Weather <u>Resistant</u> <u>Autonomous</u> Imaging for <u>Tracking</u> <u>H</u>EOs

Final Oral Review

<u>Sponsor</u>

The Aerospace Corporation

Team

Julian Jurkoic, Maya West, Cal Van Doren Noah Crisler, Austin Cyrus, Dalton Turpen Trevor Willson, Shannon Chott, Alex Kirk Matthew Barrett, Jared Bartels <u>Advisor</u>

Matt Rhode

COLORA

INIVERSITI

THE AEROSPACE

CORPORATION

Project Purpose and Objectives

The Problem

- High Risk
 - Collision could be catastrophic for GPS, weather, national security, science, etc.
 - o ~20,000/750,000 objects greater than 1 cm currently tracked
 - Launch costs continue to decrease
 - o 2nd largest risk
- Current SSA systems:
 - Low Volume
 - Just over 20 in total
 - o High Load
 - 80,000 observations per day
 - o Expensive
 - Cost upwards of \$100,000 each
 - o Highly capable

Courtesy ESA

The Solution

<u>W</u>eather <u>R</u>esistant <u>A</u>utonomous <u>I</u>maging for <u>T</u>racking <u>H</u>EOs

Mission Statement:

WRAITH's mission aims to demonstrate the feasibility of a low cost, autonomous, deployable space situational awareness system.

WRAITH is a Space Situational Awareness System that must:

- Predict the orbit of a space object using a TLE
- Point a camera at an orbiting space object
- Capture 3 images throughout a space object's transit
- Generate and return an estimate of the space object's orbit
- Be capable of a 12 hour overnight deployment
- Do all of this autonomously

TEATER
and the second second
PORATION . UNIVER

	Level 1	Level 2	Level 3
Scheduler	Once Per Night	Runs Multiple Times	Adaptable to Missed Targets
Automation	Must be Monitored	Human Calibration	No human input after setup
Weather Detection	<95%	<99%	>99%
Weather Protection	Protects Against Rain	All Precipitation, Wind	Protects Against All Weather Types

Accomplished	In progress as of shutdown
--------------	----------------------------

Project Purpose/Objectives

TAKES THREE LONG EXPOSURES OF OBJECT PATH

WRAITH EXITS SAFE MODE

ALERA

REMAINS IN SAFE MODE UNTIL WEATHER HAS PASSED

RETURNS TO SAFE MODE, WAITS FOR NEXT OBJECT

HEO,LEO,GEO,MEO

IMAGES

ANALYZED

NEW ORBIT DETERMINED AND STORED < 5 mins

ON BOARD PROCESSING

CAPTURED IMAGE

Read in TLEs from USB drive

Predicts orbits and rank pass quality

Activates imaging sequence

NOMINAL SEQUENCE

Design Description

ORATION

Baseline Design Hardware Overview

Functional Block Diagram

Software Functional Block Diagram

Critical Project Elements Review

11

Test Overview

ORATION

Test Progress

Completed Test

Software

LEGEND

iOptron Calibration Test – FR 1 & FR 4

In Progress Test

- iOptron Slew Speed FR 1 & FR 4
- Home Accuracy Test FR 3
- Real Image Processing Test FR 5
 - Partial System Test FR 1, 4, 6

Hardware

- Lid Actuation Versatility Test FR 3
- Water Proof Test Main Unit FR 3
- Water Proof Test COTS Boxes FR 3
- Batteries FR 2
- GPS Testing FR 1, 4

Environmental

- Sensor Baseline Functionality FR 2 & FR 3
- Individual Sensor Validation & Characterization – FR 2 & FR 3

Discussed - 🕁

- Combined Sensor Validation & Characterization – FR 2 & FR 3
- Communication Testing FR 2 & FR 3
- ★ So

Scheduled Test

Sensor Suite Testing – FR 2 & FR 3

Overall System Testing

- Full System Test FR 1-7
- Long Duration Test FR 1-7

Test Results

ORATION

Full System

Final System Test

- Goal: Show that WRAITH completes the project as designed by:
 - Detecting adverse weather
 - Protecting against adverse weather
 - Integrating GHOST's systems
 - Operating autonomously
- Materials: WRAITH enclosure, stage mount, camera, batteries, main processor, weather station
- Requirements Verified: All
- Test Results: Not Completed

Output: Updated orbital elements of target object, system timing information, system accuracy, weather detection reports

Design Description Test Overview

Final System Test – Expected Results

Weather Protection

Gear Rate Model 24 Teeth/Revolution 5 Teeth/Inch 24 Inches of Travel 10 Second Close: 30 [RPM]

Constant Velocity

20

Project Purpose/Objectives

Design Description 💙 Test Overview

Test Results

21

Roof Actuation Test - Overview

- **Testing Goal:** Verify operation of roof motor and gear system through onboard controls
- Motivation: Ensure timely and reliable actuation of WRAITH's roof
- **Materials:** Assembled WRAITH enclosure, UDOO, motor controller & roof motor
- **Requirements Verified:** FR 3, DR 3.1
- **Risks Reduced:** Timely roof actuation protects against quickly developing precipitation

• Initial Testing: 125 [oz in] motor actuated roof at 1 [in/sec] reliably

• Next Steps: Test full length actuation with new motor but same parameters [425 oz in limit]

Roof Actuation Longevity Test -

- **Testing Goal:** Verify operation of roof motor and gear system through onboard controls
- Motivation: Ensure long term reliability for actuation of WRAITH's roof
- **Materials:** Assembled WRAITH enclosure, UDOO, motor controller & roof motor
- **Requirements Verified:** FR 3, DR 3.1
- **Risks Reduced:** Timely roof actuation protects against quickly developing precipitation

Project Purpose/Objectives

Weather Detection

Completed Environmental Sensor Tests

All sensors have been **tested individually** and compared to known data provided by NWS

All sensors (except the anemometer) have been **tested together** with the completed environmental code

Satisfies Functional Requirement 7 since sensors reach equilibrium in less than 30 minutes

Project Purpose/Objectives

Design Description >> Test Overview

Test Results

Weather Detection Logic

Single Sensor Safe Mode Trigger:

Lightning detected at any distance

OR

Precipitation detected

OR

Wind speeds detected > 8 m/s

Multiple Sensor Safe Mode Trigger:

Pressure drops by > 3 mb

AND

RH detected above 70%

AND

IR temperature higher than 10°C

Remote Operator Safe Mode Trigger:

Shutdown command received over cellular

Environmental System Tests – Planned

FR 3: Autonomously protect itself from adverse weather

What's our confidence in the Environmental System detecting Adverse Weather (AW)?

Adverse Weather Detection Test:

- 1. Verify various sensor outputs by comparison with the NWS
- 2. Integrate the sensor suite and trigger condition code
- 3. Statistically compare weather suite output with qualitative observations

Detected AW ÷ Observed AW ≥ 95%

Materials: Laptop, WRAITH Weather Suite, Project Notebook, Pen/Pencil

Location: Outdoor Clearing

Testing Goal: 95% confidence in the WRAITH Weather Suite

Project Purpose/Objectives

Design Description 🔪 Test Overview

Environmental Systems Test – Incomplete

Matching the Trigger Condition output to the Qualitative Observation output will yield a positive result. With 95 out of 100 results positive, the weather detection model will be validated.

This Photo by Unknown author is licensed under CC BY-NC and CC BY-SA.

Project Purpose/Objectives

Design Description 🔪 Test Overview

Environmental System Tests – Results

WRAITH

•Test Results: Never Completed

Expected Results: Successful detection of adverse conditions
Data to Be collected:

-System Timing Response to Adverse Conditions -Potential Instances of Coding Loop failure -Quantitative Measurements for Conditions -Qualitative Assessments of Conditions •Models to Be Verified :

-Ability to detect Adverse Weather to 95% confidence

System State is compared to operator's observations

System operations and conditions are analyzed to ensure 95% of time confidence in weather detection to minimize fatal risks to system

Project Purpose/Objectives

Test Results

Expected Test Progression and Results

Observed Weather Conditions:

Detected Weather Conditions:

- RH: 100%
- IR Thermometer: 29°F
- Precipitation Sensor: 2452 (out of 4096)
- Anemometer: 1.5 m/s
- Lightning Detector: None
- Barometer: Steady 845 mb

Expected Output:

1222000,Last Close:1221000,cell:0,WindSpeed:1.5,Lightning Distance:255,Rain:2452,Humidity:93.05,Pressure:84458,IR:29.05

Software

Partial System Test – Overview

 Testing Goal: Test the following systems ability to run in unison:

 Pass scheduler
 Hardware Scheduler
 Hardware Commanding

 Materials: Processor, Camera,

Stage Actuator, Main Box

•Requirements Verified: FR 1, 4, 6

Partial System Test - Results

- Test Results: Not Completed
- **Expected Results:** Successful imaging and orbit solution of multiple objects
- Data to Be collected:
 - -Timing Data
 - -Component Integration
- Models to Be Verified : Worst case scenario of 6 object/hr processor timing model practicality

Jobstore default:

Az_El_slew (trigger: date[2020-05-08 00:01:00 MDT], next run at: 2020-05-08 00:01:00 MDT)
start_stop_sidereal (trigger: date[2020-05-08 00:01:29 MDT], next run at: 2020-05-08 00:01:29 MDT)
Dark_Image (trigger: date[2020-05-08 00:01:30 MDT], next run at: 2020-05-08 00:01:30 MDT)
streak_capture (trigger: date[2020-05-08 00:02:00 MDT], next run at: 2020-05-08 00:02:00 MDT)
streak_capture (trigger: date[2020-05-08 00:02:06 MDT], next run at: 2020-05-08 00:02:06 MDT)
streak_capture (trigger: date[2020-05-08 00:02:12 MDT], next run at: 2020-05-08 00:02:12 MDT)
streak_capture (trigger: date[2020-05-08 00:02:12 MDT], next run at: 2020-05-08 00:02:12 MDT)
streak_capture (trigger: date[2020-05-08 00:02:12 MDT], next run at: 2020-05-08 00:02:12 MDT)

Stage Auto-Calibration Test – Overview

- **Testing Goal:** Quantify the number of calibration points needed in order to ensure streaks will pass within 5% of camera FOV center
- Motivation: Maximize the number of streaks capture per image opportunity
- Materials: stage, camera, calibration python script
- **Requirements Verified:** FR 4, DR 4.1
- **Risks Reduced:** Missing objects due to a ground system inaccuracy

Stage Auto-Calibration Test – Results

- Testing Results: Not Completed
- What the Data Would be Used for:
 - Tuning the calibration
- Model Verified: Ability to match manufacture humanneeded 3-star calibration of 0.237 °

Stage Slewing Test – Expected Results

NRAITA

- **Goal:** Characterize time for stage to slew home from all possible orientations
- **Motivation:** Allows for fastest possible shutdown sequence without roof hitting stage
- Materials: Stage, Stopwatch, Bash Script
- **Requirements Verified:** FR 3, DR 4.2 (Autonomous weather protection, acceptable slew speed)
- **Risks Reduced:** Collision between stage or camera and roof, Roof remaining open too long in inclement weather

Full System Timing Test

- **Testing Goal:** Characterize processing time across full system and some individual subsystems
- **Motivation:** Image as many objects as possible without overlapping sequences
- Materials: The 'datetime' function in python, completed WRAITH unit
- **Requirements Verified:** FR 5 (At least 6 objects per hour)
- **Risks Reduced:** Overlapping imaging sequence reduces chance of either object's orbit being determined

from datetime import datetime startTime = datetime.now() # Test: 3 to 30 objects print(datetime.now() - startTime) Slew sta Path 1 Auto a Individual imaging functions Take i Scheduler to HW Interface • Roof open/close Total • Mount slewing time Path 2 Path 2 Image Image Processing • Orbit Astrometry Solver •

> Orbit Determination Full System End to End

Total

6

6

6

6

6

Systems Engineering

ORATION

Systems Engineering Approach

Requirements Development

Customer Given Threshold and Objective Requirements **GHOST** Legacy Hardware, Software, and Mission

Functional Requirements

- 1. Scheduling visibility windows and locations
- 2. Function autonomously for 12 hours
- 3. Enter and Exit Safe Mode
- 4. Autonomous Pointing
- Objects magnitude of light 10 or less and image processing in 10 seconds
- 6. 5 minutes to create and save updated orbit estimates
- Deployable/Deconstructed in 30 minutes

Design Requirements

- 1. Palletized and contained within 70cm by 70cm by 70cm cube
- 2. Any system component mass < 45.35kg
- 3. Setup and takedown in accordance to WRAITH System Operation Manual

Key Trades

Weather Detection

- Sensor Suite
- Radar
- Sensor Suite & Radar

<u>Study</u> Result:

Sensor Suite

Scheduler

- Passive Scheduler
- Active/Live Scheduler
- Active/Live Traveling
 Salesman

Study Result:

Active/Live Scheduler

Weather Protection

- Moon Roof Box
- Lateral Garage
- Canvas Convertible
- Concentric Segmented Dome
- Sliding Canopy

<u>Study</u> Result:

Moon Roof Box

Major Issues & Challenges

Actuation Stage Breaking

Originally a focus, yet slated at a high risk due to recoverability, <u>Single Point Failures</u> had to be readdressed so to ensure designs and implementation were peer reviewed.

UDOO Arduino Interfacing

Issue with integrating the stepper motor for the rack and pinion roof actuation. Turned an assumed simple task into an increased already high risk of **active weather protection failure**.

Legacy Hardware and Software Constraints

Taking on legacy HW & SW yielded challenge in unforeseen inherited errors or constraints. Forced team to redesign certain aspects like the stage pointing methods during implementation. Increased multiple risk areas.

Key Takeaways

Legacy projects require complete understanding of previous work to mitigate implementation risk and allow for better requirements creation.

Operate closer to line between too constrained and implementation free in requirements development.

Utilize all budget for buying down integration/interfacing struggles. Past functionality can be maintained without the same past hardware.

Project Management

Strategy

	Integrate First	Rule of 2's	Single Path
Reasoning	GHOSTWorking product first	Single point failure	GHOSTQuick Progress tracking
Result	Mostly Successful Very Near Working 	Moderate Success Too strict → Got lax Lost hardware 	Mostly Successful • 3 paths • Difficult to get everyone
Lessons Learned	Difficult to communicate	Not always possibleDifficult to enforceNot always needed	 Mostly a good idea Things don't always run so smoothly
If there was a next time	Continue to integrate early	Guideline of 2'sChecklists	Single Phases

How Much Would We Have Cost

Assumptions:

- Entry level salary of \$65,000 (2080 hours of work)
- Overhead rate of 200%
- Materials included

Figures

- 31.25 \$/hr Salary
- 93.75 \$/hr with overhead
- 3730 hours completed
- ~\$355,000 w/ materials

Hypothetical

- Average 155 hrs/week
- 4973 hours (using avg)
- ~\$471,000 w/ materials

Budget Comparison

CDR Budget								
Subsystem	Cost		Budget		Individual Margin	Project Margin		
Active Protection	\$	862.67	\$1	L,200.00	28%	-		
Passive Protection	\$	92.56	\$	300.00	69%	-		
Power Systems	\$	521.80	\$	600.00	13%	-		
Testing	\$	50.00	\$	100.00	50%	-		
Weather Detection	\$	391.81	\$	500.00	22%	-		
Miscellaneous	\$	13.55	\$	20.00	32%	-		
WRAITH Total	\$1	.,932.39	\$5	,000.00	-	61%		
Reserve Funding	\$3	,067.61	\$2	,280.00	-	-		

IFAR
Difference The Action
antic comparison . UNIVERSITY of

FOR Budget							
Subsystem	Cost		Budget		Individual Margin	Project Margin	
Active Protection	\$	1,184.90	\$	1,200.00	1%	-	
Passive Protection	\$	188.99	\$	300.00	37%	-	
Power Systems	\$	715.32	\$	600.00	-19%	-	
Testing	\$	246.94	\$	100.00	-147%	-	
Weather Detection	\$	524.73	\$	500.00	-5%	-	
Software	\$	177.92	\$	-	-	-	
To Be Purchase	\$	-	\$	-	-	-	
Shipping	\$	134.20	\$	-	-	-	
WRAITH Total	\$	3,173.00	\$	5,000.00	-	37%	
Reserve Funding	\$	1,827.00	\$	2,300.00	-	-	

Project Purpose/Objectives

Design Description Test Overview

Test Results

Systems Engineering

Project Management

50

00

PORATION

UNIV

Backup Slides

ORATION

Environmental Sensing Software Logic

Safety Override

- Input Constant weather status from environmental sensing suite (0 safe or 1 unsafe)
- Recovery
 - Scheduler notified to reschedule
 - Safety_override flag lowered

Pressure and Temperature Testing Data

IR Thermometer Testing Data

Berthoud Pass Test: Pressure Data

The atmospheric breakout board (barometer and relative humidity) was driven up Berhoud Pass to track the steadily changing pressures as well as record the low pressures at the top (about 12,000ft)

> **Top of Berthoud Pass =** Lowest Recorded

Berthoud Pass Test: RH and Temp Data

Inversely Related RH and Temperature

Additional Shower Test Data

NR AITH

Fluctuating Temperature as Expected

Constant Pressure as Expected

Strategy

