Test | 2/17/2020 | 2/24/2020 | 6 | Benjamin | 100 |
| | Integrate YOLACT with State Machine | 2/16/2020 | 3/6/2020 | 15 | Software | 50 |
| | Test Full Stack in Gazebo | 2/23/2020 | 3/6/2020 | 10 | Software | 20 |
| | 6 Motor Integration Test | 2/24/2020 | 3/6/2020 | 10 | Forrest | 50 |
| | Integrate other sensors | 3/7/2020 | 3/15/2020 | 5 | Software | 0 |
| | Controls Test | 3/7/2020 | 3/13/2020 | 5 | Software | 0 |
| | Collision avoidance test in water | 3/13/2020 | 3/20/2020 | 6 | Software | 0 |
| | Fully autonomous operation | 3/13/2020 | 3/30/2020 | 12 | Software | 0 |
| | Extra control operations | 3/30/2020 | 4/14/2020 | 12 | Software | 0 |
| | Full Systems Test | 3/31/2020 | 4/10/2020 | 9 | Software | 0 |


Overview

Design

Testing

Systems Project Engineering Management

| TASK NAME | START DATE | END DATE | TEAM | Nov- | 10 Nov- | 17 Nov-2 | 4 Dec-1 | Dec-8 | Dec-15 | DEDEJ | a Jan-12 | Jan-19 | Jan-26 | Feb-2 | Feb-9 | Feb-16 | Feb-23 | Mar-1 | Mar-8 | Mar-15 | Mar-22 | Mar-29 | Apr-5 | Apr-12 | Apr-19 |
|------------------------------------|------------|-----------|------------|------|---------|----------|---------|-------|--------|-------|----------|--------|--------|-------|-------|--------|--------|-------|-------|--------|--------|--------|-------|--------|--------|
| | JIAN DATE | LIND-DATE | TEAIVI | s w | FSW | FSW | FSWF | SWF | SWF | | SWF | SWF | SWF | SWF | s w | FSW | FSWI | SW F | S W F | SWF | SW F | SWF | SWF | SWF | S W F |
| | | | | | | | - | | | | | | | | | | | | | | | | | | |
| Full Image Processing Stack Test | 12/2/2019 | 1/24/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Complete State Machine | 1/26/2020 | 2/14/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Resolve Depth data issues | 2/9/2020 | 2/15/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Test YOLACT live in water | 2/9/2020 | 2/15/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| ESC + Motor testing | 2/17/2020 | 2/28/2020 | Hardware | | | | | | | | | | | | | | | | | | | | | | |
| Power system v1 testing w/ battery | 2/28/2020 | 3/4/2020 | Hardware | | | | | | | | | | | | | | | | | | | | | | |
| Test Full Stack in Gazebo | 2/23/2020 | 3/6/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Pressure test | 2/21/2020 | 3/6/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Test motors underwater | 2/21/2020 | 3/6/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Drop test | 3/6/2020 | 3/8/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Controls test | 3/7/2020 | 3/13/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Leak test | 2/14/2020 | 3/18/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Electronics tray assembly | 2/17/2020 | 3/20/2020 | Hardware | | | | | | | | | | | | | | | | | | | | | | |
| Surfaced AUV communications test | 3/18/2020 | 3/25/2020 | Hardware | | | | | | | | | | | | | | | | | | | | | | |
| Fully autonomous operation | 3/13/2020 | 3/30/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Thermal test | 3/5/2020 | 4/2/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Buoyancy test | 3/18/2020 | 4/2/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Dynamics test | 3/30/2020 | 4/2/2020 | Mechanical | | | | | | | | | | | | | | | | | | | | | | |
| Full Systems Test | 3/31/2020 | 4/10/2020 | Software | | | | | | | | | | | | | | | | | | | | | | |
| Sea Trials | 4/3/2020 | 4/5/2020 | All | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | |

| Overview Design | Testing | Systems
Engineering | Project
Management | |
|-----------------|---------|------------------------|-----------------------|--|
|-----------------|---------|------------------------|-----------------------|--|

4/19/2020 4/20/2020 All

FInal Demonstration

Changes since TRR

Project Cancelled

Systems Engineering

- Trades x3: Shape, Localization, Imaging
- Some design requirements
- Interface: interconnect diagram
- Risks
- Systems Challenge: meeting complexity, changing hardware to accommodate new insight

