University of Colorado
Department of Aerospace Engineering Sciences
Senior Projects - ASEN 4028

Windmill Hindrance and Maneuverable
Propulsion System (WHiIMPS)

Project Final Report

Information

Monday 4" May, 2020

Project Customers

Phone: 937-656-4098

Name: Riley Huff, 1LT
Email: riley.huff.1 @us.af.mil

Team Members

Phone:

Email: Alexandra.Paquin @Colorado.edu

720-354-2238

Name: Alec Bosshart Name: Andrew Robins

Email: Alec.Bosshart@Colorado.edu Email: Andrew.B.Robins @Colorado.edu
Phone: 303-718-1090 Phone: 781-580-9170

Name: Isobel Griffin Name: Liam Sheffer

Email: Isobel.Griffin@Colorado.edu Email: Liam.Sheffer@Colorado.edu
Phone: 720-937-3056 Phone: 719-432-6948

Name: Julia Kincaid Name: Jon Weidner

Email: Julia.Kincaid @Colorado.edu Email: jowe3555@colorado.edu
Phone: 720-951-0019 Phone: 410-303-7280

Name: Andrew Meikle Name: Zoe Witte

Email: Andrew.Meikle @Colorado.edu Email: Zoe.Witte @Colorado.edu
Phone: 719-650-8975 Phone: 720-880-8592

Name: Declan Murray Name: Lucas Zardini

Email: Declan.Murray @Colorado.edu Email: luza2695@colorado.edu
Phone: 303-895-9041 Phone: 331-444-9636

Name: Alexandra Paquin Name: Nicholas Zellmann

Email:Nicholas.Zellmann @Colorado.edu

Phone:

719-419-4511

Contents

1 Project Purpose

2 Project Objectives and Functional Requirements
Levelsof Success
Proposed Mission CONOPs e

2.1
2.2
23
24
25
2.6

Testing CONOPs

Project Deliverables

Functional Block

Diagram and Software Flow Diagram

Functional Requirements

3 Design Process and Outcome

3.1 Requirements Flowdown
3.2 Conceptual Designs e
3.2.1 Windmill Prevention Mechanism
3.2.2 Thrust Vectoring Mechanism
3.2.3 MCB Microcontroller e
3.3 Trade Study Processand Results,
3.3.1 Trade Study Methodology
3.3.2 Windmill Prevention Mechanism and Thrust Vectoring Mechanism
3.3.3 MCB Microcontroller e
34 DesignOutComes v v vt e e e e e e e e
3.4.1 Windmill Prevention Mechanism
3.4.2 Thrust Vectoring Mechanism oL
3.5 Electronics e
3.5.1 MainControl Board e
3.5.2 Integrated Communication Unit Panel
3.5.3 Linear Potentiometer Breakout Board
3.6 Main Control Board Software
3.6.1 Software Architecture e e
3.6.2 Software Flow
3.6.3 Packet Definitions
4 Manufacturing
4.1 Windmill Prevention Mechanism L Lo
4.1.1 Scope of Manufacturing Lo
4.1.2 Fairing e e e
4.1.3 ForeRetentionRing
4.1.4 Solenoid Pins
4.1.5 Engine Integration L
4.2 Thrust Vectoring Mechanism
4.2.1 Scopeof Manufacturing L
4.2.2 Thrust Vectoring Mechanism Manufacturing Process
423 Test Stand Modification
4.3 Main Control Board Software
4.4 ElectroniCs e e e
4.5 Manufacturing Challenges L
4.6 IntegrationPlan
05/04/20 iof 117

University of Colorado Boulder

12
12
12
13
13
13
13
15
16
16
20
27
27
29
30
31
31
38
41

41
41
41
42
42
42
42
43
43
43
44
45
46
47
47

PFR

5 Verification and Validation

5.1 Electronics Verification
5.2 Main Control Board Software Verification
5.3 LabView Verification
5.4 WHiMPS Engine Function Verification .
5.5 Windmill Prevention Mechanism Verification
5.5.1 APOPReplicaTest
5.5.2 High Speed Airflow Tests
5.6 Thrust Vectoring Mechanism Verification
5.7 Levelsof Success
5.7.1
5.7.2 Remaining Levels of Success . .
6 Risk Assessment and Mitigation
6.1 Windmill Prevention Mechanism
6.1.1 Risks
6.1.2 Mitigation.
6.1.3 Results
6.2 Thrust Vectoring Mechanism
6.2.1 Risks
6.2.2 Mitigation.
6.23 Results
6.3 Electronics
63.1 Risks
6.3.2 Mitigation.
633 Results
7 Project Planning
7.1 Team Organization
7.1.1 Management Team
7.1.2 Software Team
7.1.3 Electrical Team
7.1.4 Manufacturing Team
7.1.5 Testing Team
7.2 Work Breakdown Structure
7.2.1 Electrical
7.2.2 Software
7.2.3 Mechanical
724 Testing
73 WorkPlan
7.3.1 Schedule Margin
7.3.2 CriticalPath
74 CostPlan
7.4.1 Budget for Major Items
7.4.2 Budgetary Margin
7.5 TestPlans

8 Lessons Learned

9 Individual Report Contributions

05/04/20

‘Windmill Prevention Mechanism First and Second Level of Success

iiof 117

University of Colorado Boulder

49
49
49
50
52
54
54
55
57
58
58
60

60
60
60
61
62
62
62
63
63
64
64
64
65

65
65
66
66
66
66
67
67
67
68
68
68
68
70
70
70
71
71
71

73

74

PFR

10 Appendices 76

10.1 Appendix A: Conceptual Designs e 76
10.1.1 Windmill Prevention 76
10.1.2 Thrust Vectoring o i e e 79
10.1.3 MCB Microcontroller 83
10.1.4 Trade Study Liekert Scales 87
10.1.5 Design COmMponents v v v v v vt e et e e e e e 88
10.1.6 Budget Breakout 92

10.2 Appendix B: Main Control Board Software Reference Material 92
10.2.1 Code Examples 92
10.2.2 Subsystem Class Object Build Diagrams 101
10.2.3 Packet Definitions e 103
10.2.4 Command Sequence for Testing with Simulated LabView 104

10.3 Appendix C: Test Safety Planand TestPlans 105

05/04/20 iii of 117 PFR

University of Colorado Boulder

List of Figures

01N Nk~ WN

el e e e e e N e e =)
O 00 1N N~ W~ O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

05/04/20

JetCat P1I00-RX Body Axes o e 1
Proposed Mission CONOPs e 3
Testing CONOP e e 4
Functional Block Diagram L 5
Software Flow Diagram 5
Trade Study for Windmill Prevention Mechanism 14
Trade Study for Thrust Vectoring Mechanism 15
Trade Study for the Microcontroller 16
Integrated Windmill Prevention Mechanism 16
3DModelof Fairing 17
Structural Analysis of Left Half of Fairing 17
Structural Analysis of Right Half of Fairing 17
Force and Moments Induced on Fairing During Ejection 18
Fairing Ejection Model 18
Fore Retention Ring/ICUP Thermal Model 19
Adafruit Medium Push-Pull Solenoid 0o o000 19
Solenoid-Pin Diagram L. 19
Analytical Model for TVM Paddles based on Conservation of Momentum 20
Autodesk CFD Model; paddle area A = 850mm?, paddle angle & = 20°, exhaust deflection
angle 0 = 11°. L e e 21
Comparison of Analyticaland CFD Models 21
Paddle Deflection Calibration 22
Thermodynamic Model of Paddle 23
Thermal FEA Resultsof Paddle 23
FrontSideof Paddle 23
Back Sideof Paddle 23
Nozzle Sheath Overview with Actuator Ring Sectioned 24
3D Model of TVM Actuator Ring 25
3D Model of Linear Actuator in Actuator Pod with Actuator Nut at End of Threaded Rod . . 25
Linkage Rod 3D Model - Pinned Between Actuator Nut and Paddle 26
Closed-Loop Feedback Assembly 3D Model 26
3D Model Assembly of Entire Thrust Vectoring Mechanism. 27
Main Control Board Rev. BDesign. 28
Main Control Board Case e 28
MCB Power Protection, Regulation, and Selection Schematic 28
MCB FETS Schematic 29
MCB Temperature Sensors and MCB < — > ICUPHarness 29
ICUPRevision BDesign e 30
LPBBRev. BDesign 31
LPBB Circuito 31
Main Control Board High Level Software Architecture Diagram 32
Flow Chart for the Build Process and Program Execution of the Main Control Board Software 39
Flow Chart for the Creation of the Main Control Board Subsystem Object 40
3-DPrinted Fairing e 42
3-D Printed Fore RetentionRing L o 42
Partially Integrated WPM System L o 43
Finished Nozzle Sheath and Actuator Ring Integrated with Engine 44
Additional Test Stand Sled 44
ivof 117 PFR

University of Colorado Boulder

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

05/04/20

Completed Modified Test Stand 44
MCB Software Manufacturing Progress 46
Output from Running MCB Software in Software Unit Testing Build Configuration 50
Test LabVIEW Front Panel with Sample Data Plotted 51
Test LabVIEW Block Diagram 51
WHiMPS LabVIEW Front Panel 51
WHiMPS LabVIEW Functional Flow Diagram 52
Temperature at Fore Retention Ring Location 53
Temperature at Aft Retention Ring Location 53
Temperature on Back of Dummy Paddle 54
WPM Test Diagram Providedby AFRL 55
WHiMPS Test Setup for APOP ReplicaTest 55
CFD Model of Mach 0.8 Air Impinging on Fairing 55
Test Setup from SABRE Senior Projects Team 56
WHiMPS Nozzle forMach 0.8 56
Expected Data from Dynamic TVM Test 58
Annotated Screen Capture of Linux PC Terminal Verifying First and Second Level of Suc-
cessfor WPM 59
Continuation of Annotated Screen Capture of Linux PC Terminal Verifying the First and
Second Level of Successfor WPM 60
Windmill Prevention Mechanism Risks and Mitigations 62
Thrust Vectoring Mechanism Risks and Mitigation 63
Electronics Risks and Mitigations Lo 65
WHiMPS Organizational Structure 66
WHiMPS Work Breakdown Structure L Lo 67
Mechanical Gantt Chart L 69
Software and Electronics Gantt Chart 69
Critical Path 70
WHIMPS Budget 71
WHIMPS Test Overview o o 0 e e 72
Airflow Engine Cover on JetCat P100-RX™! 76
Cover Ejection Sketch 76
Hook Attached to Rack and Pinion on Engine Nozzle™! 77
Front View of Notch Attachment®! 77
Sealed Notch?l 78
Dog Clutch!™ 79
Jet Vane Nozzle Mechanism® 79
Jet Vane Diagram e e 79
Flex Nozzle e 80
Fluidic Thrust Vectoring®! 81
Diagram of a Jetavator on a small UAV engine!®! 81
Cruciform Thrust Vectoring Mechanism 82
3-Rudder Thrust Vectoring!"?! 83
Beaglebone Blue Microcontroller® L 84
Beaglebone Black Microcontroller! L 84
Raspberry Pi 4 Microcontroller™ L 85
Raspberry Pi Zero WH Microcontroller® L. 86
NVIDIA Microcontroller!'™ 86
Trade Study Breakdown for Windmill Prevention Mechanism 87
vof 117 PFR

University of Colorado Boulder

95
96
97
98
99
100
101
102
103
104
105
106
107
108

05/04/20

Trade Study Breakdown for Thrust Vectoring Mechanism 87
Trade Study Breakdown for the Microcontroller 88
COTS Conical Compression SPring o v v v v i v vt et e e 88
Main Control Board Rev. BDesign. 88
Main Control Board CPU Schematic 89
MCB Load Cell Schematic e 89
Main Control Board Indicator LED Circuits 90
ICUPPanel 1 o e 90
ICUPPanel2 91
ICUPPanel3 o e 91
ICUPPanel4 92
Flow Chart for the creation of the Windmill Prevention Mechanism Subsystem Object 101
Flow Chart for the creation of the Thrust Vectoring Mechanism Subsystem Object 102
Flow Chart for the creation of the Engine Control Unit Subsystem Object 103

viof 117 PFR

University of Colorado Boulder

List of Tables

W

— = 0O 0 3O\ L
(o]

p—

05/04/20

WHIiMPS Levels of Success 2
MCB software build configurations corresponding to each level of success 35
Subsystem Command Definitions 41
WPM Component Manufacturing Scope oL 42
TVM Component Manufacturing Scope 43
Command Packet Definition L L 103
Command Acknowledgment Packet Definition. 104
Health and Status Packet Definition 104
Circular Sequence of Commands Sent from Simulated LabView for Verification of WPM
Success Criteria land 2. L 105
vii of 117 PFR

University of Colorado Boulder

Acronyms

ABS Acrylonitrile Butadiene Styrene
ADC Analog to Digital Converter
AFRL Air Force Research Laboratory
APOP Aerospace Propulsion Outreach Program
CAD Computer-Aided Design
CDD Conceptual Design Document
CONOPS Concept of Operations
COTS Commercial Off The Shelf
CU University of Colorado
DAQ Data Acquisition
DR Design Requirement
ECU Electronic Control Unit
ECM Electronic Control Module
EGT Exhaust Gas Temperature
ESD Electrostatic Discharge
ETCS Engine Test and Control System
FBD Functional Block Diagram
FR Functional Requirement
GND Ground
GPIO General Purpose Input/Output
GUI Graphical User Interface
12C Inter-Integrated Circuit
ICUP Integrated Communication Unit Panel
IDE Integrated Development Environment
LED Light-Emitting Diode
LPBB Linear Potentiometer Breakout Board
MCB Main Control Board
NI National Instruments
PAB Professional Advisory Board
PCB Printed Circuit Board
PID Proportional Integral Derivative Controller
POC Point of Contact
RPM Rotations Per Minute
SE Systems Engineer
SPECS Specialized Propulsion Electronics Control Systems
SSH Secure Shell
SWIFT Supersonic Wind Imagining Flow Tunnel
TVM Thrust Vectoring Mechanism
UAV Unmanned Autonomous Vehicle
USAF United States Air Force
USAFA United States Air Force Academy
USB Universal Serial Bus
USD United States Dollar
WBS Work Breakdown Structure
WPM Windmill Prevention Mechanism

WHIMPS Windmill Hindrance and Maneuverable Propulsion System

05/04/20 viii of 117 PFR

University of Colorado Boulder

Nomenclature

AP SR

Faero
Faxial
Fdrag
Fperp

Fpin
Fspring
F;
hy

k

Leero
Ld rag
Lpin

Ls pring
Nu

05/04/20

Paddle Deflection Angle [°]
Area of Nozzle [mm?]

Area of Paddle [mm?]
Actuator Deflectiion [mm]
Total Thrust [1b-f]
Aerodynamic Force [Ib-f]
Axial Thrust Component [Ib-f]
Drag Force [1b-f]
Perpendicular Thrust Component [Ib-f]
Pin Force [1b-f]

Spring Force [1b-f]
Non-Axial Thrust Component [1b-f]
Convective Heat Transfer Coefficient
Thermal Conductivity [m‘fK]
Center of Pressure Location [in]
Drag Location [in]

Length of Pin [in]

Length of Spring [in]
Nusselt Number
Primary Fluid Momentum [%
Secondary Fluid Momentum [%]
Resultant Fluid Momentum [%]
Prandtl Number
Reynold’s number
Flow Deflection Angle [°]
Paddle n Deflection Angle [°]
Characteristic Length [m]

ix of 117

University of Colorado Boulder

PFR

1. Project Purpose

Authors: Isobel Griffin

The purpose of WHiMPS is to modify the JetCat P100-RX engine, shown in Figure 1, to allow for
at least one axis of thrust vectoring capabilities greater than or equal to ten degrees with no decrement of
thrust at zero degrees of vectoring, and to prevent windmilling with the engine off up to Mach 0.8 at 20,000
feet. Jet engine windmilling occurs when an engine is not operating, yet the compressor blades rotate
due to oncoming airflow!'l. Although windmilling can be used as an emergency restarting mechanism on
a commercial jet engine, it is detrimental to the JetCat P100-RX because the compressor blades are only
lubricated by the circulation of fuel. When the engine is turned off, there is no fuel circulating to lubricate the
compressor blades, hence leading to permanent engine damage if the blades were to spin. Windmilling can
also cause unreliability in starting cold jet engines. Thrust vectoring allows for attitude and angular velocity
modifications through directional firing, greatly increasing maneuverability. Improvements of performance
through thrust vectoring technology has been demonstrated by the Air Force in the past through a number of
aircraft, including the X-31. A key advantage for aircraft with thrust vectoring mechanisms is the ability to
control the aircraft at steep angles of attack, when airflow is separated from the control surfaces. The X-31
was able to obtain controlled flight at an angle of attack of 70°['>. According to NASA, the X-31 was also
able to perform a 180° maneuver in post-stall flight, which is well beyond the capability of most aircraft!'>.
Modifying and understanding these smaller micro jet engines and their new capabilities is the first step
towards improving larger-scale engines. Solutions implemented on the micro jet engine can be applied
to more complex systems. In order to accomplish this purpose, WHiMPS will employ a single mechanism
software control sequence, a main control board, a graphical user interface (GUI), and mechanical hardware.
The Air Force Research Laboratory (AFRL) team from the previous year, SPECS, was able to successfully
redesign the ECU of the engine to take full control of its functionality. The SPECS project relied heavily on
controlling the engine through their manufactured ECM; however, windmill prevention and thrust vectoring
are external components and should not impede the engine’s function. An image of the engine with defined
body axes can be seen in Fig. 1 below.

Figure 1: JetCat P100-RX Body Axes

2. Project Objectives and Functional Requirements

Authors: Alec Bosshart, Nick Zellmann

2.1. Levels of Success

The levels of success for the WHiMPS were formed from the requirements set forth by the Air Force
Research Laboratory (AFRL) and the WHiMPS’ proposed CONOPS. The five levels of success for the
Windmill Prevention Mechanism (WPM) and Thrust Vectoring Mechanism (TVM) are outlined in Table 3.

05/04/20 Lof 117 PFR

University of Colorado Boulder

Table 3: WHiMPS Levels of Success

Level | Windmill Prevention Thrust Vectoring
Conduoct software analysis o ensure the thrust
Werify that the control software (using a vectoring mechanism does not diminish
simulated windmill prevention mechanism) resiricts | straight-line {07} thrust.
| turbine modion to less than 0.5 RPM in response to | Verify that the control software (using a simulated
conditions corresponding to a freestream velocity thrust vector control mechanism) is capable of
of Mach (0.8 at 20k feet. changing the thrust vector angle by £107 along

both the aircraft body Y and Z axes.

With the engine off, verify that the integrated
control software and thrust vectoring control
mechanism is capable of changing the thrust vector

: e g3 Level 1, angle of the engine along the aircrafi body Y axis
within a £107 range, while retaining the
original thrust at 07
Werify that the integrated control software With the engine off, verify that the integrated
and windmill prevention mechanism restricts control software and thrust vectoring control
3 turbine motion (o less than 0.5 RPM in response to | mechanism is capable of changing the thrust vector
conditions corresponding to a freestream velocity angle by £107 along both the aircrafi body Y and £
of Mach (L8 at 20k feet, with the engine off. axes, while retaining the original thrust at 07,
Werify that the integrated control software, windmill prevention mechanism, and thrust vector control
4 mechanism continues to meet the level three success criteria for both Windmill Prevention and Thrust

WYectoring with the engine off.
5 Meet level four success criteria with the functioning JetCat P100-RX.

For this project to be successful, the two main requirements set by the customer (the AFRL) must
be accomplished. The first requirement is to successfully implement a Windmill Prevention Mechanism
(WPM) that prevents the engine’s fan blades from rotating more than 0.5 RPM under a Mach 0.8 flow at
an altitude of 20k feet. The RPM requirement was not clearly defined by the AFRL, thus the more specific
requirement of having a RPM of less than 0.5 was set by the WHiMPS team. The functionality of the WPM
must include the engagement and disengagement of the mechanism upon command from signals sent by the
user. The second requirement set by the AFRL is to incorporate a Thrust Vectoring Mechanism (TVM) that
can vector the thrust of the engine by +10° on at least one axis (the body y or body z axis). This TVM cannot
impede the nominal thrust of the engine when the thrust vector angle is set to zero degrees of deflection.

The WHiMPS team decided to set a level of success for achieving one axis of thrust vectoring and an-
other for incorporating a second vectoring axis, in the body-Y and body-Z axis defined in Figure 1. Thus,
our project could be considered successful if we incorporating only a single axis of thrust vectoring, but
could reach a higher level of success by incorporating a second axis of vectoring. For the highest level of
success, the WPM and TVM must be controlled by the same user interface. Additionally, for the highest
level of success, the WPM and TVM mechanisms must be successfully incorporated on an operating engine.
Since the engine’s operation has been unpredictable in previous years’ projects, all of the levels of success
for the WHiMPS team except for the highest level revolved around the engine being inoperable. Thus, tests
and simulations could be performed to ensure that the WPM and TVM could be operated independent of
the engine to reduce the overall risk associated with the engine.

2.2. Proposed Mission CONOPs

The AFRL did not provide specific information as to what the developed WPM and TVM will be used
for. Therefore, a proposed mission CONOPs was developed by the WHiMPS team to visualize how the
developed mechanisms will be used. The WHiMPS’ proposed mission CONOPs is broken into two distinct

05/04/20 20f 117 PFR

University of Colorado Boulder

sections; one for the WPM and the other for the TVM. In this proposed mission, a micro-jet engine is used as
the propulsive system for a small unmanned autonomous vehicle (UAV). This UAV is carried to its mission
location with a larger carrier aircraft. A summary of this proposed CONOPs can be seen in Fig. 2.

Descend to
nominal cruise JetCat JetCat
altitude engine dle

Deploy
JetCat

‘ Mission Profile

i Employ | Employ |
{ WMP | WMP !

Thrust Vectoring (TV)

=

-

Figure 2: Proposed Mission CONOPs

The only mechanism used in the first half of the proposed mission is the WPM. At the beginning of the
mission, the WPM is engaged on the engine of a UAV and is then carried by a larger carrier aircraft to the
UAV’s point at the carrier aircraft’s cruising conditions (20k ft at Mach 0.8). During this half of the mission,
the UAV’s engine is off and the WPM is preventing windmilling of the engine’s fan blades. Once the target
location is reached, the WPM will disengage upon command from a user and the second half of the mission
will commence.

The second half of the mission solely utilizes the TVM. After the WPM is disengaged from the engine,
the JetCat P100-RX engine will start and reach an idle state, the deployment vehicle will detach from the
larger carrier aircraft, and the TVM will be sent commands to control the attitude and proposed direction of
the deployment vehicle.

2.3. Testing CONOPs

Another CONOPs was developed as a guide for how the WHiMPS team would simulate the mission
environment. Because the developed mechanisms are not actually operating in the proposed mission envi-
ronment, simulating the environment using the resources that CU offers is the best way to ensure that the
incorporated mechanisms operate successfully. The testing CONOPs is shown in Fig. 3.

05/04/20 3of 117 PFR

University of Colorado Boulder

q i sy A g

- Vs
ERpage I ”'l: oL "”’; :c';"‘;""" Stop tanks and eject the Verity 0 RPM using laser
> = > fairing by > and post
and ensure the Faring flow, simulating fight e e to dopty emmmnsrid

Fr

Mount engine mt:' Start the engine and Command Thrust Verity actual deflection Is
Thrus 5 rampupto max thrust __, o . input using the load
Vectoring Mechanism to ” Incrementally with no difterent degree g ng

test stand paddie deflection deflections DSl anc LeLVIEW.

Figure 3: Testing CONOP

Since the two incorporated mechanisms operate under different conditions, two seperate CONOPS were
developed. The top half of the testing CONOPS pertains to the WPM, while the bottom half pertains
to the TVM. For the WPM testing, the WPM is secured to the front of the engine and a pressure tank
system generates Mach 0.8 flow to simulate the mission environment. During the high-speed air test, laser
tachometer and post-processing data are used to verify <0.5 RPM of the fan blades. Finally, the WPM is
ejected to replicate how it would operate in its proposed operation environment.

For the TVM testing, the JetCat engine is to be mounted onto the WHiMPS developed test stand with the
integrated TVM. The engine is then started and ramped-up to obtain maximum thrust with no commanded
thrust vector angle. Once the engine is outputting its maximum thrust, commands are sent to the TVM via
the user interface and the Main Control Board to vector the thrust to a specific angle of deflection. Load
cell data from the test stand is then utilized to ensure that the commanded flow-deflection angle matches the
actual flow-deflection angle. This testing procedure verifies that the developed TVM can vector the thrust
such that the functional requirements are adequately met.

2.4. Project Deliverables

This project was completed for the AFRL under the supervision and guidance of the University of Col-
orado, Boulder. Each of these entities had requirements for documentation and deliverables to be submitted
throughout the course of the project. The AFRL required monthly update documents containing specifics
about the WHiMPS team’s progress and upcoming activities, along with participation in the Aerospace
Propulsion Outreach Program (APOP) demonstration. Additionally, the AFRL sent a lieutenant to visit
the University of Colorado and see our progress. The University required documentation that followed
aerospace industry standard for the development of technology. This included a Project Definition Docu-
ment, Conceptual Design Document, Preliminary Design Review, Critical Design Review, and a Fall Final
Report during the first half of this project. During the second half of the project, WHiMPS was required
to deliver a Manufacturing Status Review, AIAA conference paper, Testing Readiness Review, Executive
Summary, Final Oral Report, and Project Final Report.

2.5. Functional Block Diagram and Software Flow Diagram

The WHiMPS Functional Block Diagram (FBD) is found in Fig. 4 below. This diagram illustrates what
and how the electronics used in this project are communicating. As shown in the FBD, the MCB is the brains
of the project: relaying data to/from the incorporated mechanisms, regulating voltages for other electronics,
and passing information to and from the LabVIEW GUI.

05/04/20 40f 117 PFR

University of Colorado Boulder

Additionally, the Software Flow Diagram shown in Fig. 5 was developed to illustrate the inputs and
outputs from each main component of the project to convey how the system works as a whole.

Thrust Vectoring

User Interface Power Supply
(LabView) 3
Em;'":"p ‘I‘:W' : Windmill Prevention
—— Command Generation (5V<Vout) ‘ Control Mechanism
Data Display Sy Pl
D ‘ 7.4V 5200mAh LiPo -+ Ejection
i Solenoid Fairing :
“) (x2) S':;';)gs

Main Control Board

Sensor
Input

Raspberry Pi 4

Control

’—' Software _l

Command

Output

.

“|Reverse Current

Power Regulation

Power

n

Control Mechanism

Motor Nozzle H
H Pa(ggl)es Driver Sheath
H (x2)

(x1) H

Actuators
(x4)

e

Potentiometer
(x4)

1 Ad
[Jetcat P1oo-RX | !

Test Apparatus

Tachometer

! Test Apparatus

Load Cells

Power Selecncn
w ch

User

User Input Logging
Command to Request Files
Command to Save Plots

Commands to the System

mcB

Health and Status Data Packet
Command Acknowledgements
Error Logs

Requested Files

Thrust Vectoring
Test Apparatus

User
Real Time Plots with Relevant Data

Requested Files Saved in Directory
Error Warnings for Extreme T

Error Wamings for Low V

Protection > Reguiated Power ===-» JetCat ECM Power
5V Slsp
ONIOFF Ammelerl ——> Command Data
negulam’ FIRB’ Switch Voltmeter }17 — Sensor Data —. Temperature Sensor
4+ Acquired Parts Development Parts
\ I
Figure 4: Functional Block Diagram
Software Flow ey
—— Inputs.
U - Test ‘ vy
ser Operator Fuel Pump (Voltage)
I a ra m erer votege)
i Fuel Solenoid (Voltage)
) — e Igniter (Voltage)
/ GSU
4 User Interface N / MCB —
utput
Inputs Outputs Inputs Outputs Inputs

User Interface

User Interface

Engine

Battery State
Thrust Vector State
Windmill Prevention State

Software Build Configuration

Health And Status Data Packet
Command Acknowledgements
Error Logs

Requested Files

EGT (Resistance)

RPM (Voltage)

Outputs

File Requests

Load Cell Data

Windmill Prevention
Test

Tachometer Data

MCB Thrust Vectoring Engine
Battery State Thrust Vectoring Mechanism - Fuel Pump (Voltage)
nrustvector State Mechanism Motor Driver 1 and 2 State Starter (Voltage)
©> Potentiometer 1, 2, 3, and 4 State
Windmill Prevention State Windmill Prevention -« Fuel Solenoid (Voltage)
Actuator 1, 2, 3, and 4 Temperature i
File Reguests i Mechanism Igniter (Voltage)
Motor Driver 1.and 2 Temperature Solenoid 1 and 2 State
Windmill Prevention
Mechanism
Solenoid 1 and 2 State

Thrust
Vectoring
Test Apparatus

Windmill
Prevention
Test Appar.

atus

Outputs

User Interface
Load Cell Data

Outputs

User Interface

Tachometer Data

A\ 4

Gsu
EGT (Resistance)
RPM (Voltage)

Battery Charge (Voltage)

Fuel Flow (Voltage)

 Thrust Vectoring
Mechanism

Inputs

mMCcB

Motor Driver 1 and 2 State

Outputs

MCB

Potentiometer 1, 2, 3, and 4 State

Actuator 1, 2, 3, and 4 Temp

| \Motor Driver 1.and 2 Temp

Windmill
Prevention
Mechanism

Inputs

MCB
Solenoid 1 and 2 State

Figure 5: Software Flow Diagram

Beginning with the user interface on the left side of the software flow diagram, the user is given live data

05/04/20

5of 117

University of Colorado Boulder

PFR

from the MCB, the thrust vectoring test stand (TVM), and the laser tachometer (WPM). This involves data
pertaining to the engine via the Jettronics software manufactured by JetCat (EGT, RPM, etc.), states of the
motor drivers (TVM), potentiometers (TVM), actuators (TVM), load cell data (TVM), solenoids (WPM),
and tachometer data (WPM). From here, the user can input data to command the solenoids to pull the pins
pertaining to the WPM and control the vector angle of the TVM.

The right side of the diagram requires the involvement of the test operator. The test operator is in charge
of the GSU, which starts and controls the engine during testing. Here, the RPM is inputted to control the
engine’s performance while data for the fuel flow, RPM, battery charge, and exhaust gas temperature (EGT)
are relayed back to the test operator.

This diagram accurately shows where data is being sent from to control the operation of the WPM and
TVM, along with how the WHiMPS were able to obtain data necessary for system validation. Additionally,
it shows how the WHiMPS controlled the engine during testing in order to operate the engine safely and
successfully.

2.6. Functional Requirements
The design of this project was greatly influenced by the five functional requirements and their respective
design requirements. These functional requirements can be found listed below.

* FR 1: The JetCat P-100RX engine shall have an incorporated thrust vectoring mechanism that permits
vectoring +10° in both the body y and body z axes. The change in thrust at zero deflection must be
Zero.

* FR 2: The JetCat engine shall have an incorporated windmill prevention mechanism that restricts the
rotational speed of the fan blades to less than 0.5 RPM.

* FR 3: The MCB shall control and monitor both of the incorporated mechanisms over the entire
operational envelope.

* FR 4: The MCB shall run the engine such that it remains within the nominal operating conditions.

¢ FR 5: The MCB shall receive data from and send data to the user interface.

The first functional requirement pertains to the TVM. The AFRL specified that this mechanism must not
impede nominal thrust (no change in thrust when vector angle is set to zero). The second functional re-
quirement pertains to the WPM. This requirement ensures that the incorporated mechanism does not allow
the engine’s fan blades to rotate faster than 0.5 RPM under the specified conditions. Functional require-
ment three ensures that the MCB controls both the WPM and TVM. This was included in the functional
requirements because of our customer’s request to control both mechanisms with one single source; for this
project, this single source is the MCB. Since the engine poses safety concerns during operation, functional
requirement four was implemented to ensure that the engine is run safely. Finally, functional requirement
five pertains to the user interface. This project requires the use of a user interface to permit users the ability
to control the disengagement of the WPM, vectoring of the thrust to a specific angle, and observation of
health and status data from the engine.

3. Design Process and Outcome
Authors: Declan Murray, Jon Weidner, Nick Zellmann, Alexandra Paquin, Lucas Zardini, Alec Bosshart

3.1. Requirements Flowdown
1. FR 1: The JetCat P-100RX engine shall have an incorporated thrust vectoring mechanism that permits
vectoring +10° in both the body y and body z axes. The change in thrust at zero deflection must be
Zero.
Motivation: The task as given by the USAF is to incorporate a thrust vectoring mechanism to the
pre-existing JetCat engine. The +10° on both axes is an achievable figure also set in the requirements

05/04/20 6o0f 117 PFR

University of Colorado Boulder

by the customer.
Validation: To validate that the engine can vector the thrust by ten degrees on both axes, the WHiMPS
team shall perform a test with the engine off to prove that the mechanism performs as expected.

(a)

(b)

(©

DR 1.1: The implemented thrust vectoring mechanism shall not affect the overall operation of
the engine.

Motivation: The task for the project as outlined by the USAF is to design and implement a
modification to the pre-existing JetCat engine that allows for the use of thrust vectoring in two
axes (£10°). The installed modification shall not fundamentally change the operation of the
engine.

Validation: The functionality of the engine shall not change; therefore, the operation of the
engine before and after the mechanism is attached shall be the same.

DR 1.2 The change in thrust at zero deflection must be zero.

Motivation: The USAF states that the incorporated thrust vectoring mechanism must not impede
the original thrust of the engine at zero deflection.

Validation: Before the installation of the thrust vectoring mechanism, a number of static tests
will be performed at a specified RPM to obtain an average value of the thrust output of the engine
at the specified RPM. Once this is performed, the thrust vectoring mechanism shall be attached to
the engine. The same number of specified tests will be performed with the mechanism attached
to obtain the thrust output with the mechanism attached. An allowable margin of error from
day-to-day operation of the engine will be set in place to verify if the mechanism hinders the
thrust output.

i. DR 1.2.1: The thrust output of the engine shall be measured by the thrust vectoring test
apparatus.
Motivation: Thrust measurements must be taken to ensure the requirement set by the USAF
is fulfilled.
Validation: The test apparatus shall be built such that the engine can be at full thrust while
the apparatus is measuring the thrust output. A torque test will be performed to ensure that
the apparatus can withstand the forces expected from the engine.

DR 1.3: The thrust vectoring test apparatus shall measure the direction of the thrust vector.
Motivation: To achieve the requirements set by the USAF, the thrust vectoring mechanism must
deflect by £10° on two axes.

Validation: The mechanism will vector by a given input angle, and return the angle to the user
via the user interface. An alternative measurement will be performed to verify that the vector
angle outputted by the mechanism is equal to that of another measurement technique.

2. FR 2: The JetCat engine shall have an incorporated windmill prevention mechanism that restricts the
rotational speed of the fan blades to less than 0.5 RPM.
Motivation: The task as given by the USAF is to prevent the compression fans at the front of the
engine from rotating due to a high-speed mach flow (while the engine is off). The 0.5 RPM figure is
set to account for vibration effects attributed to the freestream flow impacting the engine and error in
the sensors measuring RPM due to this expected vibration.
Validation: Upon installation of the windmill prevention mechanism, a differential pressure represen-
tative of the mach 0.8 flow at 20k feet will be applied to the compression fan blades to ensure the
mechanism is performing properly.

(a)

05/04/20

DR 2.1: The windmill prevention mechanism shall be engaged/disengaged via input commands
from the user interface to the MCB.

Motivation: The task for the project as outlined by the USAF is to design and implement a mod-
ification to the pre-existing JetCat engine to prevent windmilling. This design must be able to

7of 117 PFR

University of Colorado Boulder

(b)

(©

disengage and engage on command such that the engine can still operate when testing the thrust
vectoring mechanism.

Validation: Upon installation of the windmill prevention mechanism to the JetCat, the wind-
mill prevention mechanism capabilities shall be tested with zero applied torque to ensure that
the device can engage and disengage entirely. This implies that there shall be no windmilling
prevention when the mechanism is disengaged, and windmilling shall be prevented when the
attachment is engaged.

DR 2.2: The windmill prevention test apparatus shall measure the RPM of the turbine.
Motivation: The task as given by the USAF is to prevent the turbine (and, consequently, the
compression fans) from rotating under a Mach 0.8 flow. Thus, the RPM measurement of the
incorporated sensors shall be zero.

Verification: The incorporated sensors shall be tested when there is zero torque applied to the
compression fans. Using this, the sensors shall be calibrated to ensure the error of the sensors
are limited. This will provide an accurate reading of the RPM of the compression fans during
the testing of the windmill prevention mechanism.

DR 2.3: The windmill prevention mechanism shall not affect the overall operation of the engine.
Motivation: The task for the project as outlined by the USAF is to design and implement a
modification to the pre-existing JetCat engine that prohibits the compression fan blades from
rotating under a Mach 0.8 flow at 20k feet. The installed modification shall not fundamentally
change the operation of the engine.

Validation: The functionality of the engine shall not change; therefore, the operation of the
engine before and after the mechanism is attached shall be the same.

3. FR 3: The MCB shall control and monitor both of the incorporated mechanisms over the entire oper-
ational envelope.
Motivation: In order to measure the effectiveness of any modification made to the JetCat engine, the
MCB must be able to monitor and control the operation of both mechanisms up to the JetCat’s maxi-
mum thrust conditions.
Validation: The engine shall be commanded to different thrust settings in increments, up to its max-
imum thrust setting. This will all be monitored with real time and recorded data for stability at the
commanded throttle setting via the MCB.

(a)

(b)

(©)

05/04/20

DR 3.1: The MCB shall control all power distributed to the thrust vectoring mechanism.
Motivation: The thrust vectoring mechanism must receive the power necessary to power the re-
lated components. The MCB shall distribute this power to the necessary components.
Validation: A simple command will be sent from the user interface to the thrust vectoring com-
ponents. If the health and status updates sent from the MCB to the user interface verify that the
command was accomplished, the power is being successfully distributed to the components.

DR 3.2: The MCB shall control all power distributed to the thrust vectoring test apparatus.
Motivation: In order to measure exit temperature, generated thrust, and fuel flow rate, a variety
of sensors must be utilized. The MCB will distribute power to these sensors.

Validation: The test apparatus shall be assembled with the engine/thrust vectoring mechanis-
m/thrust vectoring apparatus attached. The sensors will return data from the room-temperature
and zero thrust scenario. This verifies that the power is being distributed to the sensors.

DR 3.3: The MCB shall control all power distributed to the windmill prevention mechanism.
Motivation: The windmill prevention mechanism must receive the power necessary to power the
related components. The MCB shall distribute this power to the necessary components.
Validation: A simple command shall be sent from the user interface to the windmill prevention
components. If the health and status updates sent from the MCB to the user interface verify that
the command was accomplished, the power is being successfully distributed to the components.

8of 117 PFR

University of Colorado Boulder

(d)

(e)

()

€3]

(b

DR 3.4: The MCB shall control all power distributed to the windmill prevention test apparatus.
Motivation: In order to measure the engine’s RPM, a variety of sensors must be utilized. The
MCB will distribute power to these sensors.

Validation: The test apparatus shall be assembled with the engine/thrust vectoring mechanis-
m/thrust vectoring apparatus attached. The sensors will return data from the room-temperature
and zero thrust scenario. This verifies that the power is being distributed to the sensors.

DR 3.5: The MCB shall send commands to and receive data from the thrust vectoring mecha-
nism.

Motivation: The thrust vectoring mechanism must be controlled to vector in a user-specified
direction. Additionally, the thrust vectoring mechanism must return data to the user interface to
specify which angle it has reached, when it has finished its task, and when there are errors.
Validation: The thrust vectoring mechanism shall be commanded by the user to vector to a spe-
cific angle. As the mechanism is vectoring, data will be transferred from the mechanism to the
user, verifying that the MCB and thrust vectoring mechanism are communicating properly.

DR 3.6: The MCB shall send commands to and receive data from the thrust vectoring apparatus.
Motivation: The user interface must display exit temperature, fuel flow rate, and generated thrust
of the engine while vectoring. The test apparatus will obtain these measurements and send them
to the user interface. Additionally, the MCB shall control the engine while it is operating (and
thus the exit temperature, fuel flow rate, and generated thrust). Therefore, the MCB and thrust
vectoring apparatus must communicate.

Validation: A test run of the engine shall be performed without vectoring the thrust. This test
will serve to prove that the MCB and thrust vectoring apparatus are communicating correctly.

DR 3.7: The MCB shall send commands to and receive data from the windmill prevention mech-
anism.

Motivation: The windmill prevention mechanism must engage and disengage via user input.
Validation: A test shall be performed without starting the engine to illustrate that the windmill
prevention mechanism is properly communicating with the MCB, and vice versa. Simple com-
mands such as “engage” and “disengage” shall be sent from the MCB to the windmill prevention
mechanism. This shall verify that the two are communicating correctly.

DR 3.8: The MCB shall send commands to and receive data from the windmill prevention test
apparatus.

Motivation: The user interface must display the RPM of the engine’s compression fans. The test
apparatus shall obtain these measurements and send them to the user interface.

Validation: A test shall be performed where the compression fans are rotated to a specified RPM.
The test apparatus shall then return the measured RPM to the user interface for comparison with
the known value.

4. FR 4: The MCB shall run the engine such that it remains within the nominal operating conditions.
Motivation: The jet fuel, high engine temperatures, and high pressures associated with running a jet
engine necessitate safety-conscious operation. Safe operation of the engine will protect personnel
from injury and reduce the risk of damage to the engine hardware and test facilities.

Validation: The software/electronics teams will follow faculty-approved testing procedures and ad-
here to all safety requirements approved by the faculty. The safety/testing lead will run the safety
checklist, ensuring completion of checklist prior to engine start.

(a)

05/04/20

DR 4: The MCB shall maintain operation below 152,000 RPM (upper limit when maximum
thrust is 22.5 Ibf) unless a new upper safety limit is determined from the engine characterization.
Motivation: The maximum thrust is achieved when the engine is at 152,000 RPM. Therefore, to
maintain a safe testing environment, the engine shall not be operated above 152,000 RPM.

9of 117 PFR

University of Colorado Boulder

Validation: The sensors available in the windmill prevention test apparatus will provide RPM
data in real time, which may then be compared to the upper safety limit.

5. FR 5: The MCB shall receive data from and send data to the user interface.

Motivation: The user must be able to start, stop, and throttle the engine from a distance in order to
have functional control of the JetCat. Additionally, there must be a mode of operation to control the
integrated thrust vectoring and windmill prevention mechanisms. Therefore, the MCB must have a
user interface that encompasses the controls of all parts of the project.

Validation: The engine’s reactions from user inputs may be compared to measurements taken via an
external measuring method. This ensures that the expected result is the same as the actual result. The
same process shall be performed when testing the performance of the integrated mechanisms.

(a) DR 5.1: The MCB shall send health and status data to the user interface.

Motivation: The user shall monitor system parameters in real time to monitor and verify system
response over time.

Validation: The user shall observe the user interface and check expected results with actual
results when the engine is off. If the pre-discussed readings line up with reality (engine off
indicates O fuel flow rate, room temperature, etc.), the engine will be turned on and these mea-
surements will be checked with alternative testing methods to ensure the data is still correct.

05/04/20

i.

ii.

iii.

1v.

DR 5.1.1: The MCB shall send exhaust gas temperature (EGT) readings to the user inter-
face.

Motivation: The jet fuel, high engine temperatures, and high pressures associated with run-
ning a jet engine necessitate safety-conscious operation. Monitoring the exit temperature of
the engine during operational testing improves safety and reduces risk during experimental
procedures.

Validation: The thrust vectoring test apparatus shall send temperature data to the MCB,
which will then relay the data to the user interface. The temperature of the ambient air shall
be measured by the test apparatus. Another temperature instrument shall be used to ensure
that the values on the user interface are reasonable.

DR 5.1.2: The MCB shall send compression fan RPM data to the user interface.
Motivation: High rotation rates of the engine’s compression fans increases the possibility
of engine failure and damage to materials. Maintaining the compression fan’s RPM below
the 152,000 RPM ensures a safe testing environment.

Validation: A test shall be performed where the compression fans are rotated to a speci-
fied RPM. The test apparatus shall then return the measured RPM to the user interface for
comparison with the known value.

DR 5.1.3: The MCB shall send data representing the rate of fuel entering the engine to the
user interface.

Motivation: When the emergency stop button is activated, there should be no fuel entering
the engine. Therefore, the fuel flow rate must be monitored to ensure a safe testing environ-
ment.

Validation: A specified amount of fuel shall be available for the engine to use while oper-
ating. The MCB shall return that fuel flow rate data over time. If the fuel flow rate versus
time is plotted, the total fuel used is the area under the curve. This can be calculated to
verify if the fuel flow rate outputted by the MCB is correct.

DR 5.1.4: The MCB shall send engine thrust output measurements to the user interface.

Motivation: To complete the requirements given by the USAF, the change in thrust at zero
deflection shall be zero (not accounting for error from day-to-day temperature and pressure
changes). Measuring the thrust is necessary to determine if the incorporated mechanism

10 of 117 PFR

University of Colorado Boulder

(b)

(©)

(d)

(e)

05/04/20

changes the thrust output.

Validation: The specifications for the JetCat P100-RX engine state that the thrust at 152k
RPM generates approximately 22.5 Ibf. A best-fit line can be generated to estimate the
approximate thrust at a given RPM. This can then be compared to the data obtained by the
MCB to verify the data.

DR 5.2: The user interface shall have the ability to send commands to the MCB for initiating
power start up and shut down sequences.

Motivation: The user must be able to safely start and stop the engine through stock sequences.
Validation: The start/stop sequences will be validated by comparison to set stock sequences for
engine start/stop (Appendix A).

DR 5.3: The user interface shall have an emergency stop function for the engine.

Motivation: In the event of uncontrolled or improper response, a large manual emergency stop
button and software-based emergency stop commands will immediately cut all fuel and power
supplied to the engine.

Validation: Pressing the emergency stop button immediately removes all power from the MCB
and thus stops the fuel pump and shuts the fuel cutoff valve.

DR 5.4: The user interface shall send commands to the MCB to control the engagement/disen-
gagement of the windmill mechanism.

Motivation: The user must be able to send commands to the MCB which will send commands
to the actuators that engage/disengage the windmill prevention mechanism.

Validation: The user shall send a simple command to engage the windmill mechanism and
observe if the command is met. If so, the user will send another command to disengage the
mechanism therefore no longer preventing windmilling from occurring.

DR 5.5: The user interface shall send commands to the thrust vectoring mechanism.
Motivation: The requirements as given by the USAF include designing and integrating a thrust
vectoring mechanism to the pre-existing JetCat engine. The thrust must be vectored +10° in
both the body y and z axes. The user must be able to send command inputs to the mechanism to
control how much it vectors.

Validation: The thrust vectoring mechanism shall first be tested with the engine off. The mech-
anism shall vector +10° on both axes before the incorporation of actual engine thrust.

i. DR 5.5.1: The user interface shall send commands to the MCB to vector the thrust along
the body y axis to a specified absolute angle.
Motivation: The requirements as given by the USAF include designing and integrating a
thrust vectoring mechanism to the pre-existing JetCat engine. The thrust must be vectored
+10° in both the body y and z axes. The user must be able to send command inputs to the
mechanism to control how much it vectors.
Validation: The thrust vectoring mechanism shall first be tested with the engine off. The
mechanism shall vector £10° along the body y axis before the incorporation of actual engine
thrust.

ii. DR 5.5.2: The user interface shall send commands to the MCB, to vector the thrust along
the body z axis to a specified absolute angle.
Motivation: The requirements as given by the USAF include designing and integrating a
thrust vectoring mechanism to the pre-existing JetCat engine. The thrust must be vectored
+10° in both the body y and z axes. The user must be able to send command inputs to the
mechanism to control how much it vectors.
Validation: The thrust vectoring mechanism shall first be tested with the engine off. The
mechanism shall vector £10° along the body z axis before the incorporation of actual engine
thrust.

11 of 117 PFR

University of Colorado Boulder

(f) DR 5.6: The MCB shall send a success command acknowledgement to the user interface upon
successful execution of a command.
Motivation: To understand if the MCB is encountering troubles implementing the input com-
mands from the user interface, it is important to know when and where the problems are occur-
ring.
Validation: At the end of a command sequence, the related section of code shall send an output
statement to the user interface to notify the user when a command sequence has been completed.

(g) DR 5.7: The MCB shall send an error acknowledgement to the user interface upon failure of a
command.
Motivation: To understand if the MCB is encountering troubles implementing the input com-
mands from the user interface, it is important to know when and where the problems are occur-
ring.
Validation: At the end of a command sequence, the related section of code shall send an output
statement to the user interface to notify the user when a command sequence has failed. Once the
MCB has realized that there is an error, the function will override the input command set by the
user and stop all components from moving. This reduces the risk associated with moving any
parts once an error has been detected.

3.2. Conceptual Designs

Before the detailed design process could begin, the WHiMPS needed to create conceptual designs for
each subsystem. Once these designs were determined, a trade study process began to select a single design
to develop further. The conceptual designs are briefly discussed in the upcoming sections, but further detail
and discussion on them can be found in the Appendix.

3.2.1. Windmill Prevention Mechanism

The WHiMPS had four primary conceptual designs for the WPM subsystem. The first, an engine cover,
attempts to prevent windmilling by eliminating the cause of windmilling: air entering the core of the engine.
This design’s primary advantage is that it does not physically interact with the engine’s fan blades, which
reduces the risk of the design. The next two preliminary designs, hooks and sealed notches, work off of the
same principle. They are designed to prevent windmilling by physically sticking an object between blades
that is held in place. These design theoretically will prevent all windmilling and are easy to deactivate, but
are more likely to damage fan blades. The WHiMPS last design was a dog clutch, which is often used in the
automotive industry. Its principle is to create a surface that fits on top of the engine fan blades, which locks
them in place. Once again, this design can damage the engine’s fan blades.

3.2.2. Thrust Vectoring Mechanism

WHiMPS had more conceptual designs for the thrust vectoring system, with six in total. These begin
with jet vanes, which are four symmetrical airfoils that are plunged into the exhaust of the jet. The airfoils,
or vanes, are rotated in place to create an effective angle of attack of the vane, which pulls the exhaust flow
using the same principles of lift. Jet vanes were a promising design, but impede the nominal thrust of the jet
at zero vectoring because they interact with the exhaust flow. The cruciform worked in a very similar way,
with perpendicular vanes that are connected to the same shaft. Next was fluidic thrust vectoring. Fluidic
thrust vectoring pulls streams of air from the compressor stage of the engine and allows them to flow along
the side of the engine toward the exhaust. By controlling these low pressure streams of air, the exhaust flow
can be “’pulled” in the desired direction. While this design does not mechanically interact with the rear of
the engine, it does create a substantial amount of risk by physically altering the engine at the compressor
stage. The final three designs, a flex-nozzle, external nozzle, and rudders, all use mechanical mechanisms
to push the exhaust flow to the desired position. The flex-nozzle and external nozzle both have cylindrical
component, like another nozzle, that is actuated to rotate and turn the exhaust flow. The paddles work off
of a similar principle, but are four independent surfaces that can be actuated into the flow. These three

05/04/20 12 of 117 PFR

University of Colorado Boulder

systems are more costly from a mass perspective, but allow vectoring without impeding nominal thrust at
zero deflection.

3.2.3. MCB Microcontroller

For the microcontroller, WHiMPS examined and created an objective trade study with five different
options: the Beaglebone Blue, the Beaglebone Black, the Raspberry Pi 4, the Raspberry Pi Zero WH, and
the NVDIA Jetson TX2. The baseline requirements were that the microcontroller must support a Linux
OS and that the microcontroller must support either Python or C++ for programming languages. These
are required because unit testing and object oriented programming are going to be implemented, thus the
languages and the OS must support both of these capabilities to ensure WHiMPS is successful.

3.3. Trade Study Process and Results

3.3.1. Trade Study Methodology

In order to perform an unbiased trade study, a Likert scale was developed to rank each of the options. A
Likert scale ranks items from worst to best or 1 to 5, respectively, in various categories. Each category has
its own specific weighting factor in order to ensure the more relevant categories pull more weight in the final
average. The breakdown structures of each trade matrix were designed first in order to allow for unbiased and
justified scoring. Each team member then assigned a score to each category for each trade study conducted
and these scores were averaged. In addition, the weights were also assigned to each category and averaged
for each trade study. Using the averages, the team then discussed each score to ensure the rationale matched
the breakdown structure categories. Using the final scores and weights, the trade matrices were completed
and the final solutions were evaluated and selected.

These trade studies were conducted for the three primary components of the system: the thrust-vectoring
mechanism, the windmill prevention system, and the MCB/electronics system. An additional trade study
was conducted for materials, and is available in the Appendix. The WHiMPS team felt that this trade study
was useful in estimating weights and costs, but is not finalized to conduct a formal trade study. Given that
the team did not yet have access to a Jetcat P100-Rx engine, exact thermal figures were not available to
complete a trade study and select a material. This is particularly relevant to the thrust vectoring mechanism,
where the mechanism will need to be able to handle high temperatures and stresses from the exhaust jet.

3.3.2. Windmill Prevention Mechanism and Thrust Vectoring Mechanism

The WHiMPS trade study matrices for the Windmill Prevention and Thrust Vectoring Mechanisms con-
tain the same categories and are therefore grouped here. However, they have different weights for each of
the aforementioned subsystems, as discussed in their trade matrix sections. Both systems used the same
Liekert scale, outside of the performance section due to different performance goals of each subsystem.
Each category’s description and a discussion of the thought process that went into it can be found below:

Simplicity All of the design concepts presented have their own unique complications and challenges, as
well as a need for certain expertise. This category takes into account two main factors. One consideration
in the rating is based upon the amount of experience the team has with each option presented. WHiMPS is
aware that a lot of these concepts will require the acquisition of new skills; however, establishing a baseline is
important to accomplishing the task in a time efficient manner. In addition to team experience, this category
also accounts for the complexity and feasibility of the project. Some of the options presented require more
machining and software control than others, so these factors were considered.

Engine/Facility Safety One requirement of the chosen mechanism is allowing the engine to operate safely
with the added mechanical parts and software. The trade studies presented offer both internal engine addition
options and external engine addition options. Because an internal addition has the potential to hinder the
flow or break off and damage the engine and facility, this was one factor considered more dangerous than
others. Also, the number of moving parts was also considered as this poses the risk of interference.

Mass/Profile Increasing the mass and profile of the system introduces a potential increase in drag on the
system. In addition, adding mass in general can cause an uneven distribution in the engine which would

05/04/20 13 of 117 PFR

University of Colorado Boulder

result in low or no functionality. Using this criteria, the mass/profile scores were evaluated based on the
increase in form factor and amount of material required as these both will result in a drag increase and thus
loss in efficiency.

Reliability The options presented range from needing consistent upkeep and maintenance due to part
failure or wear down to having an extensive lifetime with little to no assistance. The problems presented by
the AFRL are real-life concerns and issues that engineers are trying to solve on larger jet engines. Because
these solutions have a larger reach, it is important that they can be reliable and are able to survive a long time
of extended usage. For reliability, the options were evaluated based upon if they are single use or multi-use,
if they are likely to fail, and how often they would require maintenance. Reliability carried more weight in
the thrust vectoring category than the windmill prevention category due to the overall increased difficulty in
thrust vectoring over windmill prevention. It is predicted that the thrust vectoring mechanism will likely be
more complex and need to withstand more harsh operating conditions in the jet-stream. So, the team desired
a robust solution that would not require constant fixes to keep working.

Performance The performance of the windmill prevention mechanism is determined by the engine blades
RPMs. The goal is a 0.5 RPM value of the fan when the engine is turned off, which allows for noise from
the sensors and vibrations. The performance is also measured by the torque capacity that can be applied to
the engine/mechanism combination, except in the case of the cover. The performance of WHiMPS TVM
subsystem depends upon the ability to design a solution that has thrust vectoring capabilities greater than
or equal to ten degrees with no decrement of thrust at zero degrees. The options presented range in the
amount of thrust impedance they cause; internal components tend to impede the thrust more, thus this was
taken in considering when ranking in the trade matrix. The trade study also took the possibility of two thrust
vectoring axes into account, as this was desired (but not required) during the APOP demonstration.

Cost At the time of the trade study development, the WHiMPS discussed cost but ultimately decided to
abandon the cost of each conceptual design from the trade study. This was done for two reasons. First,
the team did not feel that they could accurately estimate the cost of each subsystem at the time of the trade
study. Each design was conceptual, and therefore predicting precise amounts of material needed would be
very subjective. Secondly, the team predicted that the relative cost difference between conceptual designs
for each subsystem would be small. Cost is important for any project, but relatively small differences in cost
should not be used to select one design over another.

WPM Trade Matrix These parameters were quantified on a Liekert scale as discussed in Section 3.3.1.
A table with the descriptions of each liekert scale can be found in Fig. 94 in Appendix A. The results of the
weighted trade study can be seen below in Figure 6. The engine cover design was selected for its overall
simplicity and engine safety compared to other designs.

Weight Category Design Choice (Windmill Prevention)
Engine Cover Hooks Sealed Notches Dog Clutch

0.21 Simplicity 4.2 38 3.1 [
0.19 Safety 4.6 23 34 2
0.13 Mass/Profile 3.4 3.8 3.2 3
0.17 Reliability 3.6 3.5 35 3.7
0.3 Performance 3.8 29 4 4.4

Final Weighted Average 3.9 3.2 3.5 3.1

Figure 6: Trade Study for Windmill Prevention Mechanism

TVM Trade Matrix The same process was applied to the TVM Trade study. A table describing the
Liekert scale used on the TVM conceptual designs, Fig. 95, can be found in Appendix A. The results of the
trade study can be seen below, in Fig. 7. Ultimately, the paddle design (called rudders at this point in time)
was selected for its simplicity, safety, and performance.

05/04/20 14 of 117 PFR

University of Colorado Boulder

Weight Category Design Choice (Thrust Vectoring)

Jet Vane Flex-Nozzle Fluidic TV External Nozzle Cruciform Rudders
0.24 Simplicity 4.5 3.8 4.2 4.2
0.14 Engine/Facility Safety 4.3 3 3.8 3.3 4.7
0.11 Mass/Profile 4.1 23 3.8 25 3.9 3.4
0.2 Reliability 4.1 2.2 25 4 4.3 4.67
0.31 Performance 3.6 4 3.1 4 3.4 4.9
Final Weighted Average 4.1 2.7 2.3 3.8 3.8 4.5

Figure 7: Trade Study for Thrust Vectoring Mechanism

3.3.3. MCB Microcontroller

Number of Digital Analog I/O Ports For the purposes of the experiment, the MCB microcontroller will
require a significant number of I/O ports to support the sensor and interfacing requirements of the WHiMPS
project. The microcontroller needs to have a sufficient number of I/O ports to properly support the project.

Familiarity/Documentation This category is important because the more familiarity with the microcon-
troller, in addition to the availability for open source and community supported documentation increases the
chances of success. Given that the team has received advice from a number of PAB members that simply
starting the engine will be a significant task, the WHiMPS desire an electronics system that team members
have past experience operating.

Number of Cores The WHiMPS wanted multiple cores as it gives us the option to develop a multi-
threaded software program. This greatly increases the performance as it allows us to run multiple processes
in parallel, such as sending data to the user interface and commanding the thrust vectoring mechanism at the
same time.

Processing Speed The processing speed is fairly important because a higher speed allows for data to be
acquired and commands to be executed more quickly. This will allow for faster response times for the thrust
vectoring system as well as a quicker deployment of the windmill prevention mechanism.

Cost Cost was considered because AFRL wants a more cost effective solution to the proposed problem. It
was not factored heavily, because most of the boards considered were similar in cost. Cost was included in
the microcontroller trade study as this information is easy to identify.

Board Size Size was factored in because the microcontroller needs to be a part of the hardware that will
be attached to a theoretical airframe, so the boards need to be relatively small to maximize their potential
for use in a practical manner.

Serial Interface When looking at serial interface, we were hoping to verify that we had options for both
SPI and I2C. This is because these are two of the more common serial communication protocols utilized for
the types of sensors we will require.

User Serial Interface This was an important category because the WHiMPS desire the ability to receive
data in real time as it is being collected, ideally with no cord. This will allow for better understanding of
how the system is operating during tests in response to different operating conditions.

Power Power is important to examine because theoretically this system will be deployed on a UAV. To
do so, the system will need to operate off of batteries or another power generation system on the UAV.
Given that more power will lead to heavier batteries to operate, which has a significant impact on the flight
performance of a small scale aircraft.

MCB Microcontroller Trade Matrix Like the previous trade studies, the categories of interest were
quantified on a Liekert scale, which is shown in Fig. 96 in Appendix A. The results of the MCB trade study
can be seen below, in Fig. 8. The Raspberry Pi 4 was selected, primarily for its serial interface and team
familiarity with the board.

05/04/20 150f 117 PFR

University of Colorado Boulder

Weight Category Microcontrollers
Beaglebone Blue Beaglebone Black Raspberry Pi 4 Raspberry Pi Zero WH NVIDIA Jetson TX2

0.05 # of Digital/Analog I/O Ports
0.3 Familiarity/Documentation
0.1 # of cores
0.1 Processing Speed

0.05 Cost
0.1 Board size
0.1 Serial interface
0.1 User Serial Interface
0.1 Power

Final Weighted Average 245 2.85 4.25 3.55 3

Figure 8: Trade Study for the Microcontroller

3.4. Design Outcomes

3.4.1. Windmill Prevention Mechanism

Overview The WHiMPS team accomplishes its functional requirements for windmill prevention by using
a two-piece fairing which will be mounted on the front of the P100-RX. These fairing pieces will be over-
lapping and will be held together by a pin system. The sides of the fairing will have tabs that will be attached
to a forward retention ring which will also have mounted solenoids. These solenoids will serve to remove
the pins in order to deploy the fairing away from the engine. An image of the integrated CAD model can be
found below in Figure 9.

Fore Solenoid
Retention Housing

Ejection
Spring
Location

6.8”

Solenoid
Pins

\

Figure 9: Integrated Windmill Prevention Mechanism

Fairing The WHiMPS fairing is a two piece component that has been manufactured using 3D printed car-
bon fiber reinforced Onyx from the Aerospace Building. The fairing will be attached to a forward retention
ring using side tabs that are optimized to best hold the fairing in place, but will not impede the fairings
ability to deploy. Each side of the fairing has a tab meant for the solenoid pin. These tabs are designed to
line up when mounted, and allow the solenoid pin to be inserted before deployment. The retention tabs as
well as the solenoid pin tabs can be seen clearly in Figure 10.

05/04/20 16 of 117 PFR

University of Colorado Boulder

5mm thick

97mm Solenoid
diameter Pin Tabs

107.5mm
Retention Tabs o in length

Figure 10: 3D Model of Fairing

In addition to the solenoid pin tabs, the fairing sides are designed so that they will have an overlapping
seam. This serves to avoid separation of the fairing due to airflow at the front of the fairing during flight
before deployment. An initial validation was completed using physical testing of a 3D printed preliminary
fairing model. An anemometer, compressed air at 17 m/s, and a PVC pipe were used to simulate high speed
airflow over the fairing. Since this test, the model design has been further developed to include a deeper
seam as well as thicker side walls of the fairing. An o-ring can be added to the inside of the seam for
redundancy if further testing reveals air leakage.

In order to validate the structural design of the fairing, WHiMPS met with Dr. Maute to discuss structural
stability and how to validate the free body diagram of forces acting on the fairing. Due to the complex forces
acting, Dr. Maute recommended we perform FEA using the designated pressure differential, and qualify the
deformation of the fairing in order to confirm that the design would work. Using SolidWorks FEA, the
WHiMPS were able to simulate the testing conditions of the AFRL demonstration in order to investigate the
strength of fairing sides and whether or not they would significantly deform due to the pressure differential
of 3.5 psi. The results seen showed minor deflection of the fairings, which validated the fairing designs, as
the deformation would be in the order of thousandths of millimeters. These results can be seen in Figures
11 and 12.

URES (mm)

4086003

l 370%-03
2371603

105 03

Figure 11: Structural Analysis of Left Half of Fairing Fjgure 12: Structural Analysis of Right Half of Fairing

Ejection of Fairing While not required by the customer, WHiMPS incorporated an ejection mechanism
for the fairing to improve the feasibility of the CONOPS. The fairing will experience three main forces,

05/04/20 17 of 117 PFR

University of Colorado Boulder

as shown in Figure 13; note that the two sides are modeled as symmetric to simplify the analysis. The
aerodynamic force is applied at the center of pressure of the system, the spring force is applied at the tabs at
the base, and the drag force is vertically applied at the tip. The drag force experienced under Mach 0.8 flow
at 20,000 feet is approximately 20 Ib-f. The aerodynamic force will help hold the fairing together until the
spring ejects; it will then aid in pulling the fairing pieces apart and into the freestream flow. The full free
body diagram is shown in Fig. 13. While the center of pressure is unknown and calculating it is out of the
scope of the class, these assumptions were validated by Professor John Mah.

F_drag

L_drag

N Assumptions:
| « Rigid Cover

* Pin mechanism can be

‘ designed to be sufficiently

| F_aero strong to prevent shear

| failure

| * Symmetric forces, difference

| L_aero in L_pin on left/right side is

| negligible

* Perfect seal leads to higher
static pressure inside of
cover

F_spring

Point of Rotation

L_spring

| c+ IM = 2(Fpin * Lp:n) - (Fspring * L.rpn‘ng) — (Faero * Lgers) + (Fdrag * Ldrag) =0
Note: There is another pin/solenoid system on the other side of this view, leads to the "2” in front of the pin term

Figure 13: Force and Moments Induced on Fairing During Ejection

For this mechanism, the fairing will be held together with two pins to allow for pre-tensioning with
springs. Figure 13 only includes one spring to simplify the diagram. Two solenoids will be used to pull
the pins when instructed by the MCB. The springs will then eject their corresponding fairing side, with the
help of the aerodynamic forces, and the engine will be ready to start. Figure 13 also provides the moment
equation and assumptions used in the analysis. The specific springs and solenoids chosen will be further
explained, but this equation proves that a positive moment will be generated onto the fairing, leading to an
effective ejection. A model of the fairing ejection can be found below in Figure 14.

Bt
~

Figure 14: Fairing Ejection Model

[[efCat PT00-RX]
[[Solenoid]
O End
=
|

!

TOP
VIEW

[[Fairing]
Starter Motor

Fore Retention Ring The fore retention ring allows for the fairing, solenoids, and the ICUP boards to be
mounted to the engine. The ring is designed such that it can be attached to the front of the engine using pre-
existing screw locations on the external of the engine. The ring will be latched onto by the fore retention ring,

05/04/20 18 of 117 PFR

University of Colorado Boulder

and the solenoids and ICUP boards will be mounted directly. This ring will be manufactured using carbon
fiber reinforced Onyx from the Aerospace Building. This will allow the fore retention ring to withstand
the higher temperatures that the front of the engine endures during operation, and provide a thermal barrier
between the engine and the mounted electronics. A summary of the derived conduction-convection thermal
model of the amount of insulation provided to the electronics can be found below in Figure 15. The resulting
surface temperature could be reduced to 59°C with a small amount of forced convection cooling, but can

reach up to 125°C under natural convection.

[Conduction through _ Natural convection

Fore retention ring =22

Ambient air at 25°C

Result: The temperature at the location of the ring to ambient air
boards can vary from 59°C to 125°C depending
on the convective heat transfer coeff.

Figure 15: Fore Retention Ring/ICUP Thermal Model

Solenoids and Pins The selected solenoids, Fig. 16, were chosen due to their availability as COTS parts
as well as the clevis type pin attachment they provide. This enables the ability to design a pin that can be
compatible with both the solenoid and the solenoid pin tabs on the fairing. The selected solenoid runs on
either 6VDC at 1 amp, or SVDC at 0.8 amps, both of which the ICUP board will be able to provide to the
solenoid. Use of these solenoids is favorable to the design because of the simplicity they allow for the rest
of the windmill prevention system. The functionality of the solenoid-pin system can be found below in Fig.
17.

. . Fairing
Solenoid Pin Tab

Fairing
Tab

Solenoid

Figure 17: Solenoid-Pin Diagram

Figure 16: Adafruit Medium Push-Pull Solenoid

Spring The addition of a spring to the inside of the fairing sides was decided on to increase ejection
redundancy. In the conditions that the fairing would perform, a speed of Mach 0.8 at 20,000 ft, the WHiMPS
are confident that the aerodynamic forces acting on the sides of the fairing will pull the fairing apart and eject
into free stream air flow, but the decision to add an additional ejection force that will ensure that the fairing
is ejected properly. The current spring choice is a COTS conical compression spring from McMaster-Carr.
The selected spring has a spring constant of 1.35 N/mm, and an extension length of 6 centimeters. An image
of this compression spring can be found in the Appendix in Figure 97.

05/04/20 19 of 117 PFR

University of Colorado Boulder

3.4.2. Thrust Vectoring Mechanism

Core Concept Choice The trade studies converged on the paddle technology, with core advantages being
simplicity and cost. The thrust vectoring mechanism (TVM) revolves around the paddles; the critical ele-
ment. Fundamentally, the TVM was to meet design requirements of the paddles in order for the paddles to
meet the functional requirements of the system. The design requirements were:

1. The TVM shall anchor the paddle near the exit of the nozzle, preventing translating of the paddle

2. The TVM shall use a controlled device to rotate the paddle about the anchor point

3. The TVM shall have a range of paddle rotation of 20° < —5°, where 0° indicates the paddle plane is
parallel to the engine central axis, and a positive angle indicates the tip of the paddle is rotated inward,
toward the central axis.

These were defined to help inform the design process and establish a solution space. The paddles themselves
meet the functional requirements, which is to reach 10° of thrust deflection in the two body axes. The rest
of the TVM can be thought of as an additional two sub-assemblies: one complies with the first design
requirement, the other complies with the second and third design requirements. First the critical element
(paddle) will be explored, then the two sub-assemblies.

Paddles The paddles are the critical element of the TVM, as this is the component that is directly used to
achieve the functional requirements defined by physically deflecting the exhaust flow of the engine.

Preliminary analysis modeled the paddle as a flat plate with finite area A,. An analytical solution was
derived to relate the angle of rotation (of the paddle) to the angle of deflection (of the exhaust) with a given
paddle area and nozzle area. This model, shown in Figure 18, used conservation of momentum to determine
a relationship between the paddle deflection and thrust vector. To get a rough estimate of the required surface
area for a paddle, the equation can be implicitly solved for the area given a desired thrust vector angle and
paddle deflection angle. When two paddles are used, which doubles the effective area in the model, the
required paddle area is approximately 1,200 mm?.

e i 114318 1 5401 0
P P

—r—s R
g .
Rofreerencnenes
) Ps/’ -

Paddle Paddle
o

—

0 gum=i sin®(a)
o An /A, — sin(a) + sin(a)cos(a)

Figure 18: Analytical Model for TVM Paddles based on Conservation of Momentum

The design process then began with constructing a CAD model of the paddle. The paddles can be
thought of as an extension of the nozzle, with a moderate bend at the joint so that the effective nozzle exit
plane is at an angle to the engine central axis. A nozzle extension was explored in the trade study, but
the manufacturing and control mechanism challenges were deemed too great; the paddles act like a nozzle
extension but with gaps. To better mimic a nozzle, the paddles were curved about one axis, with the radius
of curvature being just greater than the nozzle exit radius. The curvature helps each paddle conform to the
cylindrical exhaust plume and “catch” more of the exhaust for deflection. Additionally, when the paddle
is rotated into the exhaust, the curvature decreases the amount of exhaust that spills over the edges of the
paddle, improving effectiveness. From the analytical model and intuition, an increase in paddle area leads
to an increase in exhaust deflection angle for any given paddle rotation angle. Therefore, it is advantageous

05/04/20 20 of 117 PFR

University of Colorado Boulder

to maximize the paddle surface area in contact with exhaust. This can be done by widening the paddle
and by making it taller. The paddle cannot be made too tall, otherwise two paddles rotating inward will
contact. The design uses four paddles, so each paddle cannot have an arc spanning more than 90°. A wide
arc is desirable, as it increases surface area and also tightens gaps between paddles, reducing exhaust bleed.
Because of this, the arc angle was designed to be 85°, giving a expansive presence while not introducing risk
of paddle contact. The height of each paddle was then increased to meet the area requirements defined by
the analytical model mentioned previously. At the required height, the corners of the paddles would contact
each other, necessitating the change from a curved rectangle to a curved trapezoid. The trapezoid tapers to a
reduced width as the paddle extends outward from the nozzle to prevent corner contacts. The paddle heights
were adjusted to accommodate the reduced surface area of this change.

The design met the predicted area requirement of the analytical model, but the team became aware of
the shortcomings and assumptions of the model:

1. It assumes a flat plate for aerodynamic simplification, with any bleed flow and edge effects ignored.

2. It only analyzes a paddle’s individual performance, while two adjacent paddles should constructively
interfere.

Thus, we were in need of a more sophisticated model to predict the aerodynamic performance. The com-
mercial software package Autodesk CFD is a computational fluid dynamics tool that was used to make better
predictions. The 3D geometry of the paddles and the nozzle were put into the program and boundary condi-
tions were assigned at the nozzle exit to be consistent with information provided by the engine supplier. The
results of the CFD model showed that the analytical model demonstrated significantly lower performance
for the same paddle area and deflection angle. The CFD model is shown in Figure 19, and a comparison of
the analytical and CFD models is shown in Figure 20.

Comparison of Model and CFD Results for 850mm?

Model
® CFD
10 AFRL Reqt

Thrust Vector Angle [°]

0 5 10 15 20 25

Figure 19: Autodesk CFD Model; paddle area A = 0
Angle of Paddle Deflection [*

2 — o 3 [
850mm*, paddle angle o = 20°, exhaust deflection angle Figure 20: Comparison of Analytical and CFD Models
0=11°.

Iteration of the paddle height settled on an area of around 840 mm? to meet our functional requirements.
WHiMPS had more confidence in the CFD model, as it made fewer assumptions in contrast with the greatly
simplified analytical model. Therefore, the CFD model was used to inform the final design with an ap-
propriate margin. With the finalized surface profile, the team ran a battery of CFD simulations to create
a mapping of rotation angles to deflection angles. A continuous spline was fit to this data and used in the
control algorithms. The splines and the linear dynamics equations are shown in Figure 21.

05/04/20 21 of 117 PFR

University of Colorado Boulder

Thrust Vector Position Paddie Deflection ! Actuator Deflection
B ———
(8.8} ' | (8, 85,8, 8g) ! : {dy.dg,ds.dy)

TR R T T S i B T T C e Ty 1 '
: o o b e i et : P - .
i —— d [1 - . :
; | et — ;‘fr ' ; ff o ,
: " A S o, :
: o 1 : 2 gl o .
: -"'"- [: f'f /"f 1
: :/f L s |
: i P 1 :
: L Fai W [: : :”l.l 'r'r il i
; : P dy = ——ee g, |
E P 1804 /d;, , — d= :
0LOT30 - 008248 + 00608

2 i<l A W,)0 =2007 < iy < be b, i
20° <l <P e 2 <l <07
20° <l <0° & 0% <l =207, (07 <, <207 k207 <8 <07

i e 1 %

[
il i, 0003300 & 0E868 4 0.402 |
(

Figure 21: Paddle Deflection Calibration

As aerodynamics informed the surface geometry of the paddle, heat transfer informed the thickness and
material of the paddle. A simple 1D thermodynamic model was developed in Matlab to determine thermal
equilibrium of the paddle. The overall concept being Q;, = Q,,;. This model made assumptions about the
fluid properties and emissivity, as well as the turbulence transition point. A curve fit solution by Churchill
and Ozoe (1973) provided a relationship for the convective heat transfer coefficient, appropriate for any fluid
forced over an isothermal surface with any Prandtl number. This relationship is shown in Eqn. (1).

hex 0.3387Pr'Re)”

Nu = -
T T T 1+ (0.0468/Pr21A

ey

This formulation is claimed to be accurate to 1%, and its isothermal assumption is not extravagant
here. Incorporating the convective effects on both sides of the paddle, the radiative heat loss, and the
outward conduction, the model created a system of equations to be solved in order to achieve thermal
equilibrium, namely, the surface temperatures on each side of the paddle. This model converges on a solution
with minimal residual error solving the system of equations, with preliminary results predicting maximum
temperatures around 500°C. This model is summarized in Fig. 22. This immediately narrowed options for
the material, and a high strength stainless steel alloy was chosen to handle the high thermal flux without
warping. First principle structural analysis established a minimum thickness bound based on the expected
load cases, product availability lead the team to use 0.06” (1.5mm) thick sheets as the basis of the paddle
structure. Using the 17-4PH stainless steel properties with 0.06” thickness yielded a max paddle temperature
of 400°C. Using Solidworks Simulation, shown in Fig. 23, a thermal FEM model was developed and
predicted extremely similar results with a maximum temperature of 400°C, though this model included the
paddle neck structure. Even in an extreme case where the paddle surface reaches the exhaust temperature
around 700°C, the steel chosen has not reached even its hardworking temperature, thus the paddles would
not be in danger were they to get stuck at maximum rotation.

05/04/20 22 of 117 PFR

University of Colorado Boulder

Convective
cooling

/ Radiative

> cooling

Cool Surface
Temperature

248K

Figure 22: Thermodynamic Model of Paddle Figure 23: Thermal FEA Results of Paddle

The final design of the paddle consisted of the paddle face, which was just discussed in detail, and
the paddle neck. The paddle neck is what transfers the anchoring and rotating functions of the two TVM
sub-assemblies mention previously. The paddle neck does not contribute to the exhaust deflection. It is
primarily a rectangular prism, with two through-holes to accommodate the anchoring and rotating functions,
and a shelf which the paddle face sits upon. This shelf was implemented to assist the welding process that
binds the two sub-components together, as it allows the paddle face to sit in position without specialized
workholding tools. The dimensions were determined after iterative structural FEA, and the through-holes
are sized larger than the pins for tolerancing. The paddle neck receives more heat than the pins and reach
higher temperatures, therefore the blind holes thermally expand faster than the pins and introduce even
greater tolerances. The bottom hole is pinned to the nozzle sheath, which is rigidly attached to the engine,
therefore, the bottom hole is for anchoring the paddle. The top hole is pinned to the linkage rod and the rest
of the actuator sub-assembly, therefore, the top hole is for rotating the paddle. The front and back views of
the paddle are shown in Figs. 24 and 25, respectively.

73—

- .zoojrm ‘

Figure 24: Front Side of Paddle Figure 25: Back Side of Paddle

Nozzle Sheath The nozzle sheath, shown in 26, is the main component of the sub-assembly that complies
with the first design requirement of the TVM. The nozzle sheath exists to secure and anchor the paddles
around the rim of the nozzle exit. The nozzle sheath acts like a rigid wireframe that provides a mounting

05/04/20 23 of 117 PFR

University of Colorado Boulder

point for the paddle to be pinned to. At the bottom, interfacing with the nozzle base, is an annulus. The
base annulus has three holes placed where the engine normally mounts the nozzle. Thus the nozzle sheath
is mounted to the engine using OEM bolts. The annulus inner diameter is slightly wider than the nozzle
base diameter with tolerance for the vertical members (which are imprecisely bent into place and provide
the most uncertainty in the manufacturing process.) The annulus width is about 17, wider than the nozzle
base width, to create an overlap for sandwiching the actuator ring (green).

Figure 26: Nozzle Sheath Overview with Actuator Ring Sectioned

On the inner edge of the annulus are four rectangular members that extrude rearward, these connect
to the upper square ring, and extrude farther past the ring but now at a 20° angle, these ends are called
the sheath tabs. The square ring exists to provide rigidity to the structure, preventing one member from
deflecting and spoiling the control system laws. The sheath tabs each have two small journal bearings on
each flank. The bearings are separate components that provide the anchoring mechanism for the paddle. The
bearings are welded onto the tabs and a steel clevis pin is inserted to join the bearings and the bottom paddle
hole. The clevis pin has a cotter pin at the end to prevent sliding out. To simplify acquisitions, the nozzle
sheath is also made of 17-4PH stainless steel, 0.06” thick. Both the paddles and the nozzle sheath were
intended to be made from the same sheet. The nozzle sheath was subjected to a battery of structural FEA
tests simulating every conceivable loading case while using material properties at 400°C, the worst case
temperature. The structure passed every test case with significant margins of safety, the minimum being 0.6.
These tests however ignored welds, which may degrade local strength.

Actuator Sub-assembly The Actuator sub-assembly consists of seven components that together comply
with the second and third design requirements of the TVM.

Actuator Ring

Linear Actuator

Linear Actuator Pod

Linear Potentiometer
Actuator Nut (and attachment)
Linkage Rod

Linear Potentiometer Arm

Nk L=

05/04/20 24 of 117 PFR

University of Colorado Boulder

These components exist to enable controlled rotation of the paddles. Together, they form a simple linkage
system with closed-loop feedback to electronics.

The actuator ring is at first a 0.2” thick annulus wrapped around the nozzle base. The outer edge is
profiled to closer resemble a *plus’ with widths matching the size of the linear actuators. These four blocks
have a central through hole, which the actuator’s threaded rod passes through, and four small through holes
for the actuator to screw into. The whole component also has a 0.1” deep channel visible in Figure 27
below. This is to reduce mass and increase surface area for rejecting heat. This component was intended
to be composed of aluminum, but due to limited thermal testing and time crunch, a copy made of steel
was created instead that would be guaranteed to survive the heat flux in case it was worse than predicted to
be transferred from the engine. The linear actuators, which attach to the actuator ring, are NEMA size 08
hybrid linear actuators by Anaheim Automation, and are shown above in Figure 28.

Figure 28: 3D Model of Linear Actuator in Actuator Pod
with Actuator Nut at End of Threaded Rod

Figure 27: 3D Model of TVM Actuator Ring

The linear actuators sit fore of the actuator ring and are attached via four M2 screws to the actuator
ring. The threaded rod is spun by the internal motor, but as long as the actuator nut along the threaded
rod is fixed in rotation, the threaded rod will not translate, only rotate in place. By fixing the actuator
nut in rotation, the nut is forced to translate along the threaded rod. The white component is the OEM
actuator nut while the yellow component is a 3D-printed custom addition, it is another journal bearing that
is internally referred to as the actuator nut attachment. In this bearing goes a pin that attaches to the linkage
rod. Surrounding the linear actuator (cyan) in gray is the actuator pod. This is also 3D-printed from plastic,
and provides a light cage for the actuator. Its purpose is twofold: The solid face on the backside of the
image provides a mounting location for the linear potentiometer breakout board. The material separating
the actuator from the metal actuator ring provides vibrational damping and thermal insulation to protect the
electronics. The wires extending out of the page are the electrical connection from the linear actuator to the
Integrated Communication Unit Panel (ICUP).

The actuator nut attachment has a secondary purpose that is very beneficial to the assembly. There are
substantial tolerance stackups from the several components needing to come together, especially since the
manufacturing methods are less than professional. The actuator nut is 3D-printed, and its design intent
is to be the remedial action for the assembly failing to properly align. Each of the four paddle-actuator
connections would have its own custom actuator nut attachment. Multiple team members have personal 3D
printers, making rapid prototyping of this small component very practical.

The linkage rod, shown in Fig. 29, converts the actuator’s linear motion into the paddle’s rotational
motion, completing the second design requirement of the TVM. It is a steel bar in a jog configuration
consisting of rectangular prisms. On each end is a 0.128” through hole to accommodate 0.125” cotter pins.
The rod ends are rounded to prevent corner collisions. The jog is necessary because the threaded rod is in
plane with the center of the paddle, thus the rod would have to be a jog or a fork. A fork is more difficult to
manufacture, heavier, and busies the area around the paddle, which already has limited space for fastening.
The end of the rod near the paddle may experience significant heating from bleed flow and potentially
conduction from the pin, which is why this component is composed of stainless steel. The cross-section is

05/04/20 25 of 117 PFR

University of Colorado Boulder

0.27x0.2”, making one of these linkage rods mass under 10 grams. The final dimensions were informed by
manufacturing feasibility and FEM analysis.

To truly satisfy the design and functional requirements, the system must have closed-loop active con-
trol. It must be able to determine its own state and command itself to a new state. To accomplish state
determination, a linear potentiometer was added to the system. The linear potentiometer is effectively a
variable resistance slider, sending electrical signals that indicate the position of the tab along its slide. The
linear potentiometer is connected to its breakout board (a PCB) which is mounted onto the actuator pod.
The linear potentiometer directly informs the controller of the position of the actuator nut. Via dynamical
relations explored in Figure 21, the nut position determines the angular orientation of the paddle. The white
member is referred to as the linear potentiometer arm and is rigidly joined to the actuator nut with a slot on
the opposite end to fit the potentiometer tab. This component is 3D printed plastic. The full feedback system
is shown in Fig. 30.

CI (oo /A

\ :
|

O] =

]) Figure 30: Closed-Loop Feedback Assembly 3D Model
Figure 29: Linkage Rod 3D Model - Pinned Between Ac-

tuator Nut and Paddle

TVM Assembly In concert, all these components meet the design requirements to anchor the paddle,
rotate the paddle in a controlled manner, and provide paddle state determination while the paddle itself meet
the functional requirements associated with deflecting the exhaust flow. The full assembly is shown in Fig.
31. To briefly summarize the TVM:

The nozzle sheath anchors the paddle in place near the nozzle exit

The actuator ring provides a sturdy mount for linear actuators.

The linear actuators receive commands to rotate the threaded rod.

The threaded rod rotates in place while the actuator nut is not allowed to rotate and translates along

the threaded rod.

The actuator nut is pinned to the linkage rod, converting linear motion into rotational motion.

6. The linkage rod is also pinned to the paddle, making the paddle rotate as the linkage rod rotates
according to a deterministic dynamical relationship.

7. The linear potentiometer senses the linear motion and indirectly informs the controller of the paddle

state.

i

b

05/04/20 26 of 117 PFR

University of Colorado Boulder

Figure 31: 3D Model Assembly of Entire Thrust Vectoring Mechanism.

3.5. Electronics

The electronics subsystem consists of providing and distributing regulated power and data to the CPU
and critical hardware on WHiMPS. Due to the lack of space on the engine, the CPU and power regulation
will be placed on a board separate to the hardware. In a mission context, these boards would be placed
along with other avionics within the airframe. This is the driving factor to the current electronics design of
having three separate PCB’s: Main Control Board (MCB), Integrated Unit Communication Panel (ICUP),
and Linear Potentiometer Breakout Board (LPBB). The following sections will describe these boards in
depth.

3.5.1. Main Control Board

The Main Control Board is the test-bench PCB that is separate from the engine and hardware. This
provides the computing power and power regulation that is distributed to the ICUP and LPBB. Specifically,
the list below are the circuits that make up the MCB. The final updated design (Revision B) is shown in
Figure 32, which is placed in its respective housing, shown in Figure 33. The dimensions of the board is
8.62in x 4.19in. In addition, all connectors are provided by MOLEX, other than the MCB to ICUP harness.
This harness is provided by SAMTEC, driven by size requirements for the ICUP connectors.
Components on the MCB board:

Power Protection, Regulation, and Selection
CPU

Load Cell and Amplifier

Indicator LEDs

Power Check MOSFETS

Temperature Sensors

MCB <-> ICUP Harness

Nk L=

05/04/20 27 of 117 PFR

University of Colorado Boulder

Figure 32: Main Control Board Rev. B Design

Figure 33: Main Control Board Case

Starting with the power circuitry, the Rev. B schematic for this section is shown in Figure 34. The
start of the circuit starts with the power selection. There is a SPDT switch that will choose what power
source the system takes in. This is to have the option for either external power or a battery source for
testing or the demonstration. A majority of the electronics tests have been using the external power source
for convenience, but the battery helps provide simplicity for the demonstration. If the battery is selected
through the switch, the current goes through an ammeter before the power gets regulated. This is to monitor
the state of the battery. External power does not require any monitoring. In addition, the current then
flows through an ON/OFF switch (a SPST). This is for emergencies, in case the power needs to be shut off
immediately.

The power is protected through a PMOS FET in the Power Path, as well as a zener diode from voltage
to ground. The PMOS FET circuit will prevent the current from being reversed, and the zener diode protects
the circuit from overvoltage.

The final part is power regulation. The rest of the PCBs require maximum of 5V, so an efficient step down
converter is used to bring the battery/external power voltage (7.6V) to 5V. The current after the converter is
now protected, regulated, and properly selected for the rest of the system.

Power Selection, Protection, And Regulation A
Rev B. Added PWR_FET_DRIVER_3 and 4
BATT Vent : PWR FET L
B Vext
I l vBATT =
o ==c2] F x ok
IDHFIUuF GND 4“|-GND [
— = ExtPower Supply PMOS FET in the Power Path \ Bl O S ;
¢ o | Lo b st ! o GLD-\”—] a0z g p g oD s—“\-c}m]
S VIN Vout v i
3 .]
e B ———— A
5 VBATT Power Selection D11 10uF 3V Step Down 10uF
veart L1 Catode [L Bl
2 GND T GRND GND
o (H— ke L B sy Ne =]
Battery — 5 |E I [| 1 E
Py R R _“j Anode [—— i
of | | | o | MM ZerDiode | 5 Rev B: Changed PHASE to DIR and EN to STEP
g 2
=

6
[Current Sensor

SDA [
SCL

4

Vin-

2

Vin- VCC

Vint Vint —=

2
1

=
=

TR

Rev B: Took out Software cutout for battery

Figure 34: MCB Power Protection, Regulation, and Selection Schematic

The main processing power comes from the CPU, which is the Raspberry Pi 4. The pinouts of all data

05/04/20 28 of 117 PFR

University of Colorado Boulder

lines connected to the CPU can be found in the Appendix, in Figure 99).There are 18 GPIOs, 1 one-wire,
and 1 I12C ports used from the Raspberry Pi 4 to control all of the devices on WHiMPS. I12C port has one
device (ammeter), one-wire has 12 temperature sensors, and the 18 I/O ports are split between the following:
2 solenoid, 4 power FETS, 4 load cells, 8 actuator, and 2 LEDs (OVERHEAT and Low Battery).

For testing purposes, load cells are needed for determining the thrust vectoring. This was an addition to
Rev. B, and there are two placed on the MCB for two axis. To amplify the analog signal directly coming to
the MCB from the load sensors, there are proper amplifiers for both cells. This is shown in the Appendix,
in Figure (100).

It is also critical to know the state at which the hardware and system is at during testing, therefore
indicator LEDs are placed on the MCB. More specifically, there are nine LED circuits displayed and labeled
in the Appendix, in Figure 101. Eight of these LEDs are controlled by the CPU, the last one is an ON/OFF
LED controlled by the power regulation circuit. The colors of the LEDs distinguish the type of hardware
being activated.

For emergency and low power reasons, there will be MOSFET circuits used to control the power going
to each of the actuators motor drivers (4 totals). This is highlighted in Figure 35. This allows full software
control for the actuators, just in case there is an error during testing/demonstration or to save power during
windmilling prevention procedures.

Power Check FETS

2 PWR _FET DRIVER 1 2 PWR FET DRIVER|2
mm\l— D IEEE i C,_\D.‘Hii D
1 RI13 pWR_FET_DRIVER P1_1 o Lt RI4 pWR FET DRIVER PI)
1k
ik

[5|2 PWR FET DRIVER 3

oo owf— 2] p
1 RIS pwR_FET DRIVER_PI 3
G
= 1k - 1k
@
Rev B: Added two more PWR FETS for the other 2 drivers

3 PWR FET DRIVER 4

RIS RIVER 71
1 PWR_FET_DRIVER PI 4

Figure 35: MCB FETS Schematic

The final two parts are the temperature sensors and the MCB < — > ICUP Harness, shown in Figure
36. There are four temperature slots on the MCB. Two are planned to monitor the battery and the step down
converter. The two other ports are for backup or to be used for redundancy. The temperature sensors being
used are one wire DS18b20 sensors and are consistent throughout the system. The MCB < — > ICUP
Harness is a connector between the MCB and ICUP to transmit power and data to the engine components
and PCBs. Also, on Figure 36, are the datalines that are being trasmitted to the ICUP.

Temperature Sensors
MCB <-> ICUP Port

o 1
0 - =
D 14“\‘;—.\]3 SV Veo e =
po L2 1Wire 2 pe
Vee FE——sv G,\‘D‘\H—] GND
DSTEB20 DSTEB20
i} T
GND 14“\‘5.“) SV—— Vee
DQ [-2 2| po
Vee 2 ——{sv f‘ G,\‘D‘\H—] GND =
DSTSB20 DSTEB20
il o
Rev B: 5V into Vce. and 3V3 pull down for DQ

Rev B: Added PWR_FET_3 and 4, and teok out 3V3

Figure 36: MCB Temperature Sensors and MCB < — > ICUP Harness

3.5.2. Integrated Communication Unit Panel
The Integrated Communication Unit Panel (ICUP) is an extension of the MCB to the engine by providing
the necessary hardware power and data. As mentioned in the previous section, the power and data is sent

05/04/20 29 of 117 PFR

University of Colorado Boulder

through the MCB < — > ICUP connector. The Rev. B design is shown below in Figure 37. This design
is a four panel ring that surrounds the engine and is connected by SAMTEC connectors. Each panel has
a different circuit that provides for the nearest hardware. The only identical part is the panel to panel
connector. This provides connection between all the panels, and it helps provide redundancy for the power
and data going to each panel. The four panels are connected to the fore retention ring with 3 4-40 screws.

The list of parts/circuits are listed below each panel’s schematic. In the following section, the Linear
Potentiometer Breakout Board shall be discussed. This is the last PCB design that extends from the ICUP
to the actuator potentiometers. In addition, each ICUP panel has the dimension of 2.17in x 1.38in. The
schematic of each ICUP board can be found in Appendix A, in Figures 102 - 105.

Figure 37: ICUP Revision B Design

The functions and connections of each ICUP panel can be seen in the lists below:

1. Panel 1 3. Panel 3
 Panel to Panel Connector (2x) ¢ Panel to Panel Connector (2x)
* ICUP< — >MCB Connector * Motor Driver and Actuator Circuit 3
¢ Motor Driver and Actuator Circuit 1 « LPBB 3
* LPBB 1 * 5V to 2.5V Step Down Converter Circuit
* 5V to 2.5V Step Down Converter Circuit 3 © cp owh Lonverier et
1

* Temperature Sensors (2x)

— Motor Driver 1 _ %cothoz{t(]))r%ver .

— Actuator 1
2 Panel 2 4. Panel 4

» Temperature Sensors (2x)

¢ Panel to Panel Connector (2x) * Panel to Panel Connector (2X.) .

* Motor Driver and Actuator Circuit 2 * Motor Driver and Actuator Circuit 4

« LPBB?2 e LPBB 4 o

* 5V to 2.5V Step Down Converter Circuit * 5V to 2.5V Step Down Converter Circuit
2 4

Solenoid Circuit 2
Temperature Sensors (3x)

Solenoid Circuit 1
* Temperature Sensors (3x)

— Motor Driver 2 — Motor Driver 4
— Actuator 2 — Actuator 4
— Solenoid 1 — Solenoid 2

3.5.3. Linear Potentiometer Breakout Board

The LPBB converts potentiometer analog output to a digital signal. It contains the linear potentiometer
and is connected to the Actuator Ring. There are 4 boards which connect to the ICUP and drive the thrust
vectoring paddles. Each LPBB is identical to the design shown in Figure 38 (Rev. B). The circuit for each
LPBB is shown in Figure 39. The dimensions for the LPBB design is 1.72in x 1.02in.

05/04/20 30 0f 117 PFR

University of Colorado Boulder

Linear Potentiometer And ADC Circuit

n

5V L 5V =
scL 2 SCL. 25 b3
SDA 3 SDA. o .
G ——l.oxn Linear Poteafiometer SR

ICUP=-- LPBB

Rev B: Different combinations for each ADC
ul

Yal 1lcm- apri 5 sv
Wi 2 e Apro 2 RS |
|- GND.

(M).l"—’ G scL (S-S p
I B
] v

< ?

0

R
g RS

cH- spa [L—SPA

s

‘_' WHiMPS - LPBB Zr 2)ADC:TBBITVDD 2 X |-oxo
O
() Rev. B N o it
Lucas Zardini OuF o

Rev B: Replaced the ADC with multi addresses

Figure 38: LPBB Rev. B Design Figure 39: LPBB Circuit

The circuit for each LPBB includes an LPBB < — > ICUP connector, ADC, and linear potentiometer.
The linear potentiometer uses a Wheatstone Bridge circuit, used to help derive a differential output to the
ADC for more accurate voltage readings. The theory behind this is to include three other identical resistors
with the potentiometer and to place the voltage reading points between two identical resistors (fixed voltage)
and the voltage potentiometer output. This helps keep a steady, low error voltage reading. For the ADC
circuit, it takes in the differential voltages and converts it to a I2C digital signal. There must be four addresses
for each LPBB, therefore, to keep the simple/identical design, zero ohm bridge resistors were placed to
obtain these four addresses by placing ADDRO/ADDRI to either high or low. These high or low resistors
are tied to 5V or to GND respectively.

3.6. Main Control Board Software

The Main Control Board Software is the main software for the WHiMPS that is responsible for con-
trolling and monitoring the Windmill Prevention Mechanism as well as the Thrust Vectoring Mechanism. It
runs on the Main Control Board, or more specifically, the Raspberry Pi 4. The software was developed in
the Eclipse Integrated Development Environment (Eclipse IDE) on a Personal Computer (PC) running the
Ubuntul9 Operating System (OS). Additionally, the software was programmed in the C++11 programming
language and unit tested with the Catch2 Unit Testing Framework.

3.6.1. Software Architecture

Figure 40 shows a high level view of the Main Control Board Software’s Architecture. There are many
elements to the architecture which are all ultimately utilized by at least one of the three threads running
during program execution, the Health Status Thread, the Command Thread, and the Watchdog Thread. It
is easiest to consider each of these elements as falling under one of the six top-level categories: Threads,
Subsystems, Devices, Serial Drivers, Utilities, and Unit Testing.

05/04/20 31of 117 PFR

University of Colorado Boulder

3
o) [Heaith and Status . .
E Thread Command Thread Watchdog Thread
Subsystem Base
[}
£ ECU WPM VM MCB
Eg
@ Hardware ECU | Hardware WPM Hardware TVM Hardware MCB |
E
w Software ECU | Software WPM | Software TVM Software MCB |
None ECU | None WPM | None TVM None MCB |
e ‘ oo ‘ ECU Interface Solenoid Interface ‘
L%
=
2 Load Cell Interface FLELL s LabView Interface Actuator Interface
(=] Interface
‘ I » Bus
I
z2 + ¥ ¥ +
E = 1-Wire Manager 12C Manager RS232 Manager ‘ GPIO Manager
-
' ' v '
‘ it ‘ Mock [2C Manager v Mock GPIO Manager
w ‘ Lock Guard ‘ Watchdog File System Packet Definitions
-]
=
5 Logger Time Keeper File Manager Command Handler
E g Software Unit Tests Hardware Abstraction
= Layer (HAL) Unit Tests
@
=
e R
Parent to Child Class Thread Other

Class Inheritence

Figure 40: Main Control Board High Level Software Architecture Diagram

Threads
The first of the three threads is the Health and Status Thread. This thread manages the collection of the
Health and Status Data Packet which is used by LabView to monitor the operations throughout the entire
system. Every one second it collects data from each of the subsystems sensors and devices, packages that
data into a predefined format, and send the data over RS232 to the LabView.

The next thread, the Command Thread, polls the RS232 receive buffer every one second to check for
incoming Command Packets from LabView. Once a packet is received, it is sent through a validation
routine to check the validity of the received command. If the command passes all of the validation checks,
the command gets executed and a Command Acknowledgement Packet is sent back to the LabView that
identifies the received command and an error code specifying if the command was executed successfully or
not. Otherwise, the command does not get executed and a Command Acknowledgment is sent back to the
LabView specifying the identified error for that command.

The final thread is the Watchdog Thread. The purpose of this thread is to start running as well as
monitor the other two threads to make sure they are continuously running. The Health and Status and
Command thread each run their processes in an infinite while loop, where on each loop iteration they “’kick
the Watchdog”. By kicking the Watchdog each loop, these threads are telling the watchdog that they are

05/04/20 32 0f 117 PFR

University of Colorado Boulder

running nominally and not hung in any spot. The Watchdog Thread also runs in an infinite while loop, where
in each loop the Watchdog first sleeps for 10 seconds and then checks that the other two threads have kicked
the watchdog within that 10 second period. If a thread has not kicked the Watchdog within that time frame,
then this means that the thread is hanging. For this scenario, the Watchdog will restart the thread so it can
run again nominally.

Subsystems
The MCB software considers the Windmill Hindrance and Maneuverable Propulsion System as a break-
down of four main subsystems: the Engine Control Unit, the Windmill Prevention Mechanism, the Thrust
Vectoring Mechanism, and the Main Control Board. The MCB software both controls and monitors three
of these subsystems. Particularly the two temperature sensors and solenoids in the Windmill Prevention
Mechanism, the six temperature sensors, two motor drivers, two load cells, and four linear potentiometers
within the Thrust Vectoring Mechanism, as well as two temperature sensors, an ammeter, and power control
circuitry for the motor drivers on the Main Control Board. The MCB software does not control the ECU, but
it does monitor the system by collecting the systems engine turbine RPM, exhaust gas temperature, engine
state, fuel flow rate, and battery charge.

As the MCB software was developed in the C++ programming language, many of the object oriented
principles were taken advantage of when designing the architecture. One of the most effective uses of these
principles is very apparent in the design of the subsystem class objects. The design first contains the highest
level class, called a parent class, which is the Subsystem Base. As shown in the Appendix in Listing 1,
the Subsystem Base outlines three methods for which all of its inherited classes must have: an initialization
routine, a handle command routine, and a get Health and Status Routine. It does not provide definitions of
these functions, but all classes that are of type Subsystem Base must provide their own implementations of
these functions.

One level below the Subsystem Base is the ECU, WPM, TVM, and MCB classes. These classes are
child classes to the Subsystem Base meaning they inherit from the Subsystem Base. By inheriting from
the Subsystem Base, these classes can be recognized by two class types. For example, an WPM object
can be attributed to both the WPM class and the Subsystem Base class. These second level classes each
provide their own implementation for the handle command routines since each system has a unique set of
commands that it can execute and all child classes of the second level classes use the same implementation.
Additionally, each of these second level classes provide definitions but not implementation methods for each
of the commands it can execute. Similarly, any class that inherits from one of these second level classes
must provide their own implementation. An example of a second level class definition and implementation
is shown in the Appendix in Listings 2 and 3 for the Windmill Prevention Mechanism. The handle command
routine is implemented since all WPM child classes handle the commands in the same exact way whereas
the eject fairing routine for executing the Eject Fairing Command is only defined since the implementation
of executing this command varies with the WPM Class’ child classes.

Each second level class is then a parent class to three child classes: a hardware, software, and none (or
disconnected) implementation of the second level class. The hardware implementation of the class is instan-
tiated when that subsystems hardware is physically integrated with the MCB, the software implementation
is instantiated when the hardware is not physically integrated but it is desired that the MCB monitors and
controls the subsystem with simulated hardware serial drivers (or mock serial drivers), and the none im-
plementation is instantiated when the systems hardware is not physically integrated and simulation of that
hardware is not necessary. When the objects are being built at the start of the program only one of the lowest
level objects for each subsystem will be instantiated. Which lowest level object gets instantiated for each
subsystem depends on the build configuration, which will be discussed later in this section. Additionally,
each of the lowest level classes can be recognized by three class types. For example, a Software WPM
Object is of type Subsystem Base, WPM, and Software WPM.

An example of the None and Software WPM classes are shown in the Appendix, in Listings 4-7. First
shown are the header and source files for the None Windmill Prevention Mechanism Class. As shown in

05/04/20 33 0f 117 PFR

University of Colorado Boulder

the class constructor, NoneWPM::NoneWPM(), the states of the solenoids and temperature measurements
are set to zero. Each time the health and status routine is called, the health and status for that subsystem is
filled with zeros. Additionally, if an eject fairing command is received, the command is not executed as the
subsystem is in a disconnected state and the associated error code is returned.

The Software WPM class, shown in the Appendix in Listings 6 and 7, provides a greater functionality
than the None WPM class. When instantiating the class, a vector of the temperature interface objects and a
vector solenoid interface objects are passed in as parameters. These interface objects are built using Mock
Hardware Managers that allow the collection of data from these devices to be purely software simulated.
Additionally, it will simulate the ejection of the fairing by changing the state of the solenoids. The changing
of the state is not explicitly shown in these code blocks as this happens within the eject() function that is
implemented else where.

The Hardware WPM code is almost identical to the Software WPM Class, with the exception that the
vector of the temperature interface objects and the vector solenoid interface objects are built using non-mock
hardware managers. Hence, the class will drive interactions with the physical hardware. In addition, there
is more complexity with error handling and threshold checking.

Architecture Design Theory At first this design may seem extremely complicated and quite possibly
unnecessary, but there is a good reason for this design as there are three major pay-offs in the long run.

The first pay-off is that as the Windmill Hindrance and Maneuverable Propulsion system is being devel-
oped and tested, hardware will become available incrementally rather than all at once. Hence this gives the
team the flexibility to run the same program while accounting for which systems are integrated and which
systems are not. The addition of the software subsystem classes allows the MCB software to be tested to a
much greater degree than the none subsystem classes as it utilizes all of the same methods that the hardware
classes use with the exception of using the software simulated hardware drivers.

The second major reason for designing the software in this way is so that each Level of Success can
be tested using the same program but with different build configurations. Shown below in Table 4 is each
of the build configurations that are utilized to test each level of success. The first level of success for
the Windmill Prevention Mechanism corresponds to a purely software simulated system without the other
systems integrated. Hence, for the WPM1 build configuration, the WPM is built with the Software WPM
Class while the other three subsystems are built with the None classes. Note that for the purposes of the
table, the LabView is categorizes as a subsystem, although its implementation in the design is different.
The LabView can be built either in a software simulated mode or with actual hardware drivers and is not
required to meet the first level of success for the WPM or the TVM, which is why there are a total of four
build configurations for the first Level of Success. While there are a total of 9 build configurations listed
in the table, in fact many more configurations can be created. If the build target for the program is a Linux
PC, any of the None or Software classes can be utilized which gives a total of 32 build configurations for
running the main program and an additional 1 build configuration for running the software unit testing build.
If the build target for the program is the Raspberry Pi, any of the None, Software, or Hardware classes can
be utilized which gives a total of 162 possible build configurations plus an additional two for the software
unit testing and hardware unit testing. In total, this design allows the same exact program to be run in 197
different ways without having to change any code.

05/04/20 34 0f 117 PFR

University of Colorado Boulder

Table 4: MCB software build configurations corresponding to each level of success

Subsystem Build Mode
. Build
Level of Associated " Rumn
Success | Subsystem Configuration Target Windmill Thrust Main
Mnemonic Prevention Vectoring Contrel Engine LabView
Mechanism Mechanism Board
Windmill
Prevention W1 Linux PC Software MNone MNone Mone Software
Mechanism
Windmill
Preventicn W_LV Linux PC Software Mone Mone Mone Hardware
Mechanism
1
Thrust
ectoring ™1 Linux PC Mone Software Mone Mone Software
Mechanism
Thrust
Vectoring TVI_LV Linux PC Mone Software Mone Mone Hardware
Mechanism
MNone
Thrust
Softw
2 Vectoring V2 RES[;PB[W Hardware MNone Software, Mone Hardware
Mechanism ! or
Hardware
- . MNone
Windmill
Softy
Prevention WP3 Rasg?errf Hardware MNone Software, Mone Hardware
Mechanism ' or
Hardware
3
MNone
Thrust
Softy
Vectoring TV Rasgi}err,r Menz Hardware _oﬂ;are. Meonz Hardware
Mechanism
Hardware
Wi il
P};I'?ed::ilgn None
Softy
4 and Thrust DITL Rasgi}err,r Hardware Hardware _oﬂ;are. Mone Hardware
\-"ector!ng Hardware
Mechanisms
Windmill
Miechanism None
v Softw
L} Thrust DITL Rasgi}err,r Hardware Hardware _oﬂ;are. Hardware | Hardware
\-"et‘.ton_ng Hardware
Mechanism
and Engine

The final pay-off can be seen in the implementation of the software. As described above, the subsystem
classes are organized into a three-level hierarchy where the the top level class is the parent to the four middle
level classes and each of the four middle level classes is a parent to three bottom level classes. Only one of
the three bottom level classes is instantiated for each subsystem. Since each of the four instantiated lowest
level classes are all of type Subsystem Base, this provides the opportunity for these classes to be utilized by
the Health and Status Thread as well as the Command Thread with a great deal of abstraction. The concept
of abstraction refers to the hiding of information, where the caller only knows the minimum amount of
information required when calling the abstraction routine. Recall the three functions within the Subsystem
Base: initialize, get health and status, and handle command. These are all abstraction methods because the
caller does not need to know what those functions are doing internally. It just needs to know when to call
them. For example, the Health and Status Thread knows that it needs to collect health and status data from
each of the subsystems every one second. But, it does not need to know whether or not that subsystem is
disconnected, software simulated, or hardware integrated. Since all of the instantiated classes provide their
own implementations for get health and status, the Health and Status Thread just needs to call that function
on each subsystems lowest level object and that low level object determines which implementation of the
get health and status method that will be used. An additional layer of abstraction is also taken advantage
due to the polymorphic structure of the classes. Polymorphism is when multiple classes have a parallel
structure. So for this design, the subsystem classes are polymorphic because each of these classes have
a initialize, get health and status, and handle command method with the same inputs, outputs and function
name. The impact of this is shown in the code block from the Health and Status Thread below. To collect the
health and status data from each of the subsystems all the thread needs to have is a vector of type Subsystem
Base containing the the instantiated lowest level objects for each subsystem. It doesn’t need to know which

05/04/20 350f 117 PFR

University of Colorado Boulder

subsystem is which, all it it needs to do is iterate through the vector and call the get health and status function
for each object. This is one of the best examples of showing how a program that can run nearly 200 unique
build configurations can execute a very complicated process with large variability by using only one for loop
containing only one line of code.

// Run through the sequence collecting health and status from the subsystems
for (std::vector<SubsystemBasex>::iterator i = healthSeq.begin ();
i != healthSeq.end (); i++) {
health . push_back ((*i)->getHealthandStatus ());
}

Devices
The next subcategory of the MCB software architecture is the Devices. Each device has its interface class
which handles data acquisition and processing at one abstraction level above the hardware abstraction layer
(or the serial drivers). This means that it does not need to know how the devices serial protocol works at
a low level, it just needs to know what functions to call to control or monitor the device. The Temperature
Interface class, for example, consists of an constructor, deconstructor, and two functions: a begin sample
routine and a get sample routine. When a Temperature Interface object is instantiated for a temperature
sensor, a reference to the One Wire Manager is passed in along with a unique identification (ID) for that
temperature sensor. Note that the One Wire Manager and unique ID will be discussed in more depth in the
next section. When the begin sample function is called by some arbitrary caller, it just needs to call the
One Wire Manager’s write to file function and identify which device the sample needs to begin for with
that devices unique 1D, what file it needs to write to (the start file), and what value to write to that file
(a 1 specifies that the sensor should begin taking a measurement). Similarly for the get sample routine, the
Temperature Interface just needs to call the One Wire Manager’s read from file routine once again specifying
the unique device ID and which file it would like to read from. Once it gets the measured data for the device,
it performs error checking on the read value and then converts the data to the desired data representation if
the checks pass. An example of this can be seen in the Appendix in Listing 8.

This same level of abstraction is present in the seven other device interface classes: the Ammeter Inter-
face, Potentiometer Interface, ECU Interface, LabView interface, Solenoid Interface, Load Cell Interface,
and Actuator Interface. Recall the above code example of the WPM Class where it collects temperature
data. This is another layer of abstraction. When the WPM needs to collect temperature data, all it needs to
do is call the begin sample function followed by the read sample function. The WPM is does not need to
know any more information regarding the temperature data collection processes as this is handled at much
lower abstraction levels.

Serial Drivers
Similarly to the subsystems, the serial drivers are also implemented with a multi-level hierarchy that utilize
polymorphism, abstraction, and inheritance. The highest level class is the Hardware Manager which simply
defines a type for all of the inheriting classes as well as an initialization routine.

The Bus Manager is a template class that inherits from the Hardware Manager. There are four physical
hardware busses, or device types, that contain all of the devices: the 1-Wire Bus, the 12C Bus, the RS232
Bus, and the GPIO bus. Each of these is a child class that inherits from the Bus Manager and Hardware
Manager Class: the One Wire Manager, I2C Manager, RS232 Manager, and the GPIO Manager. Further-
more, each of these classes has its own Mock child class at the fourth hierarchical level: The Mock One
Wire Manager, Mock I12C Manager, and the Mock GPIO Manager. These child classes will redirect any
methods that require hardware interactions to their own implementation of the method. Hence there can be
a total of 8 device types.

Only one class of each of the 8 device type managers is allowed to be instantiated, as each object is
responsible for managing its entire bus. Before a bus can be initialized, all of the devices it will use must
first be attached. The attachment procedure uses a registry system using a devices information, adds that

05/04/20 36 of 117 PFR

University of Colorado Boulder

device to the bus so long as it has not already been registered, and returns the unique device ID that was
mentioned above. The attachment process takes place directly before the the devices interface object is
created. Once all of the devices have been attached to their bus the main program will go through and
initialize all of the devices.

The Bus Manager is a template class because it provides high implementations for all of the routines
that every single device on each bus must go through including the attachment routine and the initialization
routine. These high level routines then make function calls to methods or reference class attributes that are
defined by the corresponding device manager’s class. Which implementation gets called is mapped by the
type of device (ie. 1-Wire) that an inherited device type class defines itself as.

A small portion for the code of the Bus Manager class and the One Wire Manager class is shown to
exemplify the two class’ relationship during the initialization process for an entire bus of devices. When
the program is ready to initialize all of the devices, it iterates through a vector of type Hardware Manager
that contains all of the required device type manager objects. On each object it calls the initializeDevices()
function defined in the Bus Manager class. The One Wire Manager Class’ definition in the Appendix Listing
9, for example, specifies itself as type One Wire Device which allows the Bus Manager parent class to know
what type of device the One Wire Manager class managers. So, when the initializeDevices() method is
called on the One Wire Manager Object, the Bus Manager references the vector containing all the One Wire
Manager’s devices, iterates through this vector, and then calls the initializeDevice() routine for each of the
devices attached to the bus. Since the One Wire Manager Class has specified itself as type One Wire Device,
the One Wire Manager’s implementation of the initializeDevice() routine is explicitly mapped to the Bus
Manager call. This is the same for the remaining 7 device types as each of their class definitions specify
their unique device type.

Utilities The next subcategory of the the MCB software architecture is the utilities. These contain a
variety of important software implementations that are utilized throughout the code.

The first, and arguably the most important, is the Lock Guard. The Lock Guard is a software imple-
mented locking system that ensures the mutual exclusion of shared resources. For example, if the Command
Thread is trying to execute a eject fairing command (which changes the GPIO levels of the solenoids) while
the Health and Status Thread is requesting the states of the solenoid’s GPIO levels, a fatal error will occur
from trying to access and change those states at the same time. To prevent this error of having two locations
in the code accessing a shared resource at the same time, a locking system was put in place. In this program
a resource will be considered at the class level. Hence for all classes that are considered shared resources,
they will have their own Lock object attribute (not Lock Guard). When a shared resource in that class is
called, for example the GPIO Manager’s set method which changes the GPIO level of the specified device,
before the GPIO Manager changes the GPIO level it will instantiate a Lock Guard object with its’ classes
Lock object passed in. This attempts to lock the class which prevents the class’ methods from being accessed
elsewhere. When creating the instance of the Lock Guard object, it will check if the class is locked. If that
class is locked this means that some other location in the code is using one of the GPIO Manager’s methods.
This instantiation process will wait until the lock has be released. This allows the resource to be accessed
as soon as it becomes available. The lock gets released when the function call is completed. This happens
when a function call has returned since the program implicitly will call the Lock Guards deconstructor which
releases the lock.

The next utility is the Logger. This is a class that is utilized by the rest of the program to send log
messages to a terminal console and a file. The logger can be set to one of 6 log levels which are debug,
information, warning, error, fatal, and none ranging from the lowest level to the highest level. Setting the
log level filters out all messages that are associated with a lower level. When the Debug Level is set, all
logger messages will be printed, whereas when the None Level is set, no messages will be printed. Each log
message will contain the current Linux timestamp, the log level corresponding to that message, a pseudo
representation of the call stack indicating where in the code that message is being printed from, and the
message that is requested for printing.

05/04/20 37 of 117 PFR

University of Colorado Boulder

The Watchdog Class, which is utilized by all of the threads, contains all the methods that must be used
by or to interact with the Watchdog. This includes methods for kicking the watchdog, starting the threads,
and checking the threads.

The Time Keeper utility consists of a header and source file that provides function declarations and
implementations for handling and reporting the time. It manages two types of times within the system: the
Linux time and the time since the start of program execution.

Likewise, the File System is a small utility that resides in one header file. This header file provides the
file locations that are utilized by the logger and each of the serial drivers. It configures the file and directory
paths based on the build target (Linux PC or Raspberry Pi), as the file systems on each target vary.

The File Manger is a class that is responsible for all interactions with the target’s file system including
reads, writes, appends, deletes, and creations. This is a class with static functions and only one globally
defined class instance, meaning that all classes can have access to the File Manager without having to pass
the File Manager object into their class instantiations nor create a File Manager object themselves. Hence,
this improves the elegance of creating all of the other class objects while ensuring the Final Manager has a
single locking system.

The utility that manages the packing and unpacking of general Health and Status Packets, subsystem
Health and Status Packets, Command Packets, and Command Acknowledgement Packets is the Packet Def-
initions header file. Within this header file are many structures for each of the packet types. Many of these
structures contain packing, unpacking, and validation routines. This ensures that all packets are created and
parsed in a very specified and ordered way every single time.

The final utility is the Command Handler Class. This class is responsible for taking in the command
packets received from LabView, unpacking the command, performing preliminary validation checks on
the packet, and passing the command to the specified subsystem if the preliminary validation checks are
successful. Once the command is executed or has failed a preliminary validation check, the Command
Handler packages the Command Acknowledgement Packet for the Command Thread to send back to the
LabView.

Unit Testing
The final subcategory of the Main Control Board Software is the Unit Testing. There are two types Unit
Testing that utilize the Catch2 Unit Testing Framework: Software Unit Testing and Hardware Abstraction
Layer (HAL) Unit Testing. The software unit testing consist of several files with test cases for all of the
methods written in the software that do not necessitate physical hardware interactions. If a method handles
some sort of hardware interaction, the corresponding mock class of that serial driver is utilized. Additionally,
the unit tests provide testing for the mock serial drivers themselves. Likewise, the HAL Unit Testing consists
of several files with test cases for all of the methods that require physical hardware interactions. All of the
software and HAL unit tests include assertions to test nominal operations as well as any edge cases. These
tests are not run during normal program execution. Instead they each have their own build configuration that
goes through and runs all of the test cases. Note that each test case can have associate tags, so if it is desired
that only a select set of test cases are to be run, the executable can be run with one or multiple of the defined
tags inputted as parameters.

3.6.2. Software Flow

The Main Control Board Software Flow Chart shown in Figure 41 outlines the procedure for building
the program executable as well as the processes that occur when the program executable is ran. Note that
this diagram does not describe the execution of the two unit testing builds.

05/04/20 38 of 117 PFR

University of Colorado Boulder

Main Control Board Software Flow Chart

Within Eclipse Integrated Development Environment

Preprocessor Defines
Assigned as Specified by

Build Configuration: Executable Created in
Select Build 3 Clean and Build 3 MCBBuildMode 3 Specified Build
Configuration Program WPMBuildMode Configuration Target
TVMBuildiode Folder

ECUBuildiode
LabViewBuildMode

Build Target

Start program Set the logger Build the
timer level subsystem objects

Main
Program
Entry

FLT Build MCB
Build WPM

=
Build H Build H Initialize all H Initialize all ‘
CommandHandler LabViewinterface hardware subsystems 1—

Build and Start Watchdog Thread, Health and Status Thread, and
Command Thread

Ll
¢ Y *
Watchdog Thread Health and Status Thread Command Thread
Check if Health
and Status NO [Restart Health Collect Check if
™ Thread Kicked P and Status p| Kickthe | Subsystem Kick the LabView has
the Watchdog Thread watchdog Health and watchdog
YES| I Status
Checklf voallh:: RN Restart Pack the Health Send Health and Check if
Thread Kicked » Command and Status Status Packet to command is
the Watchdog Thread Packet LabView valid
YES INVALID | VALID
[(Create command|
10 second 1 second € Execute
delay delay and send to Command
LabView

Figure 41: Flow Chart for the Build Process and Program Execution of the Main Control Board Software

Before running the MCB software, the project must first be built within the Eclipse Integrated Develop-
ment Environment. First one of the build configurations must be selected from the debug icon within the
IDE. Each of the build configurations are created within the project settings where the MCBBuildMode,
WPMBuildMode, TVMBuildMode, ECUBuildMode, and LabViewBuildMode symbols are assigned corre-
sponding to each build configuration specified in the MCB Software Build Configurations Table (4. Addi-
tionally the compiler used for each build configuration is specified depending on the build target. If the build
target is a Linux PC it will utilize a 64-bit x86 compiler whereas if the build target is the Raspberry Pi 4 it
will utilize a 64-bit ARM cross-compiler. Once a build configuration is selected the program can be cleaned
and built. During the pre-compilation build process, the IDE will swap out the subsystem build mode pre-
processor defines, or macros, in the program with the symbols those defines are mapped to. Each build
configuration will contain its own target folder, so once the compilation process is complete, that software
build’s executable will be placed in its corresponding target folder.

05/04/20 39 of 117 PFR

University of Colorado Boulder

When the program executable is run on the target device, the code will run the processes indicated in the
Build Target box below. It will start the program timer and set the log level. Next it will build the subsystem
objects, Command Handler object, and the LabView interface object (using the build mode specified by the
LabView’s build mode macro). Following this, all of the hardware and subsystems will be initialized. Once
all of the objects are created and initialized, each of the threads will be built and then run by the Watchdog.
At this point, the program moves into running the three threads in parallel. Each of the three threads run as
described in the above Threads section. Note that if the LabView is in software mode, a circular sequence
of predefined commands will be continuously passed into the command handler to simulate the receiving of
commands from LabView.

In the above flow chart, there are four boxes that stem from the "Build the subsystem objects” box. The
processes that occur within these boxes where too involved to include in the flow chart, so they have been
diagrammed separately. One of these diagrams can be seen below in Figure 42, which describes the process
of building the MCB subsystem object. The diagrams for other subsystem class objects can be found in
Appendix B, in Figures 106 - 108.

Build MCB

MCBBuildMode
equals Hardware
y

MCBBuildMode
equals Software
y

MCBBuildMode
equals None

A 4

Build None MCB object

- No arguments passed into the
NoneMCB object instantiation

Build the MCB Temperature Vector
containing Temperaturelnterface
objects

- Pass singleton MockOneWireManager
object into each Temperaturelnterface
object instantiation
- One object for each temperature sensor

- Pass singleton OneWireManager object

- One object for each temperature sensor

Build the MCB Temperature Vector
containing Temperaturelnterface
objects

into each Templnterface object
instantiation

v

v

Build MCB Ammeterinterface object

- Pass singleton Mockl2CManager object
into Ammeterinterface object instantiation

- Pass singleton [2CManager object into

Build MCB Ammeterinterface object

Ammeterinterface object instantiation

v

v

Build SoftwareMCB object

- Pass in MCB Temperature Vector and
Ammeterlinterface into the SoftwareMCB
object instantiation

- Pass in MCB Temperature Vector and

Build HardwareMCB object

MCB Solenoid Viector into the
HardwareMCB object instantiation

Figure 42: Flow Chart for the Creation of the Main Control Board Subsystem Object

For the Main Control Board subsystem, either a None MCB, Software MCB, or Hardware MCB class
object will be instantiated. Which object gets created is dependent on the value of MCBBuildMode symbol.
If this symbol equals None, then the None MCB object will be built with no arguments passed into the
object instantiation. If the symbol equals Software, the MCB Temperature Interface object vector will be
built using the Mock One Wire Manager and the MCB Ammeter Interface object vector will be built with
the Mock I2C Manager. The Software MCB object will then be instantiated with the two vectors passed in
as the constructors arguments. Finally, if the MCBBuildMode symbol equal Hardware, the Hardware MCB

05/04/20 40 of 117 PFR

University of Colorado Boulder

object will be created with the MCB Temperature Vector and MCB Ammeter vector built with the One Wire
Manager and I2C Manager, respectively. The same general process follows for the WPM, the TVM, and the
ECU subsystems.

3.6.3. Packet Definitions

As stated previously, the Main Control Board software must handle the unpacking, validation, and pack-
ing of multiple types of packets for sending to and receiving from LabView. The first type of packet is
the Command Packet as defined in 8 of the Appendix. The Command Packet is either a 7-byte or 23-byte
packet containing either four or five fields. First is the command packet opcode, OP_CMDPKT, which is
a unique opcode that identifies the packet as a command packet. Next is the subsystem opcode, OP_SUB
which specifies which subsystem the command is for. The OP_CMD field then specifies which subsystem
command is to be executed. If the command is an adjust thrust vector command, the TV_PARAM field will
be included in the command packet to indicate what linear potentiometer position is desired for each of the
four potentiometers. The last field in the packet is the checksum which is used to validate that all of the bits
in the received packet are correct.

The list of commands that the Main Control Board Software is able to accept are outlined in Table 5.

Table 5: Subsystem Command Definitions

Commands List
Subsystem Command Name Description OPCODE_CMD

REBOOT Reboots the Raspberry Pi 0x00

MCB REQUEST_HS_FILE Requests the health and status file 0x01
REQUEST_LOG_FILE Requests the log file 0x02

WPM FAIRING_EJECT Ejects the fairing 0x00
VM ADJUST.TV Adjusts 1.|'_lL‘. thrust vector to position 0x00

specified by TV_PARAM

The make up of the Command Acknowledgement Packet is defined in Table 9 of the Appendix. It is
a 16-byte packet containing the same fields as the Command Packet but with the addition two timestamps
that are collected once the command has been handled: the Linux time as well as the time since the start
of program execution. Additionally, there is an error field which indicates to LabView if an error occurred
when processing the command request and what that error is if applicable.

The largest packet is the Health and Status Packet. The definition for this packet can be found in the
Appendix in Table 10. This packet contains data that the LabView utilizes to monitor every device within
the entire system. It is a total of 83 bytes long.

4. Manufacturing
Authors: Jon Weidner, Declan Murray, Alexandra Paquin, Liam Sheffer, Lucas Zardini, Zoe Witte

4.1. Windmill Prevention Mechanism

4.1.1. Scope of Manufacturing
The following table, Table 6, shows the current state of all components needed to build the WPM.

05/04/20 41 of 117 PFR

University of Colorado Boulder

Table 6: WPM Component Manufacturing Scope

Component Acquisition Method

Fairing Manufactured

Fore Retention Ring | Manufactured

Solenoids Acquired
Solenoid Pins To be Manufactured
Ejection Spring Acquired

4.1.2. Fairing

Using the Markforged Mark 2 printer located in the University of Colorado Aerospace Building, the
windmill prevention fairing has been manufactured using carbon fiber threaded Onyx plastic. This allows
for high strength material to be used at a low manufacturing cost. One difficulty that arose was the low
quality printing on the inside of the fairing, but since this area is not exposed to airflow, it was decided that
it would not be an issue during testing. The printed fairing is shown in Fig. 43.

4.1.3. Fore Retention Ring
The fore retention ring was manufactured in the same method as the fairing, by using the Mark 2 printer.

This manufacturing method allows the ring to be manufactured at a low cost, while still fitting the thermo-
dynamic requirements of the ICUP boards. The final printed fore retention ring is shown in Fig. 44.

PO .. e e Figure 44: 3-D Printed Fore Retention Ring
Figure 43: 3-D Printed Fairing

4.1.4. Solenoid Pins

The solenoid pins were in the process of being manufactured when the project was brought to a halt.
The pins were manufactured using aluminum provided by the machine shop at the aerospace building. One
pin was was 50% done when the shop closed down.

4.1.5. Engine Integration

Partial integration tests were able to be accomplished with manufactured components. Figure 45 shows
a partially integrated system, missing the COTS solenoids. The fore retention ring would be attached to the
engine using the screw holes that can be seen at the edge of the purple compartment of the engine. The ring
would be attached such that it does not interfere with the engines ability to be mounted onto the test stand.

05/04/20 42 of 117 PFR

University of Colorado Boulder

Flgure 45 Part1ally Integrated WPM System

4.2. Thrust Vectoring Mechanism

4.2.1. Scope of Manufacturing
The following table, Table 7, shows the current state of all components needed to build the TVM.

Table 7: TVM Component Manufacturing Scope

Component Acquisition Method
Nozzle Sheath Manufactured

Sheath Hinges Manufactured

Paddles Manufacturing in Progress
Clevis Pins Acquired

Linkage Rods Manufacturing in Progress
Actuator Ring Manufactured

Linear Actuators Acquired

Test Stand Modification | Manufactured

4.2.2. Thrust Vectoring Mechanism Manufacturing Process

The bulk of manufacturing was completed using mills. CNC mills created the nozzle sheath and the
actuator ring. A CNC mill was required as these elements had curves that could not be made manually.
The linkage rods and paddle necks were made using manual mills, as simplicity of cuts and frequent piece
flipping made manual mills more time-efficient. The paddle faces were intended to be also CNC milled, but
an experimental set were produced using 3D-printing in stainless steel. Additionally, the sheath hinges or
journal bearings were also printed in this way.

Nozzle Sheath The nozzle sheath was manufactured in two pieces: the base annulus, and the square ring.
The base annulus has slits cut adjacent to the tabs so that when the tabs are bent at a right angle, the center
of curvature of the bend would not extend past the inner diameter. The tabs were hammered into the 90°
bend using a square block as a jig.

The square ring was machined from the sheet metal flat, the tabs were simultaneously bent to their 20°
angles using a brake press, then made into a square by bending at specific locations, again using the brake
press. The two pieces were then welded together with a TIG welder. The nozzle sheath was anticipated to be
the biggest manufacturing challenge, so the entire component was built with similar but inexpensive sheet
metal to test and improve the process. This proved to be invaluable, as the manufacturing lessons learned led

05/04/20 43 of 117 PFR

University of Colorado Boulder

to the second, flight version to be of significantly higher quality. The final version of the integrated nozzle
sheath and actuator ring are shown in Fig. 46. The integration of these mentioned components was very
successful, but the true test would have been the integration of the two TVM sub-assemblies. Connecting
the linear actuators to the linkage rods to the paddles would be the last step before mechanical and hot-fire
testing of the whole system.

Figure 46: Finished Nozzle Sheath and Actuator Ring Integrated with Engine

4.2.3. Test Stand Modification

The test stand modification was a critical part of validating the effectiveness of the thrust vectoring
mechanism. The modification took the existing single-axis test stand owned by C.U. and added a second
axis. A more comprehensive description of its function is found in Section 5.5. The manufacturing of the
test stand modification was completed on the day before the manufacturing shop was closed, and is shown
in Figure 47

The test stand consisted of an aluminum plate bolted to four low-friction, self-lubricating pillow blocks
which slid along stainless steel rods connected to the aluminum base. This base was designed to mount onto
the preexisting test stand, while the engine mounts connect to the upper aluminum plate on the modification
as shown in Figure 48

Figure 47: Additional Test Stand

Sled Figure 48: Completed Modified Test Stand
e

05/04/20 44 of 117 PFR

University of Colorado Boulder

A load cell was to be mounted to the modification (on the left side from the perspective in Figure 47)
during testing, and springs were fitted on the steel rods to keep pressure on the load cells and reduce the
risk of accidental damage due to any sharp impacts from the sled sliding freely. After manufacturing was
completed on the test stand, the upper sled could be easily moved by hand, but without any applied force it
would rest against the base as intended. This was the desired behaviour, and gave confidence that the test
stand could successfully interact with a load cell without damaging it or causing a great deal of error due to
friction.

4.3. Main Control Board Software

The Main Control Board Software was manufactured utilizing an incremental development processes
with a large emphasis on unit testing. The overall timeline of the development process was initially struc-
tured to meet a series of milestones corresponding to each level of success, starting from the first level and
ending with the last level. By meeting a milestone, this meant that all of the Main Control Board Software
elements that were required to demonstrate a level of success were completed and tested. Additional mile-
stones were defined to break down the initial workload since all of the Utilities had to be developed before
any of the serial drivers, device interfaces, subsystem classes, and threads. The specific milestone due dates
were determined based on the expected completion of the other subsystem’s elements. Since the Windmill
Prevention Mechanism was expected to be completed approximately one month prior to the Thrust Vector-
ing Mechanism, the completion of the its first and second success criteria within the MCB software was
initially the primary focus. Figure 49 shows the sequence of milestones that were set to be achieved, the
software additions required to complete that milestone, the current status of each software addition, as well
as the estimated time left to meet that milestone. Note that several of the software elements were developed
out of order. This is because the first revision of the electronics needed to be tested, so all hardware related
elements had to be developed.

05/04/20 45 of 117 PFR

University of Colorado Boulder

Current Status of New Software Additions

Milestone Hours Mew Software Implementation Unit Testing
Left Additions Complata
Incompilata Sl Compiste | Incompiata e ar Hot
Complsts Complets |, poacanis
Look Quard
Loggsr
‘Watehdeg
Impéamentation and software unit a Tima Kaaper
testing of the utiitas Flis Eycism
Flis Manager
Facked Defintione
Commend Handlar
Hmrdwars Manager
Eus Managsr
Mook One Wirs Managsr
Wook BP0 Managar
Mook R EZZ2 Managar
Tamparsburs indsrfaos
doilsncld Intarfacs
Impéamentation and software unit Labview Interfacs
testing of Windmlll Pravantion
Mechanizm Succesa Critaria 1 0 RN A 8
dapandant clazsas —£2
WEM
TVM
ECU
Nons MCE
Nons TV
Hons ECU
3oftamrs MCE
Hoaih and Etatus Thrsad WA
‘Command Thread M4
‘Windmill Praventlon Succass 0 imtzhdeg Thnas [T
Criteria 1
Main Frogram A
Dbdecd Bullding Routines WA
‘Windmill Praventlon Mechanlzm 0 {Ons Wire Managar
HAL Unit Tesfing GPIC Mansgsr
‘Winamill Prevention Mechaniam i Hardwamn MCE 5
Swuccaes Criterka 3 Dbzt Bullding FRousines Updats S0 Mi&
Mook 120 Meanager
Implen‘lantatk:n and software unlit Eamntlomaisr Inparfacs 5% S5,
teeting of Thruzat vectralng A =
Mechanlam Success Critarla 1 13 Mm;m Indsrace % e
dapandant clazeas ConsEa e i
doftaare TYM % e
Thruat Vectoring Machanlam 0.5 T
Succeass Criterka 1 - Dbjecd Bullding Routines Upsdebs
Lab’iew and MCE integration 2 7 EZEIE Mansger o
Thruat Vectoring Machanlam HAL o
Unit Testing a e
Thruat Vectoring Machanlam Wnrdwars TUM 0% TR
Succees Criteria 2 and 3, Success 0.3
Criteria 4 ‘Objet Bullding Foutines Updabs L]
ECU Intarfacs
- T Aoftamrs ECU 0%
Lscand Bria T Hardwar ECU %
Objecd Bullding Rousines Upsdwbs A
Ammeter intarface 9% 5t
AT —— . Joftamrs MCE S0% SRG
ueyatsm inegratian 2 Hardwars MCE] "%
Obdeci Bullding Routines Updabs WA

4.4. Electronics
All the PCBs in the project (ICUP, MCB, and LPBB) were designed in Altium. The manufacturing of
these boards were done at Advanced Circuits (based in Aurora, Colorado). Two of the ICUP and MCB
PCBs were ordered for Revision A. The LPBB was designed and manufactured in a 12 device panel for
both Revisions A and B. This means that a flat PCB is placed with 12 LPBBs on it, requiring manual cutting
of each LPBB once delivered. This is done at University of Colorado’s machine shop. For populating the

05/04/20

Figure 49: MCB Software Manufacturing Progress

46 of 117

University of Colorado Boulder

PFR

PCBs, the standard solder stencil technique is used for all the PCBs. The population for Revision A was
done in the Integrated Technology Learning Laboratory’s electronics shop.

4.5. Manufacturing Challenges

WHiMPS experienced a number of challenged during the manufacturing phase of the project, beginning
with the WPM printing. While the Markforged Mark II printer has amazing precision, with a tolerance of
0.1 mm, there is still error in the dimensions of printing and of the engine measurements taken. The WPM
parts were required to have very small tolerances to fit onto the engine, and the resulting print wasn’t perfect.
WHiMPS was not able to fit the final fore retention ring print onto the engine because it was slightly smaller
than the circumference of the engine. However, these issues could have been solved by slightly sanding
down the inner surface of the fore retention ring in the CU machine shop.

The major challenges faced when manufacturing the TVM components occurred during the manufacture
of the nozzle sheath component due to its complex shape. These challenges were mitigated by creating a
prototype out of cheaper scrap material, from which the manufacturing team was able to learn a lot and
perfect their methods. One of these challenges was when using the brake press to bend the square ring into
its final shape. The brake press had a tendency to create a large radius of curvature at an unpredictable
location, which was a problem for the team. In response, the team had to use scrap metal to jig the ring into
place, which ultimately improved the placement of the bend. Once the ring and sheate were manufactured,
welding them together was a challenging task. Both components were relatively small and difficult to clamp
into place, which made welding the pieces together difficult. Even with the help of the CU Aerospace shop
supervisors, this task was very difficult.

Additionally, the sheer amount of work required to manufacture the components was a challenge itself.
Manufacturing the nozzle sheath and actuator rings took a significant amount of time for the WHiMPS
manufacturing team, and left a number of smaller components to still be manufactured. This was a challenge,
but it was overcome via additional members of the testing team taking shop courses and helping out.

There were a few challenges when it came to populating the PCBs. Some components were not ordered
in time for the first round of population, and pieces from other boards had to be taken in order to complete
most of the population at first run through. Many of the components were also extremely small, which
required precision in using the solder paste. Overdoing the paste would risk short circuits while under-doing
the paste could result in components breaking or falling off. For some of the resistors and capacitors, there
was not a sufficient amount of solder paste and they needed to be re-soldered. For others, the paste was
too thick and had to be wiped off and done over again. It was also extremely important to pay attention
to the orientation of the components so as not to short circuit the board or destroy the component and
potentially the board completely. While soldering the LPBBs, there was the challenge of having the linear
potentiometer completely flush on the board in order to receive accurate data from it. One of the first LPBBs
soldered was not flush, and efforts were made to redo this as well. A high level of detail was also required
when crimping the wires to ensure they would connect, and using heat shrink on wires that were soldered to
other components. If the heat gun was placed on the component for too long, like a temperature sensor, it
could destroy it.

4.6. Integration Plan

Integration of the WHiMPS system onto the engine essentially involves installing bolt-on parts to the
engine due to the design decisions to create all engine hardware separate of the engine. This decision was
made to mitigate risks to the engine’s operation, but also allowed for an easier engine integration. The
WHiMPS engine integration plan has two separate phases related to the WPM and TVM respectively.

The WPM integration would begin by installing the fore retention ring into the pre-existing bolts on
the front of the engine. These bolts must first be removed, and the fore retention ring is slipped over the
starter motor until the engine bolt holes line up with the holes on the fore retention ring. The bolts are
symmetrically spaced about the circumference of the engine, so the fore retention ring must be rotated until
the fairing connection tabs are perpendicular to the stock starter motor supports. This must be done for the

05/04/20 47 of 117 PFR

University of Colorado Boulder

ejection springs to operate without interference from the starter motor supports. Next, the ICUP panels are
installed onto the fore retention ring and connected as described later in this section. Solenoids are placed
into the solenoid housings, and the solenoid pins are placed into the attachment points with the solenoids
fully retracted. The clevis pins can then be installed to finish the solenoid subassembly. Finally, the fairing
halves are installed in the same method that they would be installed prior to every mission in the WHiMPS
mission CONOPS. The fairing retention tabs are hooked onto the ICUP connection points, and rotated into
place. The springs, attached to each fairing half with an adhesive, is pressed against the starter motor. Once
the halves are fully installed with the seam completely overlapping, the solenoids can be extended, pushing
the solenoid pins into the solenoid pin tabs. After this is completed, the WPM system is fully integrated and
functional.

The team would conduct preliminary integration testing. This would begin with software/electronics
interface testing, by testing the operation of the solenoid. A signal would be sent from the MCB to pull the
solenoids, and the team would determine whether this signal is properly received by the ICUP and solenoid
by seeing if the solenoid retracts. The WPM integration would have been tested by removing the fairing,
and applying approximately 90 N of force to the fore retention ring. Given that the drag force is bounded
by approximately 88 N of force, this would verify that the structural components are secure. Testing of the
fairing mechanical system’s integration would be completed during the actual test, as it is a part that will be
continually installed and ejected throughout the testing phase.

The TVM integration begins with the attachment of the nozzle sheath and actuator ring. Similar to the
fore retention ring, these components are installed using pre-existing bolts. These are the three bolts used
to hold the stock nozzle onto the engine. Once these bolts are removed, the actuator ring can be placed
over the stock nozzle, flush with the base of the stock nozzle. Once the bolt holes are aligned, the nozzle
sheath can be placed on top of the actuator ring and aligned. The nozzle sheath’s position must also align the
stock exhaust gas temperature sensor with its corresponding cutout in the nozzle sheath. Once everything
is aligned, the bolts can be tightened onto the engine. Following the structural component installation, the
linkage sub-assembly can be installed. This process begins by attaching the paddle to the nozzle sheath via
a clevis pin in the through hole furthest from the paddle surface. Then, the linkage rod can be attached,
also via a cotter pin, to the through hole closest to the paddle surface. Following the linkage assembly, the
actuator assembly can be integrated. This is done by mounting the actuator pods to the actuator ring, and the
actuators inside of that. The actuators are installed with the actuator nut component in place, which is then
mounted to the linkage rods via another cotter pin attachment. Once the LPBB’s are mounted, the TVM
electronics system can be calibrated and operation can begin.

The testing of the TVM integration would occur during the TVM software/electronics calibration phrase.
This testing would entail commanding various thrust vectoring angles into the LabView, and measuring the
corresponding paddle angle. Using the control laws shown in Figure 21, the closed loop feedback control
can be calibrated to ensure that the paddles deflect to the desired angle. Additionally, this would have tested
the integration of the TVM mechanical system by ensuring that all kinematics move as expected. Once a
paddle is deflected, approximately 10 N of force would be applied to the center of the paddle to test whether
the system is properly integrated and rigid.

The electronics can be assembled after the critical hardware has been set. Starting with the MCB, this
device will be placed in the MCB case in the test room. This can be done by placing the MCB on 4-40
spacers in the box (power circuits facing the switches side of the case’s lid), then fastening the lid on the
case with 4 4-40 screws. Then take the ICUP to MCB connector and attach it to the MCB through the case.
Next is the ICUP. These panels use the same 4-40 screws to integrate with the fore retention ring. Each panel
is oriented where the connector points towards the aft retention ring. Once these panels are screwed on, the
ICUP panel to panel connectors can be latched into place. Once the ICUP has been assembled, the actuators,
LPBB, and the actuator temperature sensor can be placed. The actuators and their temperature sensors are
kept in these pods, and the LPBBs are screwed onto the pod (using 4 — 40 screws). These pods are in line
to the ICUP panel they connect to. The remaining sets of wires should then attach to their respective ICUP

05/04/20 48 of 117 PFR

University of Colorado Boulder

female connector (four actuators, 4 temperature sensor, and 4 LPBBs). Finally, the on engine components
will communicate to the MCB with the ICUP to MCB connector, so once testing is ready to commence, this
harness is integrated connected to the ICUP (Panel 1).

5. Verification and Validation

Authors: Alec Bosshart, Andrew Meikle, Julia Kincaid, Alexandra Paquin, Zoe Witte, Liam Sheffer, An-
drew Robins, Lucas Zardini

5.1. Electronics Verification

Each electronics board revision had to be tested in order to debug and design new models. The MCB
Revision A tested switch functionality, the voltage converter, the power protection circuit, the GPIO/LED
circuit, the power MOSFET circuit, and the Raspberry Pi functionality. Everything on Rev. A was suc-
cessful, but additional devices were needed on the MCB, so a second revision was designed. The ICUP
Revision A tested 12C functionality, the solenoid circuit, and the actuator/motor driver circuit. The 12C
tested successfully, the solenoid circuit tested successfully after Revision B, and the actuator/motor driver
circuit failed. This failure was due to using the wrong motor driver for the selected actuators and was fixed
by ordering the correct corresponding driver. The LPBB Revison A only had to test the linear potentiometer
circuit and converting it to a digital signal, which passed successfully. The need of revision B was due to the
lack of addresses on the ADC chosen for each LPBB. To access each LPBB individually, each one needs a
separate address, so Rev. B included a 4 channel ADC with the same circuitry as Rev. A.

Each board has a harness to transfer the data/power to the MCB, so these harnesses needed to be tested
for continuity. The original connector harnesses for all boards passed the continuity check and have been
used for all tests requiring multiple PCB integration. In addition, there are 12 temperature sensors placed
throughout the system using the same temperature device. Each one has been tested on a breadboard cor-
rectly (showing a specific address per sensor on the one wire bus).

The MCB, ICUP, and LPBB have been redesigned for revision B. Only the LPBB design has been sent
to be manufactured. The MCB and ICUP designs have been checked by Advanced Circuit’s DFM test, but
were not ordered due to the project coming to a halt. The next steps would be ordering the ICUP and MCB
and populating them. Further verification and validation for the electronics would include retesting the Rev.
A functionalities (just to test that the devices were populated correctly), then testing the additional devices
added to the ICUP and MCB. Once these were accomplished, the integrated system tests with the engine
could commence.

5.2. Main Control Board Software Verification

The primary method for with the Main Control Board Software was verified was through the software
unit testing and the hardware abstraction layer unit testing. For each method that was developed, a unit test
was also developed to check that the method handled nominal cases correctly as well as edge cases. Figure
50 shows the output from running the software unit testing build configuration. As shown, there are 25 test
cases with a total of 208 assertions. Note that one test case was typically utilized to test multiple methods,
which explains the low test case number. The output shows that all of the tests have passed, which provides
verification that each of the implemented routines are working correctly. The output from the HAL unit
testing is not included as we no longer have access to the hardware that was required to run these unit tests,
hence it could not be acquired.

05/04/20 49 of 117 PFR

University of Colorado Boulder

alexandra@alexandra-G7-7790: ~/Documents/SeniorProjects/Software/MCB/afrl-mcb/mcb®™ & @
File Edit Vview Search Terminal Tabs Help
alexandra@alexandra-G7-7790: ~/ecl andra@alexand
@alexandra- rPr
t/mcb

A1l tests passed (208 assertions in 25 test cases)

:lixandra@alexandra-07-7790:

Figure 50: Output from Running MCB Software in Software Unit Testing Build Configuration

The non unit test build configurations are verified by looking at the logger messages printed to the serial
terminal and the log file. These are very detailed messages which provide information on everything that
is going on with the program. If the logger messages look correct and the system is operating nominally,
the build configuration was deemed verified. If any errors occurred when the non unit testing builds were
being tested, the build configuration would be switched to one of the unit testing builds. Following this, all
of the unit tests would be run. More often than not, the error that was present in the non unit testing build
would be exposed in the unit tests making it easy to identify and resolve. The only types of errors that the
unit tests are unable to catch in the main program are those related to thread timing, resource sharing, and
overall sequencing. Hence, if the unit test does not identify any errors in the program, the error is most likely
related to one of those three error types.

5.3. LabView Verification

To verify the models, there were several mechanisms to take data and be able to visualize data. The
WHIMPS team developed a test user interface that was able to take and interpret data from the borrowed
National Instruments DAQ devices and sensors purchased by the WHiMPS. There was a separate user
interface being developed by the WHiMPS that was going to be able to interpret and collect the data that
was gathered by the MCB and Raspberry Pi that was being developed at the time of the shut down. For the
testing purposes, temperature data was gathered using thermocouples and the NI 9212 DAQ device. The
thermocouples were K type thermocouples. Force data was taken using the load cells and the NI 9205 DAQ
device. The NI 9205 DAQ contained the Wheatstone bridge circuit and just measured the differential across
the load cell, and the load cell was powered externally. The mV/V value, the capacity, and unit conversions
were used to convert the voltage to Newtons which is a unit of force. The LabVIEW that was used to conduct
testing was able to take in the data from the NI DAQ devices, complete any necessary calculations, display
it on plots on the User Interface, and save the data to an excel file for plotting and interpretation after the test
was conducted. Figure 51 and Figure 52 show the view of the User Interface component of the LabVIEW,
and the back end of the LabVIEW that includes the graphical programming.

05/04/20 50 of 117 PFR

University of Colorado Boulder

00,
273110 /31190

Plotted

Using this LabVIEW, along with the sensors and NI DAQ devices, the WHiMPS verified expected
models. The primary thermal model was maximum temperatures for the engine exterior provided by JetCat,
which were well above the temperatures seen at the various locations by the thermocouples. The thrust
model was maximum thrust data provided by Jetcat. This value was 100 Newtons. This value was slightly
surpassed, but due to the internal sensor error. Therefore, the thrust model was also corroborated. At the
time of the shutdown, the LabVIEW to control all of the WHiMPS hardware was in the process of being

273115

Figure 51: Test LabVIEW Front Panel with Sample Data

Figure 52: Test LabVIEW Block Diagram

developed. The final User Interface can be seen in Figure 53.

Thrust Vectoring input

i
safisae e
DEPLOY

ot

LED indscating Solencrd Depleyment
T Einput

Teme Eapsed
s Y.Zlel

]

Fequest LOG Files From Raspberry P Stop VI

@ sToPVI
Compant Soud Rate
Termperature and Voltage Warmuna LEDs
n » T T4]
L] @ [[] ®
™ T L ™ ™
e e ® . .
Volage
e

Vo

age

Ampitude

Time

100

£
1

@ U

)

] o
B Fu
& i j S—

Time

Figure 53: WHiMPS LabVIEW Front Panel

The methodology behind the development and the flow of information can be seen in Figure 54.

05/04/20

University of Colorado Boulder

510f 117

o

Functional Flow Block Diagram Ensure engine is
running safely
with no warning
LEDs

Verify data is
being acquired by
test stand

Begin engine start

Start —» sequence in
Jettronics =
Ensure data is
Ensure command passing back
was executed by ¥ through the MCB
the MCB with updated
Place SWIFT warnings
device the
specified distance
from WHIMPS
system
v
Turn air on to " i
N Continue to input
Mak .8 Send TVM \;:rr'nn:nz%:l commands and
commands values using DAQ monitor accuracy
J' 9 and engine safety
Verify 0 RPM | |
using Tachometer i
< ™
Eject Fairing
using Solenoid | End |
state deploy “ /
setings on ~—
LabWIEW)

Figure 54: WHiMPS LabVIEW Functional Flow Diagram

The WHiMPS LabVIEW developed for our system would have replaced the NI DAQ devices with the
Raspberry Pi 4 and the WHiMPS electronics connected to sensors. The LabVIEW would have displayed
this data and saved it to an excel file to be interpreted later.

5.4. WHiIMPS Engine Function Verification

Before modifications to the engine were attempted, the WHiMPS needed to verify that the engine
worked, was able to be controlled with the available hardware, and would not automatically shut off when
the exhaust flow was disturbed. To accomplish this, two separate tests were conducted. The first test was
a stock run of the engine, and the second test was an engine run with dummy paddles attached to the rear
of the engine. The dummy paddles were representative of the paddles designed to deflect the exhaust from
the engine. Both tests were conducted in the CU Aerospace Engine Test Cell. Neither of these tests directly
validated any requirements, but the WHiMPS confidence that future tests would be successful.

The stock engine run was conducted in the test cell using the test stand used by previous senior project
teams. The test stand used was the unmodified stand discussed in Section 4.2.2. The purpose of this test was
to familiarize the WHiMPS team with the engine operation and to collect preliminary temperature data. The
temperature data was collected using K-type thermocouples attached to the engine with Kapton tape. The
engine run was a success, and the temperature data collected by the thermocouples is shown in Figs. 55 and
56.

05/04/20 52 of 117 PFR

University of Colorado Boulder

Ther le -- Fore R ion Rin Th le -- Aft F 1 Rin
150 T T T =g T 600 | T - 9 T
(
e Measured Temperature
Aft Retention Thermal Deflection Temperature
— Ambient Temperature

e \easured Temperature
Fore Retention Thermal Deflection Temperature
m— \mbient Temperatura

500

[Max Temp: 79°C J

T

100

IS
=
S

Temperature °[C]
@
=3
S

Temperature °[C]

Max Temp:
168°C
N\

| \

-

I I I I
0 50 100 150 200 250 300
Time [s]

n
=
S

0

1 I 1 1
0 50 100 150 200 250 300 350 400 450
Time [s]

Figure 55: Temperature at Fore Retention Ring Location Figure 56: Temperature at Aft Retention Ring Location

These data were collected over two different engine runs. The fore retention ring temperature was
measured during a run where the fuel ran low and the test had to be cut short. Due to this issue, the
temperature was not able to reach a steady state value. The collected data showed that the temperature
of the engine did not match up with the WHiMPS’ model. The team expected the temperature of the
aluminum engine body to be approximately room temperature (25°) per preliminary recommendations from
previous teams. The temperature of the engine body does not approach the thermal limit of the aft retention
ring location. It is unknown how close the fore retention ring location temperature would approach the
temperature limit of the carbon fiber reinforced Onyx plastic since the test did not reach a steady state. This
datum was intended to be measured more accurately in future tests.

There is uncertainty in the need to insulate the electronics on the fore retention ring due to the uncertainty
of the maximum temperature at the front of the engine. A simple thermal model was conducted based
on the conduction of heat through the fore retention ring, shown previously in Figure 15. As the worst
case, the maximum engine temperature is the temperature limit of the ring material. Depending on the
convection coefficient around the retention ring, the electronics could experience temperatures between
59°C and 125°C. The temperature limit of the electronics is 95°C, so depending on the actual temperature
of the engine and the amount of convection there may be no need for insulation. The model also predicts
that a small amount of forced convection cooling from a fan would sufficiently cool the electronics during
testing. This would not be an issue on a fully integrated system during a mission as airflow from flying
would provide sufficient convective cooling. Further testing would have verified if insulation would be
needed, which would have determined if the electronic system could have been successfully mounted on the
engine.

The dummy paddle test used the same test setup as the stock engine run. Temperature data was also
collected on the back of one of the dummy paddles. The purpose of this test was to ensure the engine would
not activate any safety features and shut off when the dummy paddles impeded the exhaust flow. The test was
successful and the engine did not shut off or experience any abnormalities during the test. The temperature
data collected by the thermocouple on the back of the dummy paddle is shown in Figure 57.

05/04/20 53 of 117 PFR

University of Colorado Boulder

Thermocouple -- Paddle
400

P addle Test Data
Paddle Thermal Model

350 - 7

300 - =

Max Temp:
185°C \)

ny [
(=] 33}
=1 =}

Temperature [°C)

w
=}
L

100

50 - T

0 | | | |
0 20 40 60 80 100 120 140 160 180
Time [s]

Figure 57: Temperature on Back of Dummy Paddle

The thermal model of the paddle, shown in Figure 18, predicted a maximum temperature of 400°C. The
temperature on the back of the paddle never reached this temperature as seen in the data. However, after
approximately 100 seconds into the test, the thermocouple started separating from the paddle due to the
Kapton tape melting. This introduced a layer of air between the paddle and the thermocouple. The thermal
model was a worst case model, so it is not surprising that the temperature of the paddle was lower. Given
the thermal limitations of the material selected for the paddles being well above this worst case model,
WHiMPS was not concerned with paddle damage due to thermal conditions.

5.5. Windmill Prevention Mechanism Verification

Two types of tests were to be conducted to verify the windmill prevention portion of the project. The
first test was a replica of the demonstration that would have been conducted by the AFRL. This test was
completed. The second test would have been a test of the fairing under flight conditions, using high speed
(Mach 0.8) air to determine the integrity of the fairing and its seal. This test was not completed.

5.5.1. APOP Replica Test

The APOP replica test was designed to mimic the test setup that would have been used by the Air Force to
test the WPM. The test setup uses a PVC tube which fits over the front of the engine with the WPM engaged.
A compressed air line is then connected to the PVC tube, which is meant to pressurize the tube to 3.5psi.
This pressure was defined by the Air Force and is meant to replicate the dynamic pressure experienced by an
object moving through the air at Mach 0.8 at 20,000ft. The test rationale is that if the WPM can withstand
the pressure differential it would experience at its mission condition, the mechanism would succeed. This
test is meant to be an acceptance test, where the WPM either works or fails. If successful, the test would
validate FR 2, the requirement to have a functioning windmill prevention system. This test was conducted
in the engine test cell and used the aerospace building compressed air. The RPM of the engine fan blades
was measured after the test by analyzing video footage from the rear of the engine. A minuscule piece of
tape was attached to one of the fan blades to be able to track how many rotations occurred over time. The
test setup diagram given to the WHiMPS by the AFRL is shown below in Figure 58, and Figure 59 is the
WHiMPS’ test setup in the engine test cell.

05/04/20 54 of 117 PFR

University of Colorado Boulder

Measurement Quasi Direct
Electronically Ports

Regulated Air

Connect

Pass Through
Fuel/ECU Wire

Figure 58: WPM Test Diagram Provided by AFRL

o @j : ...»'&; x : ‘:: g
Figure 59: WHiPS Test Setu for APOP Replica Test

When the WHiMPS conducted this test, the team determined that the building compressed air supply did
not have the mass flow rate necessary to produce the needed pressure differential. This was due to a small
gap between the fairing and a ring of foam inside of the PVC tube, so all of the air escaped around the fairing
and the engine. The team was unable to seal the gap completely because sealing the gap would require the
fairing to be artificially held in place. This would not be an accurate test of the fairing design because the
natural tendency of the fairing is to shift under pressure due to manufacturing tolerances. However, the video
did show that the fan blades did not rotate. Even though this was not at the proper pressure differential, the
results still partially validated our CFD model, shown in Figure 60, of the air flowing around the engine and
not through the fairing.

Figure 60: CFD Model of Mach 0.8 Air Impinging on Fairing

The mixed results of the APOP replica test gave confidence that the WPM would be successful when
used in Mach 0.8 air (discussed in the next section). This partially validated FR 2, the requirement to have
a windmill prevention mechanism. Also, the WHiMPS discussed the issues with the test with the customer
and were able to provide insight into the potential issues with the test if it was to be conducted as is by the
AFRL.

5.5.2. High Speed Airflow Tests

In addition to replicating the test conditions the AFRL was going to use, the WHiMPS were planning on
testing the fairing at the conditions specified in the problem statement. This would have required the team
to blow Mach 0.8 air at the engine and fairing. The defined altitude in the problem statement is 20,000ft,

05/04/20 550f 117 PFR

University of Colorado Boulder

but by conducting the test in Boulder, CO at 5,320ft a small safety margin in the design is demonstrated if
successful in testing. Unfortunately, no tests of this type were conducted.

There were two types of high speed airflow tests planned: static and dynamic. Both of these test types
would have occurred in the CU engine test cell. The static test required the fairing to be attached to the
engine while Mach 0.8 air is blown at the fairing. The test would be successful if the fairing did not break
and if there was no rotation of the engine fan blades. This test would validate FR 2 under the design
conditions. The dynamic test uses the same setup as the static test, but while the air is still being blown at
the engine the fairing is ejected. This test would be successful if the fairing prevents the rotation of the fan
blades prior to being ejected and if the fairing does not break during any part of the test. In addition to the
hardware, software control of the mechanism would be demonstrated in this test. The dynamic test would
have validated FR 2 in the full design conditions and validate the WPM half of FR 3, which requires main
control board (MCB) control over the mechanism.

The high speed air was intended to be produced using equipment from the SABRE senior projects team
(2016-2017). The equipment was originally used as a cold flow test bed to test nozzle designs meant to
achieve supersonic flow. Based on the demonstrated ability for the equipment to achieve supersonic speeds
for 20+ seconds, the WHiMPS determined that the equipment would be sufficient for replicating Mach 0.8
airflow for a sufficient amount of time. The test setup from SABRE is shown in Figure 61.

The large tanks shown in Figure 61 are used to hold a large volume of air at 175psi. The air is regulated
down to 35psi in the small settling tank. Finally, the air leaves the aluminum nozzle at the end of the settling
tank. To achieve the right air velocity, an additional nozzle needed to be manufactured and attached to the
end of the aluminum nozzle. The engine would be placed on the test stand and located just behind the 3D
printed nozzle. To determine the exit diameter required to produce Mach 0.8 air, the throat diameter used by
the SABRE team to achieve supersonic flow was input to the Mach-Area relationship. From this equation,
the diameter needed to reach Mach 0.8 based on this throat diameter was determined. The nozzle that would
have been used to achieve Mach 0.8 is shown in Figure 62. The nozzle would have been 3D printed using a
resin printer, which is what the SABRE team used to demonstrate their system.

Pressure gauges

Pressure regulators

Figure 62: WHiMPS Nozzle

Figure 61: Test Setup from SABRE Senior Projects Team
for Mach 0.8

Before testing with the actual engine and fairing, the air velocity out of the nozzle would have been
measured using a pitot tube to verify it was the correct velocity. Once verified that the combination of
pressures and nozzle diameter were sufficient, the pitot tube would not be used anymore. Analysis was
going to be completed to determine the optimal distance from the nozzle to measure the air velocity and
to place the front of the fairing. A potential issue with the test is that the exit diameter of the 3D printed
nozzle is approximately lin, while the fairing has a diameter of 3.8in. This test would not be perfectly
representative of freestream conditions, but very similar conditions would be reasonably expected as long
as the engine is placed at the correct distance from the nozzle exit. The RPM of the fan blades would have
been collected using the same video camera setup as in the APOP replica test.

05/04/20 56 of 117 PFR

University of Colorado Boulder

5.6. Thrust Vectoring Mechanism Verification

WHiMPS intended to verify the effectiveness of the thrust vectoring mechanism by firing the engine on
a two-axis test stand (see Section 4.2.2) and determining the thrust vectoring angle based on the resulting
load cell readings. The test would have been conducted in the CU engine test cell. Like the WPM high
speed airflow tests, static and dynamic TVM tests were planned. The static test would require the paddles to
be deflected before the engine is run. The resultant thrust vector angle would be measured given the paddle
deflection. This test would have verified FR 1, the requirement to have a thrust vectoring system. The
dynamic test involves the paddles being set at a zero position before the engine is started. Once the engine
is running, the paddles will be deflected to a designated angle. With this test, the amount of time required to
deflect the paddles under load would be measured. The dynamic test would verify FR 1 and verify the TVM
portion of FR 3, requiring MCB control over the TVM.

The test stand consists of two layers of sleds with perpendicular sliders which apply force to load cells.
Upon firing the engine, the team would receive readings regarding the thrust being applied in the axial
(body-X axis) and perpendicular directions. With these data, the angle at which the engine’s thrust was
acting would have been calculated via trigonometry:

6 = tan”! (h))
axial

This is, of course, an idealized calculation that takes the load cell readings as being completely accurate.
A number of factors could skew the data and make it inaccurate. The first and least concerning of these
factors is the offset angle of the load cells. Ideally, the axial load cell would be perfectly aligned with
the engine’s thrust direction and the attitude of the perpendicular load cell would be exactly 90 degrees
away. The angle between the load cells was verified to be accurate to within a half degree on the test stand
modification, and the axial direction was aligned with that of the unmodified test stand during manufacturing.
As such, the error from the attitude of the load cells was expected to be minimal. It is, however, a factor that
would have been considered when interpreting the data from the modified test stand. A second factor which
would have likely been more severe is the friction present in the test stand. Ideally the steel rods on each
level of the sled would be perfectly perpendicular. Due to manufacturing tolerances, however, this would
not realistically be the case. Any deviation here would apply pressure to the pillow block from the rods and
introduce friction into the system which would have compromised the accuracy of the load cell readings.
The team intended to perform an analysis on the friction in the test stand to help bound the error in the load
cell readings, but was unable to do so before the shutdown. This analysis would have consisted of applying a
known force to the load cells through the test stand, and comparing the resulting readings to the known true
value. Performing this test with a variety of forces and orientations could have helped WHiMPS establish
a percent error caused by friction. In order to perform this test, however, the team would have also needed
to bound the error in the load cells themselves. This would have been another source of error that would
have contributed to the uncertainty in the thrust vectoring angle. The team experienced some confusion
regarding some of the load cell specifications, including their error, due to multiple data sheets being found
for the same part number. This anomaly was discovered after the shutdown when separate team members
discovered they had been performing their calculations with different variables, so WHiMPS was not able to
contact the manufacturer to determine which data sheet was accurate. Additionally, initial load cell testing
showed that the error in the readings was higher than expected. As such, further testing was planned to
determine the source of this error. Once the team quantified these errors, a total error on the thrust vectoring
angle could have been calculated, and the team would have been able to gain insight into the accuracy of the
test stand readings. This information would have been used to verify that the thrust vectoring mechanism
was capable of deflecting thrust by the required 10 degrees.

Using the two-axis test stand, the WHiMPS can determine the thrust vector angle based on the angle of
the paddle deflection. During the dynamic test, the thrust vector angle would be plotted against the paddle
deflection angle. An example of the expected data from this test is shown in Fig. 63. The plot shows how

05/04/20 57 of 117 PFR

University of Colorado Boulder

the thrust vector is not expected to be affected significantly at low paddle deflection angles, but will start to
increase almost linearly after the paddle deflection angle reaches about 10°.

Expected Data from Dynamic TVM Test

Thrust Vector Angle [°]

0 2 4 6 8 10 12 14 16 18 20
Angle of Paddle Deflection []
Figure 63: Expected Data from Dynamic TVM Test

5.7. Levels of Success

5.7.1. Windmill Prevention Mechanism First and Second Level of Success

The first and second Success Criteria for the Windmill Prevention Mechanism was tested using the WP1
build configuration of the MCB software which runs on a Linux PC. Since the LabView is set to be in
Software Mode, the command thread utilizes a predefined circular sequence of commands that are received
from a simulated LabView. Since the MCB, TVM, and ECU are in None (or disconnected) Mode any
commands for those subsystems will produce errors. Only valid commands for the WPM will be executed
successfully. Table 11 from the Appendix shows the predefined circular sequence of 10 commands. Note
that nine of the ten commands sent contain at least one error for the purpose of testing the command handlers
validation sequence.

Figures 64 and 65 show the annotated logger messages printed to the terminal. The software uses
the WP1 build configuration which puts the Windmill Prevention Mechanism in software mode while the
Main Control Board, Thrust vectoring Mechanism, and Engine Control Unit are in None (disconnected)
mode. Note that the Health and Status Packets were set to be collected every five seconds rather than
every one second for purpose of shortening the terminal output. As shown, the program enters and begins
the initialization sequences followed by the creation of the three threads. Then in parallel, the Command
Thread receives the circular sequence of ten commands where one command is processed every one second
while the Health and status Thread handles the collection of health and status data once every five seconds.
An error logger message is printed for each of the invalid commands that are received from the LabView.
Note that is error message does not mean that the MCB software is not working nominally, rather it means
that it is handling the errors correctly. These logger messages also show that the health and status data is
being collected correctly and the packets are created and validated successfully. Only the health and status
data collected from the WPM is shown as the data collected from the rest of the subsystems is always zero.
When the first and second health and status data is collected from the WPM, the solenoid has not been
ejected, hence the GPIO levels are low. Additionally, the temperature measurements are set to a predefined
value of 30.1 degrees Celsius.

05/04/20 58 of 117 PFR

University of Colorado Boulder

ale:andr‘amale:andra G7-7798:~/Documents [SeniorProjects/Software /MCE/afrl-mch /mcbs . /WPH1/Ach
LH .8 J[MAIN][Logger] Setting global log level to
J[MAIN] Enteri Main
J[MAIN] Initializing HAL

J[MAIN] Imitializing Subsys

1[HES Thread] Starting Health and Status Thread -« -Health and Statua Thrend Started

1[H&S Thread] Gathering Subsystem Health and Stat 4 - Collection of Health and Status Data Initiated
J[HES Thread][MCB] Gathering B Health and Status

J[WPUP] Starting Watchdog Thread -« - Watchdog Thread Started

J[H&S Thread][WPM] Gathering WPM Health and Status

J[HES Thread][SolencidInterface] Solenoid (id:8) state: GPIOD LOW

J[HES Thread][SolenoidInterface] Solenoid (id:1) state: GPIOD LOW

B L T R T R T L R R LT B] - Command Thread Started

][Comnand Thread][CommandHandler] Received Command Packet - Command Packet 1 received from LabView
1[Command Thread][CommandStruct] Validating Command Packet containing an invalid packe? opccde
][Command Thread][CommandStruct] Command Packet is correct size

1[Command Thread][CommandHandler] Invalid command packet opcode - Command packet error correcily detected
J[Command Thread][CommandHandler] Packaging command acknowledgment

J[HES Thread][Temperaturelnterface] Read 30186mC from the

J[HES Thread][Temperaturelnterface] Read 38188mC from the =

][Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 1 sent to Lab\View
J[H&ES Thread][TVM] Gathering TVM Health and Status

J[HES Thread][ECU] Gathering ECU Health and Statu

J[H&S Thread] Sending Subsystem Health and Status to Labview - - Health and Status sent to LabView
1[Command Thread][CommandHandler] Received Command Packet - Command Packet 2 received from LabView
J[Command Thread][CommandStruct] Validatin onmand Packet containing an invalid MCB subsystem opcode
J[Command Thread][CommandStruct] Command F‘acl’et is correct ze

1[Command Thread][CommandHandler] Invalid command packet subsystem - Command packet error correctly detected
J[Command Thread][CommandHandler] Packaging command acknowledgment

1[Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 2 sent to LabView
][Comnand Thread][CommnandHandler] Received Command Packet - Command Packet 3 received from LabView
][izcmnand Thread][i;c-nnandEtruct] ‘:’ali.dati.ng l_unn_and Packet) containing an invalid MCE command opcode
J[Command Thread][CommandStruct] Command Packet is correct ze

J[Command Thread][CommandHandler] Command packet contains valid subsystem

1[Command Thread] Invalid Command Opcode - Command packet error correctly detected
J[Command Thread][CommandHandler] Packaging command acknowledgment

1[Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 3 sent to LabView.
][Command Thread][CommandHandler] Received Command Packet - Command Packet 4 received from LabView
][1Ennnand mrandStruct] ‘:’ali.dati.ng Ccmn_and Packet containing an MCB Reboot Command while
J[Command Thread][CommandStruct] Command Packet is correct MCE is “disconected”

J[Command Thread][CommandHandler] Command packet contains valid subsystem)

1[Command Thread] Received reboot command

][Command Thread][MCE in disconnected mode, unable to reboot system - Command packet error correctly detected
J[Command Thread][CommandHandler] Packaging command acknowledgment

1[Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 4 sent o LabView
][Command Thread][CommandHandler] Received Command Packet - Command Packet 5 received from LabView
J[Command Thread][CommandStruct] Validating Command Packet containing an MCB Request HS File Command
][Command Thread][CommandStruct] Command Packet is correct size g i “di fa”

J[Command Thread][CommandHandler] Command packet contains valid subsystem EMCE S iistonecled
J[Command Thread] Receiwved requ: Health and Status file command

J[Command Thread][MCE] MCE in disconnected mode, unable to request HS file - Command packet error correc
J[Command Thread][CommandHandler] Packaging command acknowledgment

J[Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 5 sent to LabView
J[H&S Thread] Gathering Subsystem Health and Status - - Collection of Health and Status Data Initiated
J[H&5 Thread][MCB] Gathering MCB Mealth and Statu

J[HES Thread][WPM] Gathering WPM Health and Status

J[HES Thread][SolenoidInterface] Solenoid (id:8) ate: GPID LOW

J[HES Thread][SolenoidInterface] Solenoid (id:1) state: GPID LOW

J[H&S Thread][Temperaturelnterface] Read 38188mC from the sensor

J[HES Thread][Temperaturelnterface] Read 38188mC from the

J[HES Thread][TVM] Gathering TVM Health and Status

J[HES Thread][ECU] Gathering U Health and Statu

J[H&S Thread] Sending Subsystem Health and Status to Labview UL EE T 0B GO T el R AN

J[Command Thread][CommandHandler] Received Command Packet - Command Packet 6 received from LabView

¢ detected

1[Command Thread][CommandStruct] Validating Command Packet containing an MCB Reguest Log File Command
J[Command Thread][CommandStruct] Command Packet is correct e while MCB iS. dizsconected”

J[Command Thread][CommandHandler] Command packet contains valid subsystem

J[Command Thread] Receiwved requ: og file command

1[Command Thread][MCE] MCE in disconnected mode, unable to request log file - Command packet error correctly detected

][Command Thread][CommandHandler] Packaging command acknowledgment

1[Comnand Thread] Sending command acknowledgment to LabView - Command Acknowledgment 6 sent to LabView
][Command Thread][CommandHandler] Received Command Packet - Command Packet 7 received from LEIb'u"IB'.I’COI"ITEHﬂIng

][1Ec|m|and 'Fhread][iEﬂnnandEtruct] ‘:’ali.dati.ng Ecmn.and Packet an invalid
J[Command Thread][CommandStruct] Command Packet is correct ze

][Command Thread][CommandHandler] Command packet contains walid subsystem

1[Command Thread] Invalid Command Opcode - Command packet error correctly detected
J[Command Thread][CommandHandler] Packaging command acknowledgment = 8
1[Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 7 sent to LabView
J[Command Thread][CommandHandler] Received Command Packet

1[Commnand Threadl[CommandStruct] Validating Command Packet

Flgure 64: Annotated Screen Capture of Linux PC Terminal Verifying First and Second Level of Success for WPM

I command opcode

The most important verification in this test is to ensure that when a valid eject fairing command is
received, the command is processed and executed successfully. As shown in Fig. 65 in teal, the MCB
software was able to simulate the actuation (labeled ejection) of the two solenoids, hence simulating the
ejection of the fairing. It is also shown during the collection of the next health and status data that the
solenoid GPIO levels are now high after the the ejection command is executed. This further demonstrates
that MCB software is able so simulate the hardware interactions using the Mock GPIO Manager successfully.
Note that nominally, the solenoid’s GPIO level would be toggled high to low in a much quicker manner. But
it was kept to high only for the purpose of demonstrating the functionality in this document. The program
continues past the included logger message infinitely, where it restarts the command sequence and continues
to collect health and status data.

05/04/20 59 of 117 PFR

University of Colorado Boulder

][Command Thread] Sending command ac}'n:uledunent to Lab'\hew § - Command Packet & received from LabView containing

]{dzc-nnand mandHandler] F'Ei_:eugd Hgnnand Packet a valid WPM eject fairing_command
1lCommand Thread][CommandStruct] Validating Command Packet

J[Command Thread][CommandStruct] Command Packet is correct
J[Command Thread][CommandHandler] Command packet contains
J[Command

J[Command enoidInterface] Ejecting solenoid (id:8)
J[Command enoidInterface] Solenoid) ejected
J[Command Thread][SolenoidInterface] Ejectin lenoid (id:1)
J[Command 5 i Solenoid (id:1) ejecte
J[Command CommandHandler] Packaging command acknowledgment

1[Command ding command acknowledgment to LabView - Command Acknowledgment 8 sent fo LabView
1[Command mandHandler] Received Command Packet - Command Packet 9 received from LabView containing
J[Command mand5truct] Validating Command Packet an invalid TVM command opcode

J[Command mandStruct] Command Packet is correct size

J[Conmand

J[Command alid Command Opcode - Command packet error correctly detected

J[Command mandHandler] Packaging command acknowledgment

J[Command ding command acknowledgment to LabView - Command Acknowledgment 9 sent o LabView
1[Command mandHandler] Received Command Packet - Command Packet 10 received from LabView
J1[Command mandStruct] Validating Command Packet containing an TVM Adjust Thrust Vector
J[Command Thread][CommandStruct] Command Packet is correct size " atbii i iz "dic rtad”
J[Command Thread][CommandHandler] Command packet contains valid subsystem CHEnd ik AUM s sliscouaele
J[Command Thread] Receiwved adjust thrust vector command
J[Command Thread][TVM] TVH in disconnected mode, unable to adjust thrust vector [EESSW s seETaly R EToE -0 oIl ot lg r=To N - =TwE=Te)
J[Command Thread][CommandHandler] Packaging command acknowledgment
J][Command Thread] Sending command acknowledgment to LabView - Command Acknowledgment 10 sent to LabView
1[H&S Thread] Gathering Subsystem Health and Jtatu_ s ~ _-Cllection of Health and Status Data Initiated
J[H&S Thread][MCB] Gathering MCE Health an
J[M&S Thread][WPH] Gathering WPM Health an
J[H&S Thread][SolenoidInterface] Solenoid
J[H&S Thread][SolenoidInterface] Solenoid (i
J[H&S Thread][TemperatureInterface] Read ’ElEGn
J[H&S Thread][TemperatureInterface] Read 38188mC from the s
J[M&S Thread][TVM] Gathering TVH Health and Status
J[H&S Thread][ECU] Gathering ECU Health and atus

S Thread] Jendl.nq Subsystem Health and Status to Labwiew -f - Health and Status sent fo LabView

Received Command Packet

Figure 65: Continuation of Annotated Screen Capture of Linux PC Terminal Verifying the First and Second Level of
Success for WPM

5.7.2. Remaining Levels of Success

As shown in the above image, only the first/second level of success for WPM was reached due to
hardware limitations preventing the TVM unit testing from being completed for the first level of success in
that category. The second level of success for WPM was the same as the first, and the team would have
been able to reach TVM level two quickly after the first was reached as it only added a second symmetrical
axis. To reach further levels of success, the team would have needed completed and integrated WPM and
TVM systems integrated on the engine. At the time of the shutdown, the team was on schedule to finish
these tasks within a week. Once this was completed, the aforementioned tests would have been conducted
to reach levels 4 and 5 of success. Given that the team managed to operate the Jetcat P100-Rx with the
dummy paddle system, there was a possibility of reaching the maximum success defined for this project on
schedule.

6. Risk Assessment and Mitigation
Authors: Nick Zellmann

6.1. Windmill Prevention Mechanism

6.1.1. Risks

Some of the major risks that were identified for the Windmill Prevention Mechanism are outlined below.
These risks include a variety of possible failures that could result in engine damage (resulting in an inability
to reach success level 5) or system failure. Additionally, the risks associated with damaging the engine could
result in the inability to complete further engine testing for the Thrust Vectoring Mechanism, thus affecting
the success criteria for the TVM. A summary of the risks and mitigations for this section can be found in
Fig. 66.

1. Fairing breaks under stress. Because of the high-speed air used to test the WPM under its proposed
operation environment, the fairing could possibly break due to the stress incurred at the tip of the
fairing. Additionally, the holes on the side of the fairing that enable the movement of the solenoid
pins could break and render the WPM useless. This could pose an even greater problem where the
debris from a broken fairing can enter the inlet of the engine, thus causing internal and possibly

05/04/20 60 of 117 PFR

University of Colorado Boulder

irreversible damage to the engine.

2. Air passes through the seam of the fairing. The purpose of the fairing design for the WPM is to

6.1.2.
. Fairing breaks under stress. The mitigation for this issue comes down to simulations and material

redirect all of the incoming airflow away from the inlet of the engine. If the fairing-halves do not
perfectly fit together, the air can enter the inlet of the engine through any available gap. Thus, the
fairing-halves must completely seal any gaps that would allow enough air into the inlet of the engine
and permit fan blade rotation.

. Poor ejection trajectory. With the many electronics on-board the engine, a poor ejection trajectory

could damage a multitude of components. Additionally, the spring being mounted to the inside of the
fairing and pushing off of the starter motor could pose issues if the spring damages the engine upon
ejection.

. Other risks. Solenoid cannot pull pins, solenoid throw not long enough, and the fore retention ring

does not fit over screws on the engine’s body.
Mitigation

selection. FEA analysis was performed to measure the minimum requirements for the fairing to
successfully operate under the Mach 0.8 flow at an altitude of 20k feet. After this, material selection
was the best way to ensure that the fairing would not break under stress. Carbon fiber reinforced Onyx
was selected as the material due to its strength, ease of manufacturing, and availability through CU
resources.

2. Air passes through the seam of the fairing. To mitigate the possibility of air passing through the seam

between the two halves of the fairing, an o-ring seal was taken into consideration. This would only
have been implemented if the fairing did not successfully redirect the air around the engine body;
thus, the team did not implement this onto the fairing halves.

. Poor ejection trajectory. The main way to ensure a proper ejection trajectory without damaging on-

board electronics is to test under static conditions. Airflow going over the front of the engine would
actually assist in proper ejection due to the drag of the separating fairing halves pulling them safely
away. Doing this test under static conditions permits observation of how the ejection would occur
without damaging components.

Other risks. Obtaining stronger solenoids and extending the solenoid’s throw can mitigate the issues
of not being able to successfully pull the pins out of the holes. Additionally, filing down the areas
on the fore retention ring that are blocked by screws on the body of the engine could mitigate the
issue of the fore retention ring not fitting on the engine body. Another solution is to slightly redesign
the location of the screw-holes on the fore retention ring such that there is no restriction between the
screw holes on the engine and the fore retention ring.

05/04/20 61 of 117 PFR

University of Colorado Boulder

Acceptable Minor Issue Major Issue Catastrophic

Probable 3
High Possibility 2
!
Low Possibility 3 2
Unlikely

Figure 66: Windmill Prevention Mechanism Risks and Mitigations

6.1.3. Results

The risks in Fig. 66 are shown before mitigation in black, and after mitigation in blue. The risk of
the fairing breaking under the stress experienced during the replication of Mach 0.8 flow at 20k feet has
a very low chance of breaking. Though our high-speed air test was not conducted due to the COVID-19
shutdown, modelling and simulations showed that the fairing halves supported each other, thus decreasing
the likelihood of breaking. Additionally, the APOP replica test that was performed before the shutdown
proved that the air did pass around the engine body and did not allow any fan blade rotation. The ejection
trajectory was not tested before the shutdown, but the probability of the trajectory impacting the on-board
electronics was reduced after revision B of the ICUP was implemented. This revision kept the electronics
closer to the engine body and reduced the possibility that there would be a collision between the two during
testing. Finally, moving the location of the screw holes on the finalized version of the fore retention ring was
in progress during the shut down. This would have ensured that the fore retention ring fit over the engine
body without having to sand it down.

6.2. Thrust Vectoring Mechanism

6.2.1. Risks

Some of the major risks that were identified for the Thrust Vectoring Mechanism are outlined below. These
risks include a variety of possible failures that could result in engine damage (resulting in an inability to
reach success level 5) or system failure. Additionally, the risks associated with damaging the engine could
result in the inability to complete further engine testing for the Thrust Vectoring Mechanism, thus affecting
the success criteria for the TVM. A summary of the risks and mitigations for this section can be found in
Fig. 67.

1. Engine does not run. If the engine does not run, verifying that the Thrust Vectoring Mechanism turns
the flow by +£10° will be much more complex than if the two-axis test stand could measure the force
on both axes and utilize trig to verify the angle of deflection. Additionally, if the engine does not
run, the WHiMPS will not be able to validate whether the accepted design can withstand the extreme
temperatures and forces experienced at the rear of the engine.

2. Paddles/linkage rods break. High stresses experienced on the paddles and linkage rods at the rear of
the engine during operation increases the risk of these components breaking. If these components
break during testing, lots of time and resources will be lost. Most likely, if this happens, the TVM
will be unsuccessful.

3. Foreign object intake. This problem will most likely be caused by any article or substance that flies

05/04/20 62 of 117 PFR

University of Colorado Boulder

6.2.2.
. Engine does not run. Create a WPM and TVM that do not rely on the engine to be operable. Thus,

6.2.3.

into the inlet of the engine during operation. This would cause serious and irreparable damage to the
engine.
Other risks. Actuator ring is not secure to the engine body and engine fire.

Mitigation

all power systems are independent of the engine’s. Additionally, the TVM is the only mechanism that
needs the engine for testing; therefore, simulation and modelling of the exhaust flow can be used to
validate the TVM.

Paddles/linkage rods break. Stress analyses were performed to better-comprehend the forces and
vibrations at the engine’s exhaust. From here, the material used for the paddles and linkage rods
could maintain a factor of safety (FOS) during the engine’s operation and thus reduce the possibility
of a failure.

. Foreign object intake. All engine testing will be performed in the CU Aerospace test cell under direct

supervision of a PAB. To prevent foreign objects from entering the inlet of the engine during operation,
all loose articles will be cleared from the test cell.

Other risks. An engine fire is possible with any type of jet engine. To mitigate the possible fallout of
such a fire, the WHiMPS team kept a safe distance from the engine during operation and had a fire
extinguisher in the test cell in case of emergency. During engine testing, only one person would be
in the test cell and only for a short period of time. This person’s job was to start the engine via the
GSU. Once getting the engine started, he/she would quickly return to the safety of the test cell. To
mitigate the possible risk of the actuator ring not being secure on the engine body, force analyses were
performed to ensure that a factor of safety was implemented. Additionally, CAD modelling ensured
that the component would fit into the required area. The forces are distributed between the multiple
components in the TVM to reduce vibrational and structural issues.

Acceptable Minor Issue Major Issue Catastrophic

Probable
High Possibility 1—1
Low Possibility 3 2
| !
Unlikely 3 2

Figure 67: Thrust Vectoring Mechanism Risks and Mitigation

Results

As with the WPM section, the risks are shown before mitigation in black and after mitigation in blue.
Running the engine had its complications, but engine runs were performed before the COVID-19 shutdown.
After plugging one end of the ethernet cord into the engine body and the other into the computer, it became
clear that an error had occurred and the engine would not run. JetCat explained that the wrong ends of
the ethernet cord were plugged in, and they simply needed to re-flash the engine to restore its original
software. Time was lost during the shipping process, but once the engine returned, another engine test was

05/04/20 63 of 117 PFR

University of Colorado Boulder

successfully completed. The TVM was not completed at the time of the COVID shutdown, and thus could
not be tested with the engine. Regardless, the paddles and linkage rods breaking was not a major concern
as they were over-designed for thermal and structural purposes. The main concern for the TVM in the
final week of working on this project was the amount of time that the components for the TVM took to
manufacture. Team members were constantly in the machine shop working around the clock to complete
these components. At the time of the shutdown, the WHiMPS were confident that completion of the project
on our highest success criteria was attainable.

6.3. Electronics

6.3.1. Risks

Some of the major risks that were identified for the electronics are outlined below. These risks include a
variety of possible failures that could result in electronics damage (resulting in an inability to reach success
level 5) or system failure. Additionally, the risks associated with damaging the engine could result in the
inability to complete further engine testing for both the WPM and TVM, thus affecting the success criteria
for the project. A summary of the risks and mitigations for this section can be found in Fig. 68.

1. On-board electronics overheat/melt. On-board the engine sits the Integrated Communication Unit
Panel (ICUP), solenoids, potentiometers, and linear actuators. The extreme temperatures that are ex-
perienced on the engine body during operation can damage (if not destroy) these electrical components
and delay the project by weeks.

2. Improper handling of electronics. With sensitive electronics that control a jet engine and its incor-
porated mechanisms, it is relatively easy to touch something that causes irreparable damage. Addi-
tionally, there are many ports and different boards that, if plugged in incorrectly, can short and fry
electronics if precautions are not taken. Damage to the electronics can delay this project by weeks.

3. Vibration causing connectors to break. The possible vibrational effects found during engine operation
can cause connectors to break or separate. This would result in losing data, communication, and
control of the incorporated mechanisms.

4. Other risks. PCB failure, noise and errors from board integration.

6.3.2. Mitigation

1. On-board electronics overheat/melt. To reduce the possibility of this occurring, thermal insulation
can be used to reduce the thermal impact on the electrical components during testing. Additionally,
thermal models were completed that predicted the temperature of PCB’s being below their thermal
limit.

2. Improper handling of electronics. Since there are twelve team members on this project, miscommu-
nications are bound to occur. One team member may not know that something is plugged in, or that
they need an ESD bracelet before touching the electronics. Taking the possible human error out of
the equation is the best mitigation. Casings for the electronics boards can prevent just anyone from
touching them.

3. Vibration causing connectors to break. Locking connectors and adhesives on the engine or actuator
ring to hold down the wires and cables reduces the risk of the connectors disconnecting or breaking
entirely. Obtaining vibrational data from accelerometers to characterize how serious the vibration is
can assist in preparing for such effects.

4. Other risks. To reduce the risk of PCB failure due to poor manufacturing, an iterative approach to
population testing can take place. Additionally, to mitigate the risk of noise and error affecting data
and communication due to board integration, wire wrap shielding, Wheatstone bridge circuits, and
short trace lengths can be utilized.

05/04/20 64 of 117 PFR

University of Colorado Boulder

Acceptable Minor Issue Major Issue Catastrophic

Probable
High Possibility 3
Low Possibility
Unlikely 8 2 ‘/ 1

Figure 68: Electronics Risks and Mitigations

6.3.3. Results

Before the shutdown occurred, plans were in place to characterize the vibrational effects found on the
engine during operation. Because of the expected high-vibrational state of the engine, finding the correct
accelerometer to use was in progress. The main concern for the electronics was the thermal effects from the
engine body. Once again, before the shutdown, mitigations were being considered on how the electronics
could be shielded from the heat produced by the engine. Nothing was decided on, but this was the main
concern of the project at the time of the shutdown.

7. Project Planning
Authors: Alec Bosshart, Andrew Robins, Andrew Meikle

7.1. Team Organization

The WHiMPS team was structured in the form of 12 technical leads forming a management team and 4
major technical teams as shown in Figure 69. The organization of the sub-teams was adjusted in the spring
semester to better fit the goals of the team going forward. These changes were to eliminate the analysis
and mechanical teams to create the manufacturing teams, which are similar in purpose but contain different
members. This change was made to specify what each team would be responsible for.

05/04/20 65 of 117 PFR

University of Colorado Boulder

Project Advisor \ e Course Coordinator
Dr. Donna Gerren () < Dr. Jelliffe Jackson

Project Manager
Alec Bosshart

Human Interface MCB Software M““;‘"f", " Eg“f:“' Manufacturing [| Fluids/Thermal Structures
Julia Kincaid Lucas Zardini Anuige g SR Liam Sheffer Jon Weidner Tsobel Griffin
Zoe Witte Alex Paquin

Engine
Hardware
Declan Murray

Electronics Team Manufacturing Team
Lucas Zardini Andrew Meikle

Testing Team
Andrew Meikle
Nick Zellmann
Andrew Robins

Software Team
Alex Paquin

Zoe Witte Julia Kincaid Alec Bosshart

Andrew Meikle Declan Murray

Figure 69: WHiMPS Organizational Structure

7.1.1. Management Team

The management team is composed of the project manager, the systems engineer, the financial lead, and
the test & safety lead. This team is responsible for the high level management and organization of the project
as a whole. The project manager is responsible for the scheduling of all activities, planning meetings, and
adjusting course when unexpected problems occur. The systems engineer maintains responsibility for all
technical aspects of the project, which includes the definition of requirements. Budgeting and acquisitions
are carried out by the finance lead to ensure that the team is able to purchase necessary materials and
components to complete the project. The test & safety lead aids the project manager in scheduling tests,
along with planning specifics about how each test will be conducted. The test & safety works closely with
the systems engineer to verify the requirements set.

7.1.2. Software Team

The software team is responsible for the design and coding of all software used by the WHiMPS team.
The MCB software lead takes responsibility for all software used to monitor and control electrical compo-
nents on the WHiMPS system, all of which communicate with the Raspberry PI on the MCB. This soft-
ware includes executing commands sent by the user interface to control the mechanical components of the
WHiMPS system. The Human Interface lead is responsible for the development of the software necessary
to allow users to send and receive data to and from the WHiMPS system. The human interface lead also
leads the data acquisition effort to convert signals from external data acquisition systems into data that can
verify requirements and validate models.

7.1.3. Electrical Team

The electrical team is responsible for the design and manufacture of the WHiMPS electronics used to
control and monitor the physical components of the WHiMPS system. This includes the selection of COTS
electronics and sending signals to these electronics. The electronics design lead designs custom printed
circuit boards to accomplish these tasks, and the electronics manufacturing lead populates these boards.
The electrical team must maintain strong communication with the software team to ensure that all data and
signals are compatible with each other’s subsystems.

7.1.4. Manufacturing Team

The manufacturing team is responsible for the manufacture of all custom mechanical systems designed
by the WHiMPs team. These components were designed by the analysis team in the spring. The manufac-
turing lead and fluid/thermal analysis lead worked together to manufacture these components, primarily the

05/04/20 66 of 117 PFR

University of Colorado Boulder

TVM components and modifying the CU test stand to allow for thrust vectoring testing. The fluid/thermal
switched over to become one of the manufacturing team leads because he had the most experience in the
shop and did not have much additional analysis to complete in the spring semester. This team was essential
to the WHiMPS due to the complexity of the TVM mechanical system, which required the manufacture of
a number of small parts.

7.1.5. Testing Team

The testing team conducts all tests to verify requirements set by the systems lead. This includes the
design and manufacture of all small test rigs used by the team and determining logistics required to conduct
tests. The engine hardware lead was responsible for the operation of the engine during stock and TVM
testing, where the engine is operating. The test & safety lead oversaw all efforts of this team and ensured
that all tests were conducted in a safe manner. Safety was of paramount importance to the WHiMPS team
in particular given the hazards associated with the operation of a jet engine.

7.2. Work Breakdown Structure

The work products for the team were broken down into the four primary efforts of the team. These
efforts include the electrical, software, mechanical, and testing products required to complete the WHiMPS
system. Deliverables and management tasks were also tracked to keep the team on task in relation to course
deliverables as well as the project. A diagram of the breakdown structure is shown in Fig. 70. The tasks
in green were completed by the team, and the tasks in red were planned to be completed by the end of the
semester. Due to the COVID-19 pandemic, the team was not able to complete all of the planned tasks.

Legend
Completed
(] Incomplete
Deliverables ‘ ‘ Management ‘ Electrical ‘ ‘ Software ‘ ‘ Mechanical ‘ ‘ Testing
g CDR > Cost Plan g Rle)v(;sslic;r;A > Data Flowchart > WPM Design > Test Plans
> FFR pork RSN > DAQPIan > TVM Design e —
Breakdown Populaion 9 Scheduling
Work Plan Revision A MCB n 2
> MSR (Gantt) ™ Testing > Architecture ~WPM Analysis — Test Designs
Risk Revision B Control 7
g TRR Assessment Design g Algorithm > TVM Analysis > Safety Plans
|, Material Revision B |, Labview Front WPM Test
I> AIAA Paper Acquisition Population Panel Manufacture Manufacture
(Design | [RevisionB | [Labview | L TVM Engine
N SFR Requirement Testing Backend Dev. Manufacture Testing
Satisfaction
" Implement WPM 0
Integration J —{ J . J —'LWMP Testing J
L/ PER _'[MCB Integration
p \ —'[Unit Testing J Integration J —'[TVM Testing J
—n{ APOP

»{ User Manual

Figure 70: WHiMPS Work Breakdown Structure

7.2.1. Electrical

The tasks in the electrical section are broken down by each iterative board revision. Each revision con-
tains a design phase, a population phase, and a testing phase. WHiMPS originally planned for 3 iterations
of board development, but determined that two would likely be sufficient after Revision A testing showed
minimal issues. Each revision contains all 3 boards that make up the electrical system as described previ-
ously in this document. At the time of the COVID-19 shutdown, the electrical team had completed a first
revision and determined the source of all issues found during Revision A testing. The design changes were
completed to solve these issues, but the acquisitions process was unable to be completed.

05/04/20 67 of 117 PFR

University of Colorado Boulder

7.2.2. Software

The development of the software tasks occurred in incremental steps. The team began by planning how
data would flow through the system, and then moved into a preliminary architecture. This included a data
acquisition plan and a planned structure of the MCB software functions written in C++. The MCB software
required a control algorithm to relate the movement of a linear actuator to the deflection of a thrust vectoring
paddle, which was developed next in coordination with the mechanical team. The Labview team developed
a front panel that would serve as the primary interface between the team and the WHiMPS electrical system,
including external DAQ’s.

7.2.3. Mechanical

The work products for the mechanical/manufacturing team follow an incremental pattern as well for
the TVM and WPM subsystems. This began with a design phase, completed in the fall, where preliminary
designs were created. From there, analysis was constructed to confirm the feasibility of each system. The
analysis phase was critical to the project as both developed systems would be exposed to extreme thermo-
dynamic and aerodynamic loads during testing. After each system’s design was confirmed, manufacturing
began. The TVM system was manufactured using a combination of CNC machines and manual mills in-
side of the CU Aerospace machine shop. The WPM system was 3D printed in the CU Aerospace Rapid
Prototyping lab. Complete integration of each system was not possible due to the COVID-19 shutdown.

7.2.4. Testing

Testing work products began with determining which tests would be conducted. The team settled on an
incremental testing progression, beginning with a round of stock engine testing to gain familiarity with the
engine and determine whether stock engine electronics would be compatible with the TVM system. From
there, The team decided that the primary tests should begin with a static test and then move onto a dynamic
test to minimize risk to the mechanical systems and the engine. All of these tests needed to be scheduled,
designed and logistics, including safety, needed to be determined following the preliminary plans. Once
logistics were determined, the manufacture of testing rigs could begin to prepare for the tests. The static and
dynamic WPM and TVM tests were scheduled to occur in April, and were therefore incomplete due to the
shutdown.

7.3. Work Plan

Once work products were determined, scheduling could begin. Figures 71 shows the schedule for the
manufacturing and testing of the TVM and WPM systems. Figure 72 shows the schedule for the develop-
ment of the electronics and software work products. A zoomed image of the critical path can be found in
Figure 73.

05/04/20 68 of 117 PFR

University of Colorado Boulder

Progress

v WPM
Design finalization an...
Fairing printing
Fore Retention final p...
Soleneid pin manufac...
WPM Manufacture Co...
WPM integration
WPM Test acquisitions
WPM test #1 Manufac...
WPM test #1
WPM test #2 prep
WPM test #2
v Stock Engine Testing
Stock Engine test pre...
Stock engine test #1
ECU Reflash
Stock Engine Test #2
v TVM
TVM Design Finalizati...
TVM acquisitions
Nozzle Sheath Manuf...
Actuator Ring Manufa...
Paddles manufacture
Linkage manufacture
TVM manufacture co...
TVM integration
Actuator nut printing
TVM ready for testing
Test stand modifcation
TV testing
Final Documentation ...
MSR presentation
AIAA Abstract Due
TRR presentation
AIAA draft due
AlAA Paper Due
Final Machining Day
SFR Due
PFR Due

@

Revision A design finalization
Rev A acquisitions

Rev A population

Rev A testing

Misc electronics acquisitions
Rev B design modifications
Rev B acquisitions

Rev B population

Rev B testing

Electronics Finalized

TVM electronics testing
Labview Front panel dev
Labview backend dev
Labview debugging
Labview testing

Unit testing development
WPM level 1

WPM HAL testing

WPM level 3

TVM level 1

Labview MCB integration
Labview complete

TVM HAL testing

TVM level 3

TVM level 4

Software level 5

05/04/20

77%
100%
100%
100%
25%

95%
100%
100%
50%

100%
100%
100%
100%
100%
85%
100%
100%
100%
100%
100%
90%

85%

100%

JAN 2020

FEB 2020

MAR 2020

 Manufscturing AnctTesting 76% e e R P P e P B B Be? - 2 % 3

APR 2020

Manufacturing Team
Manufacturing Team

Testing Team

Testing Team
Testing| Team
Management Team

Testing Team

Testing Team

WS Te
—

(W2}, Manufacturing Team

ing Team
(W] Testing Team

Progress

100%
100%
100%
100%
90%
100%

100%

Manufacturing Teal

Manufacturing Team

b Manufacturing Team

Manufacturing Team

[Manufacturing Team

Testing Team

<
<
<
<
R TV
<
(4
Figure 71: Mechanical Gantt Chart
JAN 2020 FEB 2020 MAR 2020 APR 2020 MAY 2020
29 5 = 12Elec|:3nics %eﬁam 2 9 16 23 1 8 15 22 29 5 12 26 3 10 17 24
.L. R.. — Electronics Team
R.. }, Electronics Team
Rev A testing Electronics Team
Management T%j
Re... Electronics Team
L R... h Electrorjics Team
-‘ Electronics Team
|| Electronics Team
ﬂ [B_ Team, Software Team, Testing Team
Software Team
[} softwarg Team
Software Team
an }| Software Team
Software Team
Software Team
Software Team
Software Team
Software Team
re Teay
oftware Team
Software Team

[} Software Team

Software Team

Figure 72: Software and Electronics Gantt Chart

69 of 117

University of Colorado Boulder

3

PFR

JAN 2020 FEB 2020 MAR 2020 APR 2020

v VM 85% & 2 25

TVM Design Finalization 100%

TVM acquisitions 100% TVM acquisitions.

Nozzle Sheath Manufacture 100% Nozzle Sheath Manufacture ing Team

Actuator Ring Manufacture 100% Actuator Ring) | Manutacturing Team

Paddles manufacture 100% Paddles m... Manufacturing Team

Linkage manufacture 90% Linkag...

TVM manufacture complete

TVM integration 65% TVM integration
Actuator nut printing Manufacturing Team
TVM ready for testing

Test stand modifcation 85% Test stand modifcation Manufacturing Team

TV testing

Final Documentation and pres... 100% Final Documentation and pres...

Figure 73: Critical Path

7.3.1. Schedule Margin

Margin was added into the schedule through two primary methods: over estimations and an end of
contract margin method. The amount of work needed to complete each task was estimated by the technical
sub-team responsible for completing it, and then a 20% addition was added to each task to provide some
margin. Given the risk associated with the WHiMPS project, this margin was relatively small in the long
run. To compensate for this risk, an end of contract margin method was added as well. All tasks were
scheduled to occur back to back with the 20% margin built in, which left as much time as possible at the end
of the project to allow flexibility. WHiMPS ended up needing this flexibility after a number of unexpected
delays occurred, including a week delay in all TVM and WPM work at the start of the semester due to a
hold on the budget. These delays resulted in WHiMPS pushing all major testing back into April.

7.3.2. Critical Path

The critical path of the WHiMPS system was the manufacture and testing of the TVM system. This
is because the TVM system was expected to take the most time to develop and was the last testing to
occur. Any delay in the TVM manufacturing would have caused a failure of delivering half of the system.
As mentioned, WHiMPS experienced delays in receiving their P-card which absorbed a large amount of
planned margin in the TVM development. Luckily, the manufacture of the engine attachments, the nozzle
sheath and actuator ring, were completed on schedule. Other manufacturing was able to be worked on in
parallel to these major items with the help from other sub-teams and nearly completed before the COVID
shutdown. Following manufacturing, integration was scheduled to occur. The team managed to integrate
the nozzle sheath and actuator ring along with a single paddle-linkage system. Overall, WHiMPS feels that
their critical path item was on schedule, and therefore the rest of the project was feasible to complete on
schedule.

7.4. Cost Plan

The WHiMPs team has two cost plans over the course of the project. At the beginning of the semester,
the team planned on leaving enough money to buy an additional engine in case the engine failed. The
cost of an additional engine is approximately $2500, which was left as margin at this time. However, the
unexpected occurred and the team had to make numerous un-predicted purchases. These included repairing
the engine for $500 and multiple $60 to $100 shipping charges. At this point, the team decided to abandon
the thought of buying another engine due to budgetary limitations and time limitations. Given that the first
engine took over two months to arrive, the team realized that it was impractical to save 50% of their budget
to potentially buy another engine that would not arrive on time to be useful. Additionally, four levels of
success could be reached without a functioning engine. Upon this decision, the team decided to utilize the
extra budget in order to maximize the project effectiveness. In the following chart, Figure 74, the proposed
and actual spending can be seen along with the relative margins. For a more detailed explanation please see
the appendix.

05/04/20 70 of 117 PFR

University of Colorado Boulder

$3500

$2,990
$3,000 $2,818

$2,500
- $2,182
2,010
$2,000

$1,500
$1,153.05 $1,101.58

$1,000 $904

$596
$500 $459.95
$209 $301
$103.78 .

$0
General/Test VM WPM Software/E lectronics Total Margin

m Predicted Actual

Figure 74: WHiMPS Budget

7.4.1. Budget for Major Items

From the budget chart above, it can be seen that the team spent more than initially proposed. This was
for multiple reasons. The first was unanticipated expenses in the beginning of the project, in particular
fixing the engine. The team encountered difficulty when we accidentally switched the direction of the fuel
line. The engine had to be shipped to Maryland and fixed. The entire ordeal cost the team $660. Another
unanticipated expense early on was shipping a broken engine to Wright-Patt AFB. This was at the request
of the AFRL as they had sent it to us just for dimensions. That cost the team another $100 in shipping.
Additional major items that needed to be purchased were the metals for the TVM. The team needed a
particular alloy of stainless steel, which took a lot of trouble to find. In all the team spent approximately
$550 on various metals. The linear actuators were also major purchases. Each actuator cost the team $130,
coming to a total of $520 before shipping. On the electronics and software side, each revision of the circuit
boards would cost the team $90 dollars. All of these major purchases were accounted for in the initial budget
calculation, excluding the engine repair and shipping.

7.4.2. Budgetary Margin

While the team went over budget in every category expect Windmill Prevention, it was for good reason.
After the decision to use the saved 50% on items for the project the team poured more money into R&D.
This included testing materials and processes for the TVM and electronics. Before the shut down the team
was sitting on a $2000 dollar margin with all major items ordered. Any remaining purchases would be less
than $50 dollars and minor in terms of the budget. From the teams calculations and trajectory, the final
budget would be approximately $1800 dollars.

7.5. Test Plans
Figure 75 shows the list of all planned tests with their scheduled date and completion status. The third
column also shows some of the specialized equipment used for each of the tests.

05/04/20 71 0f 117 PFR

University of Colorado Boulder

i Thermocouple &
Stock Engine Run 2/24 DAQ
Thermocouple &
Dummy Paddle 2/26 DAQ
Thrust Baseline 3/12 Load Cell DAQ
WPM APOP 3/3 APOP Test Rig
i SABRE Tanks, Laser
PRt 3/30 Tachometer x
. SABRE Tanks, Laser
WPM Dynamic 4/1 b ddaiig x
TVM Static 4/6 Load Cell DAQ x
TVM Dynamic 4/8 Load Cell DAQ)(

Figure 75: WHiMPS Test Overview

The scheduling of the tests was based on the availability of the engine and the expected completion date
of manufactured components. The Stock Engine Run test was originally scheduled for 2/13, but due to a
connector being attached incorrectly the engine ECU was damaged and had to be sent to JetCat America for
repair. This delayed all of the test dates by two weeks. The WHiMPS team started with tests that could be
done with the stock engine and measurement equipment. While these tests were being completed, the WPM
APOP replica test was successfully done. The rest of the WPM tests were scheduled next because the man-
ufacturing of the WPM components and completion of WPM software was expected to be finished before
the TVM components. After the WPM tests with the engine, the TVM tests would have been completed.

All of the tests were/would have been conducted in the CU Aerospace Engine Test Cell. This test cell is
adjacent to the machine shop, inside of the aerospace engineering building. Coordination with Matt Rhode
was required before the test cell was set up for the WHiMPS’ tests and to have faculty supervision for the
tests. All test requiring the engine used a test stand acquired from a previous team’s project. This test stand
was clamped to a test stand bench, which was bolted to the floor inside of the test cell. The static and dynamic
WPM tests required a source of high speed (Mach 0.8) air to be blown at the engine. The WHiMPS team
acquired the cold flow test setup from SABRE, a senior projects team in 2016-2017. Professor Farnsworth
had gained custody of the equipment after the senior project team finished their work. The WHiMPS worked
with Professor Farnsworth to move all of the necessary equipment (two large holding tanks and one settling
tank) into the Lockheed Martin senior projects room. The electronic valves used by the team were found in a
large box of miscellaneous equipment used by any team working on an AFRL jet engine project. Additional
procured equipment, including DAQ systems, a laser tachometer, and thermocouples were secured to use
from Trudy Schwartz.

The WHiMPS used a general safety plan to cover a majority of the potential safety issues. This safety
plan includes the danger zone behind the engine which must be cleared before a test, team roles regarding
safety, and procedures for accidents. In addition to the safety plan, the WHiMPS created test plans with the
full procedures written out. The full safety plan and test plans for the stock engine/dummy paddle test and
the APOP replica test can be found in Appendix C.

05/04/20 72 of 117 PFR

University of Colorado Boulder

8. Lessons Learned

Authors: Isobel Griffin, Andrew Meikle

Throughout the design and manufacturing processes, WHiMPS learned many important lessons that
would help future teams in their endeavors. The main and most broad lesson learned is the importance of
developing, modifying, and sticking to a schedule. In the first semester, WHiMPS failed to follow a strict
schedule when preparing deliverables, which reduced their quality. More specifically, set hard deadlines for
all assignments which include a draft due date, a review due date, and a finalization date. Working in these
increments encourages accountability and ensures there is enough time for editing. If WHiMPS had done
this since day one, the quality of deliverables would have increased from the start. Additionally, editing and
scheduling multiple reviews with as many PAB members as possible greatly increases the quality of work.
The assignments in this course are detailed and tedious, but setting aside a team and a time for editing and
reviews will alleviate the stress of the project. WHiMPS had an editing team that would review the first draft
of every assignment, followed by a review from our Project Advisor. This drastically improved the quality
of our work and proved effective.

There were several pieces of information WHiMPS would have benefited from if they had been pro-
vided from the beginning. For next year’s team, it is important to know that the JetCat P100-RX is more
reliable than micro jet engines used in the past, thus the engine electronics do not need to be redesigned
or manufactured. WHiMPS spent a lot of time debating whether to use the SPECS ECU, so this would
have saved an immense amount of discussion time. If next years’ team has to order an engine from JetCat,
WHiMPS would encourage them to determine where to acquire funding for the engine and ordering as soon
as possible. WHiMPS spent many weeks in communication with the aerospace department and the AFRL
to determine where the funding for an engine would be found. Once this problem was solved, there was a
2 month delay in receiving the engine from the distributor. If WHiMPS had been able to order the engine
from the first day, it would have prevented delays in design and manufacturing. Having the engine in hand
during the design phase allows the team to more accurately determine dimensions and gain experience with
the engine during the first half of the senior design course, which aids in the design process.

In regards to design, the most important lesson learned was the value of models, both CFD and FEA.
These models should be created in the design phase and validated in the test phase. WHiMPS developed
several models, including stress and temperature of the paddles. If WHiMPS had created a more wide
variety of models in the beginning, it would have helped our second semester presentations. After testing
was complete, WHiMPS presented the data findings during our oral report, but we soon realized that our
lack of models failed to prove that anything had been validated at all. For example, we failed to produce a
vibrational model in the design phase, thus proving that the vibrations were expected was not possible. For
any future teams, WHiMPS highly recommends that as many models as possible are created to ensure the
project success can be truly articulated through testing and verification.

In terms of testing, the biggest lesson learned is to ensure that all tests designed by those external of the
team are fully vetted before assuming they will work. WHiMPS took the AFRL’s word that the windmill
prevention test was easy, feasible, and worked on all designs. Because of this, WHiMPS did not take
enough time to critically analyze and determine how and if the test would work. This led to a major failure
during the second semester which could have easily been avoided. When developing any test, ensure all
measurements, principles, and steps have been carefully reviewed and are feasible. Another key lesson from
testing is the importance of a good test plan. When test plans clearly outline personnel, objectives, test, and
most importantly safety, time is saved and there are few hiccups. When we presented a clear test plan, we
were able to gain the trust of the department, especially Matt Rhode, which made testing quick and efficient
for the remainder of the semester. Finally, it is paramount to triple check the connections between engine
components before powering anything. The WHiMPS accidentally flipped a connector so it was inserted
backwards, which ruined the ECU when it was powered on. The connector between the fuel pump and
the ECU (square connector with four square holes) has a direction, but it is incredibly hard to tell which
direction is correct. The connector has a small notch on two of the sides, which shows the correct way to

05/04/20 73 of 117 PFR

University of Colorado Boulder

insert the connector. However, do not trust the feel of the connector being inserted because it will easily
connect regardless of the direction inserted - the JetCat America service technician confirmed that this is a
very common problem. Flipping the connector required the team to send the ECU and the engine back to
JetCat America for repair, costing the team $600 and two weeks. If next year’s team is not using the fuel
pump from the WHiMPS, make sure to determine the correct direction for the connector and mark the fuel
pump and the connector so it is very easy to tell if the connector is in the correct orientation.

Finally, WHiMPS learned the importance of being able to respond to problems as they occur. Nothing
will ever go exactly as it is planned, and being able to respond to issues and adjust course is critical. As
mentioned, WHiMPS experienced extreme unexpected delays in acquiring an engine, repairing the engine,
and receiving access to a purchase card. All of these events were detrimental to the project, but the team
was able to overcome these challenges. When something occurs, it is important to keep working on what
is possible outside of the issue and prepare to recover once the delay is completed. It is easy to become
discouraged when tests go wrong, but accomplishes nothing. It is always possible to recover, and advisors
can help with this process.

9. Individual Report Contributions

* Alec Bosshart: Project Deliverables, Conceptual Design Summaries, Integration Plan, Remaining
Levels of Success, Team Organization, Work Breakdown Structure, Work Plan, Editing

* Isobel Griffin: Project Purpose, Lessons Learned, Editing
* Julia Kincaid: Verification and Validation, Editing

* Andrew Meikle: Helped with: Thrust Vectoring Design Outcome, Thrust Vectoring Mechanism Veri-
fication, Lessons Learned, Editing; Wrote sections: WHiMPS Engine Function Verification, Windmill
Prevention Mechanism Verification, Test Plans

* Declan Murray: Design Process and Outcome (WPM Components), Manufacturing (WPM Compo-
nents)

* Alexandra Paquin: Main Control Board Software Design, Main Control Board Software Manu-
facturing, Main Control Board Software Verification, Levels of Success, and Main Control Board
Appendix Content, Editing

* Andrew Robins: Cost Plan, Budget Breakdown, Editing

* Liam Sheffer: Thrust Vectoring Mechanism Scope of Manufacturing, Test Stand Modification, Thrust
Vectoring Mechanism Verification

* Jon Weidner: Design Process and Outcome (TVM Components), Manufacturing (TVM Compo-
nents)

» Zoe Witte: Electronics Verification and Validation, Electronics Manufacturing Challenges, Helped
with Electronics Design

* Lucas Zardini: Electronics Verification, Validation, design, and manufacturing

* Nicholas Zellmann: Levels of Success, Proposed Mission CONOPPS, Testing CONOPS, Functional
Block Diagrams, Functional Requirements, Design Outcomes, Risk Assessment and Mitigation

05/04/20 74 of 117 PFR

University of Colorado Boulder

References

[1] Von Groll, Gotz. “Windmilling in Aero-Engines”, Imperial College of Science, Technology&
Medicine , Retrieved September 8, 2019, from https://www.imperial.ac.uk/.

[2] Quellwerke, “P100-RX,” JetCat Available: https://www.jetcat.de/en/productdetails/produkte/jetcat
[3] V-2 Jet Vane Motor Available: http://afspacemuseum.org/displays/V2jetvaneMotot/.
[4] Rocket Propulsion Elements, 9th Ed., G. Sutton and O. Biblarz, Wiley Publishing, 2017.

[5] Kumar, N., “Co-flow Fluidic Thrust Vectoring Technique,” ResearchGate Available:
https://www.researchgate.net/.

[6] “BeagleBone Blue,” DEV-14920 - SparkFun Electronics Available: https://www.sparkfun.com/.

[7] “BeagleBone Black development board with IGHz AM335x ARM® Cortex-A8 processor,” Beagle-
Bone Black development board with 1IGHz AM335x ARM Cortex A8 processor Version History Avail-
able: https://www.element14.com/.

[8] “Raspberry Pi 4, Pimoroni Make Tech Treasure For Tinkerers Available:
https://shop.pimoroni.com/products/raspberry-pi-4.

[9] “New Pi Zero WH launched,” The MagPi Magazine Available: https://www.raspberrypi.org/.

[10] “NVIDIA Jetson TX2: High Performance AI at the Edge,” NVIDIA Available:
https://www.nvidia.com/en-us/.

[11] Pelouch, James, et al. “Thrust Vector Control (TVS) System Study Program.” Nasa.gov/Archive,
ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700027043.pdf.

[12] “Engine Thrust Vector Nozzles,” Available: http://geekchicpro.com/2018/05/engine-thrust-vector-
nozzles/

[13] Binder, Nicolas, and Xavier Carbonneau. “Performance of a Thrust-Vectoring Solution for Un-
manned Air Vehicles.” Journal of Propulsion and Power, vol. 28, no. 5, 2012, pp. 1125-1129.,
doi:10.2514/1.b34421.

[14] Andersson, Mattias and Kordian Goetz, ”FE analysis of a dog clutch for trucks with all-wheel-drive.”
Available: https://www.diva-portal.org/smash/get/diva2:634202/FULLTEXTO1.pdf

[15] https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-009-DFRC.html

05/04/20 75 of 117 PFR

University of Colorado Boulder

10. Appendices

10.1. Appendix A: Conceptual Designs

10.1.1. Windmill Prevention

Engine Cover To prevent windmilling created by the free stream air passing through the engine, the
WHiMPS conceptualized an engine cover that prevents the free stream air from entering the engine while it
is turned off. This is demonstrated in Figure 76. A method of removing a cover design is shown in Figure

7.

I -X View of Engine I

- Nozzle Cover

- I Latch with Torque Springs I

-Y View of Engine

Figure 76: Airflow Engine Cover on JetCat P100-RX[*!

Chuads

1. WM
Activated

-
g
-

2. Begin 3. WM
removal removed

Figure 77: Cover Ejection Sketch

If the airflow can be prevented from entering the engine, there will be no torques induced on the fan
blades, thus preventing windmilling. While the cover itself is simple, the ejection or retraction of such is a
more complex mechanism to consider. The ejection method is demonstrated in Figure 77, and is similar to

a rocket fairing splitting.

Pros

Cons

Mechanically simple construction

Difficult to eject or retract safely

No internal engine components required

Lack of history, lack of research and information

No airflow blockage post-ejection

Ejecting any item is a safety concern

05/04/20

76 of 117 PFR

University of Colorado Boulder

Hooks A hook mechanism, shown in Figure 78, involves a rack and pinion system that allows for one-axis
movement of a metal rod with a small hook on the end. The rod with the hook on the end would be pulled
back toward the nozzle of the engine. In doing so, the hook would slide between the compressor blades,
preventing them from rotating.

Internal Engine
Mechanism

Figure 78: Hook Attached to Rack and Pinion on Engine Nozzle”!

The hook would be controlled by the user interface and would move via the rack and pinion. This
mechanism is simple in the fact that it requires basic mechanical hardware; however, preventing the fan from
moving under the strength of Mach 0.8 flow could require a lot of force. Because the system is experiencing
such a large force, the potential of damaging the fan blades is greatly increased. Also, the JetCat P100-RX
is known to be extremely sensitive to mass distribution and damaging the fan could potentially affect this.

Pros Cons

Simple mechanical structure and assembly Potential to damage the engine fan

Rack and pinions are commercially available parts | Potential to offset mass distribution

Sealed Notches Another way of physically impeding the compression fans is the Sealed Notch method.
A sketch of this can be viewed in Figure 79 and 80.

Connections

1~ that hold the

bolt in place

& — Frontview of bolt

Figure 79: Front View of Notch Attachment !

05/04/20 77 of 117 PFR

University of Colorado Boulder

—— Threading

- ——» Rubber seal

- —* Boit

Figure 80: Sealed Notch!”!

The Sealed Notch mechanism illustrates a way to physically prohibit fan blade movement. The mech-
anism shall consist of two bolts that have a rubber sealing on the ends to provide a buffer between the
sensitive fan blades and the bolt. The bolts, when not prohibiting windmilling (engine running), shall be
fully unscrewed such that the rubber ends of the bolts do not interact with the compression fan blades. When
the mechanism is to perform its windmill prevention, a signal from the MCB will be sent to servos that spin
the bolts clockwise, thus pushing the bolt’s rubber tips in between the fan blades. This mechanism is simple
due to the very few moving parts, but encounters setbacks due to its functionality. Since the bolts would be
screwed in between the fan blades, the blades would have to be positioned such that the bolts do not push
directly into the blades. Additionally, the JetCat P100-RX engine is known to be extremely sensitive to mass
distribution and damaging the fan could be a detrimental risk.

Pros Cons
Mechanically simple (i.e only two moving parts) Potential damage to fan blades
Cost efficient Potential to offset mass distribution

Dog Clutch A Dog Clutch, Figure 81, is another design option for preventing windmilling of the engine.
This would be implemented in the interior of the engine and consist of two plates that can be connected
and disconnected. The first plate would be fixed to a non-rotating part of the engine (the fixed plate), while
the second plate would be fixed to the shaft of the turbine (the turbine plate). To prevent windmilling, the
fixed plated would be moved by a linear actuator to connect with the turbine plate. This would then lock the
turbine plate to the fixed plate and prevent the turbine from moving.

05/04/20 78 of 117 PFR

University of Colorado Boulder

Figure 81: Dog Clutch!'¥

Pros Cons
Proven technology that is commonly used in cars Must alter the interior of the engine
Will not harm the turbine blades Most likely will impede airflow within the engine

10.1.2. Thrust Vectoring
Jet Vanes Implementing jet vanes aft of the engine nozzle is a possible method of providing thrust vector-
ing capabilities. Figures 82 and 83 below provide a visual demonstration of jet vane technology.

Non-axial
Thrust

Pair of vanes
increase angle of
attack to flow

Lift force on
vane

: Figure 82: Jet Vane Nozzle Mechanism ! Figure 83: Jet Vane Diagram

Jet vanes are essentially a set of four symmetric airfoils plunged into the jet exhaust flow with the chord
aligned with the engine central axis and attached to the nozzle in either a cross or plus formation. This
technology has a lot of flight heritage with rockets and missiles but not with jet engines*!. To accomplish
10° of thrust vectoring, a certain amount of the thrust force must be directed in the desired direction of
vectoring. Assuming the engine is meant to induce a pitch-up, the non-axial component of thrust would
need to be in the +Z direction. The magnitude of this component is derived with trigonometry in Eq.(3)

F.
FZ =sin 10° 3)

Thus, the non-axial component must be 17.36% of the total thrust. In the 100 N nominal case of the JetCat
P100-RX, this corresponds to 17.36 N redirected normal to the X-axis. This requirement applies to all thrust
vectoring technologies. For jet vanes, assuming two vanes can produce lift vectors parallel to the non-axial
thrust component vector (illustrated in Figure (83)), the lift force produced by the two vanes is 1/2 the
required thrust component, or 8.68 N.

Pros Cons
Proven technology Prone to erosion
Simple to analyze Thrust loss up to 3%
05/04/20 79 of 117 PFR

University of Colorado Boulder

Flex-Nozzle The Flex-Nozzle is comprised of several stacked hoops, each with the same diameter, that
can take the shape of a right-angled cylinder or an oblique cylinder. Four rods placed 90 degrees apart are
attached to each of the stacked hoops. Each rod is interfaced with a combined linear and two-axis rotary
actuator. The Flex-Nozzle will attach to the end of the engine’s nozzle. The stacked hoops are restricted to
only move along the horizontal plane, so the height of the Flex-Nozzle, 4, will remain constant. The goal
for this design is to incorporate as many stacked hoops as possible for a given height, with the purpose of
smoothing out the interior of the Flex-Nozzle as much as possible. Additionally, any friction between hoops
when sliding in horizontal direction will need to be minimized while the hoops must also be held together
in the vertical direction such that the Flex-Nozzle is air tight.

Figure 84 shows how the Flex-Nozzle will change shape from a right cylinder (/=90 degrees) to an
oblique cylinder (<90 degrees) along one axes. To change the thrust vector, the actuators will simultane-
ously apply a torque to each rod as well a elongate each rod (to account for the new hypotenuse).

Figure 84: Flex Nozzle

Pros Cons

Very involved mechanical system (lots of moving

Extremely accurate thrust vectoring
parts)

Interior of nozzle is not perfectly smooth - creates

Simple trigonometry required for control . .
stagnation points

Zero thrust impedance at zero degrees of vectoring | Large increase in form factor of the engine

Fluidic Thrust Vectoring Fluidic thrust vectoring is another possible thrust vectoring technology. A
sketch showing the principles behind fluidic thrust vectoring can be seen in Figure 85 below.

05/04/20 80 of 117 PFR

University of Colorado Boulder

O I,
Secondary Jel p2 222 =" ™

Primary Jet - - ﬂ

_-"._F.-.-.-.-.-

————
L‘,’) " Coanda Surface

Figure 85: Fluidic Thrust Vectoring ™!

Fluidic thrust vectoring works by injecting a secondary stream of air next to the primary exhaust of the
engine. The secondary stream goes over a Coandd surface (a specially curved surface which encourages
attachment of flow), which pulls the secondary flow in the direction of the surface. A pressure difference
between the sides of the primary exhaust is generated, which pulls the main exhaust stream in the direction
of the secondary stream. As seen in Figure 85, this effect is able to vector the thrust of a jet engine.

Pros Cons

No moving parts Difficult to retrofit on engines

Small form factor Requires source of pressurized air, method to control
flow

Nothing impedes primary jet exhaust Difficult to analyze

Jetavator A Jetavator is a possible method of thrust vectoring. Essentially, it is an external nozzle placed
into the flow and is manipulated within the flow to allow for thrust vectoring. A diagram of this can be seen
in Figure 86 below.

CD(+ if gap; - if overlapping)
i

L
i D_\TS ~B,
(8]
I
Engine Nozzle Cover Nozzle

Figure 86: Diagram of a Jetavator on a small UAV engine!'?!

A Jetavator is an external ring or nozzle section that is attached outside of the conventional nozzle and
is maneuvered within the exhaust flow to allow thrust vectoring capabilities. The Jetavator will be mounted
externally on the engine, and attached to four rods which are driven by a linear actuation mechanism that
will allow thrust vectoring capability in both axes. This technology is similar to a gimballed rocket nozzle,
but is capable of being introduced to the design after production in a ’bolt-on” method. Due to these similar-
ities, there is previous research and applications available for consultation. Preliminary research shows that

05/04/20 81 of 117 PFR

University of Colorado Boulder

Jetavators are effective mechanisms on small scales; NASA determined that they become inefficient above
a diameter of 260 inches due to a poor weight scaling with size!'*!. However, the WHiMPS thrust vectoring
mechanism will be applied on a small scale, making Jetavators a strong candidate for consideration. At zero
deflection, the Jetavator will not impede nominal thrust of the Jetcat P100-RX, and even has the possibility
of increasing thrust. University of Colorado’s previous APOP team, SPECS, has advised that the Jetcat
engines have slightly over expanded nozzles, creating the possibility of increasing nominal thrust using a
Jetavator. However, WHiMPS has not conducted any studies to verify this advice.

Pros Cons

Relatively large and mass inefficient compared to

Zero thrust impedance at zero degrees of vectoring .
other designs

Potential of affecting the exhaust flow, causing en-

Simple design that relies on 4 motors/actuators .
p £ gine to shut off due to safety features

Potential for two axis thrust vectoring

Cruciform Nozzle A cruciform mechanism provides thrust vectoring in a similar manner to jet vanes.
This is illustrated below in Figure 87.

Bushing

Turning Vane

Thrust Vectoring
Cuff

_—Mounting Bracket

Engine
Nozzle Exit

Drive Gears
Servo

Figure 87: Cruciform Thrust Vectoring Mechanism

The proposed cruciform idea will consist of two airfoil sections with gaps, mounted in or behind the
nozzle in a '+’ fashion. The paddles could be mounted to fit inside the cross section of the exit nozzle,
separated by 90 degrees. The interior paddles shift in four directions together (up,down,left,right), turning
the flow. One axis would be held constant while the other rotated, allowing for single axis vectoring. This
can then switch, allowing thrust vectoring along two axes. At zero deflection, there will be a decrease in
thrust due to the drag caused by the airfoil surfaces as well as flow separation.

Pros Cons
Simple implementation Reduced thrust at zero deflection
Dual axis thrust vectoring One axis at a time
05/04/20 82 of 117 PFR

University of Colorado Boulder

Paddles Figure 88 shows a thrust vectoring system implemented via paddles attached to the end of an
engine’s nozzle.

Figure 88: 3-Rudder Thrust Vectoring!'?!

Paddles are curved extensions of the jet nozzle that can be actuated to fold into the jet stream, deflecting
the flow to create the desired vectoring effect. At zero deflection their direction will be parallel to the jet
stream, allowing for zero impedance of the stock thrust. The proposed idea will use four rudders (as opposed
to the three rudders shown in Figure 88) in an axisymmetric design, where the midpoint of each rudder is
offset by 45° from the aircraft y and z axes. The rudders will be actuated in adjacent pairs to provide a net
change in the flow direction along these axes.

Pros Cons
Negligible change in zero-deflection thrust Rudder deflection angle significantly larger than ac
tual TV angle

Documented success on similar mechanisms using 3
rudders

10.1.3. MCB Microcontroller
Beaglebone Blue The first microcontroller taken into consideration is the Beaglebone Blue Microcon-
troller. An image of the microprocessor can be seen in Figure 89.

05/04/20 83 of 117 PFR

University of Colorado Boulder

Figure 89: Beaglebone Blue Microcontroller!®

The Beaglebone Blue is a microcontroller that the WHiMPS examined as a potential option. The Bea-
glebone Blue has 8 input/output ports. The WHiMPS have no experience with this microcontroller. The
board costs 82 USD. There is not a lot of documentation for this microcontroller. This microcontroller has 2
cores and the processing speed is 1 GHz. The board has an area of 7.525 in”>. The power input requirement
is 9-18 V which is significantly higher than a lot of the other boards. This board has both SPI and 12C ports
and can have data retrieved through a USB or bluetooth connection.

Pros

Cons

Ability to get real time data without a physical con-
nection

High power requirement

Not much documentation

Beaglebone Black The next microcontroller taken into consideration is the Beaglebone Black Microcon-
troller. An image of this microcontroller is shown in Figure 90 below.

Figure 90: Beaglebone Black Microcontroller!”]

The Beaglebone Black is a microcontroller that the WHiMPS examined to potentially use. There are
65 input/output ports. Nobody on the team has direct experience, but it is open source and community
supported which means it is well documented online and easier to navigate. This board is 55 USD. There
are 2 cores and this microcontroller has a processing speed of 1 GHz. The area of this board is 7.14 in”. The

05/04/20 84 of 117 PFR

University of Colorado Boulder

power input requirement is 5V. This board supports both SPI and 12C, and data can be retrieved through an
ethernet cable or a USB cable.

Pros Cons
65 1/0 ports No abll%ty to get real time data without a physical
connection

Raspberry Pi 4 Another microcontroller taken into consideration is the Raspberry Pi 4 Microcontroller.
An image of this microcontroller can be seen in Figure 91 below.

Figure 91: Raspberry Pi 4 Microcontroller®!

The Raspberry Pi 4 is a microcontroller that the WHiMPS examined as an option. The microcontroller
has 14 input/output ports. The WHiMPS have experience using this microcontroller, in addition to it being
open source and community supported which is good because more documentation and experience increases
the likelihood of success. This board has 4 cores and a processing speed of 1.5 GHz. This board is 35 USD
and has an area of 8.05 in®. There is a 5V power input requirement. There are multiple SPI and I2C ports
supported, and real time data can be extracted using a USB-C or an ethernet cable.

Pros Cons

4 cores and fast processing speed Need physical connection to retrieve data

Lots of documentation and team experience

Raspberry Pi Zero WH The fourth microcontroller taken into consideration is the Raspberry Pi Zero WH
Microcontroller. An image of this microcontroller can be seen in Figure 92.

05/04/20 85 0of 117 PFR

University of Colorado Boulder

-
-
3
-
3
-
o
-
-
-
ol
-

Figure 92: Raspberry Pi Zero WH Microcontroller”!

The Raspberry Pi Zero WH is a microcontroller that the WHiMPS examined as a potential option. This
microcontroller has 8 input/output ports. The WHiMPS have experience with this board in addition to it
being open source and community supported which is helpful because increased experience and documen-
tation assist in success. This board only has 1 core and a processing speed of 1 GHz. This board costs 15
USD. The area of this board is 3.02 in®. This board requires a power input of 5V. This board supports SPI
and can only have data retrieved using an SD card which is not ideal.

Pros Cons

Small and low mass Only 8 I/O ports and 1 core
Difficult to retrieve data

NVIDIA Jetson TX2 The final microcontroller taken into consideration for the project is the NVIDIA
Microcontroller. An image of this micrcontroller can be seen in Figure 93 below.

Figure 93: NVIDIA Microcontroller!'"!

The NVIDIA Jetson TX?2 is a microcontroller that the WHiMPS looked at as a potential microcontroller
option. This microcontroller has 70 input/output ports. No team members have experience with this micro-
controller, but it is well documented online. This microprocessor has 4 cores and a processing speed of 1.2
GHz. This board costs 400 USD. The area of this board is 41.94 in>. The input power required is 5.5-19.6
V. This board has multiple SPI and I12C ports supported and can be communicated with by USB or ethernet
cables.

05/04/20 86 of 117 PFR

University of Colorado Boulder

Pros

Cons

70+ 1/O ports

Very expensive

Lots of serial interface options

Very large and massive

10.1.4. Trade Study Liekert Scales
Windmill Prevention

Windmill Prevention

2

Difficult, low percentage
of success predicted,
limited team experience

Simplicity
(Weighted 21%)

Moderate difficulty,
possible success,
some team experience

Expected success,
somewhat experienced in

Confident in success,
team feels experienced

Very high probability of
engine destruction

Safety
(Weighted 19%)

Moderate probability of
engine destruction

Low probability of engine
destruction

Part failure would not
result in engine failure

large increase in drag
area of the engine and
significant impact on
mass, but still
theoretically able to fly

Mass/ profile
(Weighted 13%)

Moderate impact on
drag area of the engine
and moderate impact
on mass

Some impact on drag
area of the engine, but
not major. Some impact
on mass but still practical
to fly

Negligible impact on drag
area of the engine and
mass increase, does not
impact flight

Failure predicted and
maintenance will be
required frequently

Reliability
(Weighted 17%)

Possibility of part
failure, some
maintenance required

Low possibility of part
failure, little maintenance
required to keep
functional

Part failure not predicted,
mimimal to zero
maintenance required

Windmill lower than 0.5
rpm, will not prevent
vibrational movement

Performance
(Weighted 30%)

Figure 94: Trade Study Breakdown for Windmill Prevention Mechanism

Thrust Vectoring

Thrust Vectoring

Windmill lower than 0.5
rpm

Windmill completely
stopped

Windmill completely
stopped, resistant to
vibrational motion

2

Difficult, low percentage
of success predicted,
limited team experience

Simplicity
(Weighted 24%)

Moderate difficulty,
possible success,
some team experience

Expected success,
somewhat experienced in

Confident in success,
team feels experienced

Very high probability of
engine destruction

Safety
(Weighted 14%)

Moderate probability of
engine destruction

Low probability of engine
destruction

Part failure would not
result in engine failure

large increase in drag
area of the engine and
significant impact on
mass, but still
theoretically able to fly

Mass/ profile
(Weighted 11%)

Moderate impact on
drag area of the engine
and moderate impact
on mass

Some impact on drag
area of the engine, but
not major. Some impact
on mass but still practical
to fly

Negligible impact on drag
area of the engine and
mass increase, does not
impact flight

Failure predicted and
maintenance will be
required frequently

Reliability
(Weighted 20%)

Possibility of part
failure, some
maintenance required

Low possibility of part
failure, little maintenance
required to keep
functional

Part failure not predicted,
mimimal to zero
maintenance required

Thrust impedance,
vectoring angles not met

Performance
(Weighted 31%)

Thrust impedance, one
axis of thrust angles

met

Negligible thrust
impedance, thrust angles

met

Zero thrust impedance,

vectoring angles met

Figure 95: Trade Study Breakdown for Thrust Vectoring Mechanism

MCB Microcontroller

05/04/20

87 of 117

University of Colorado Boulder

PFR

of Digital/Analog /O Ports

Familiarity/Documentation
of cores

Processing Speed

Cost

Board size
Serial interface

User Serial Interface
Power

Just enough I/0 ports for A few more I/O ports than
our predicted need our prediced need

Team is fairly familiar with ' Team is familliar with the

microcontroller microcontroller environment

environment and there is and there is some

some documentation documentation

3 cores 4 cores
1GHz >1GHz

>$100 >$50

Fine size to interface with Good size to interface with
the engine >10 in*2 the engine <10 in*2

Contains more than one

Can only be connected by
a cable to obtain real time
data

>5V

Figure 96: Trade Study Breakdown for the Microcontroller

10.1.5. Design Components

Conical Spring

MCB Design

05/04/20

<1d fiiaaqdseyy ndd|

wHiMPS?

Temperature Sensors
TL S T3 T4
o Indicator LED's
R1 R2R2R4 R5Ré R8 RS R1
Main Control Board DLO20304 DSDE D7 D8 09

Rev. B
Lucas Zardim

a

Pouer Selection and Protection

Figure 98: Main Control Board Rev. B Design

88 of 117 PFR

University of Colorado Boulder

Data Line Connections to MCB

J D7
g Rev B: Drive the I2C with 3V3 CPU GND ‘|”_H7J
33
¥ »n Diode

L] 33 =
took out/3V3 i 3 W

’ SDA_ 3 | spa sv :ll"

Rev B: 1’ENABLE PULLUP IN PI?! [!
5L s o Lo
3 S B
ep| 2 aND Rx [0
PWR FET DRIVER P13 11 12 SOLENODSI

Rev B: Added PWR_FET DRIVER 3 and 4 Cafoly Ea

i BWR FET DRIVER 214 13 | gpioy; gnp 24— |jax
— w12 gpion griopy |16 LEXPATA
= 4 @ J i1 sys gpion |18 SOLENOD:2
Hoog g g g ool —fran |0 o oen oo
1_' VIN Vout E—‘_[—‘-“" m erios - arox TP‘R;{_F:T DRIVER_ PI 1
™ m ci ACT#) STER 23 | Gpiou1 criog [24 PWRFET] T =
5V Step Down :EOuF oxD-\l}izs GND Gplo7 |26 PWR FET DRIVER P2
GND i Ne we [
ACT#IDIR 29 | gpros aup [22—jlionD
Rev B: Changed PHASE to DIR and EN to STEF [Tt] 0emos aFmoim koot PAEE
ACTS DR 33 | 6pio13 GND |—4——|l6¥D

ACT#4 STEP 35 | nninig gprorg 28 OVERHEAT

ACT#4 DIR 37 38 LOW_BATTERY

GPI026 GPIO20 ———

oxD-\”—sg GND Gplop1 [H0LC Y CLK
Pid

Rev B: Added Load Cell Clk and Data IO pimns for X and Y

Figure 99: Main Control Board CPU Schematic

MCB Load Cell Schematic

Load Cells and Amplifier

U1 u us i
RED [L{rep wvop HE—p3v3 RED |- LI rep wop 12 —3v3
BLE |2 21 Bk vee |25y BLK |2 2 { gk vee 2 sy
X Axis Load Cell | war [2 war par [MEADPATA Y Avig Tooad Cell whr |2 2| wer par |[[& |LCY_DATA
g | EE 4| opy oo LT IO X CIK ary 4 4| gaw arx L7_lIcly cix
viw [3w e 2 lexo vLw |2 2 vw onn & e
Load Cell Amp Load Cell Amp
Figure 100: MCB Load Cell Schematic
MCB Indicator LED Circuits
05/04/20 89 of 117 PFR

University of Colorado Boulder

oD | 7 Rl PWR_FET DRIVER PI 1
Dge 4Tk
D4

oD 1341 - PWR_FET DRIVER_PI 4
Diode I
D7

| ‘ RS OVERHEAT
Diode R

Indicator LED's

Rev B: Took out OR gates and replaced it with all actuator and solenoid LEDS

m il
anp | R2 PWR_FET DRIVER Pl 2
Diode 7%
D5
G| }—K—_R,EW_SOLE,\'OIDH
Diode = *™®
DS
D] }—H——R\?«N—ZO“'_BATTER‘:
Didde |+

Actuators - Yellow
Solenoids -= Blue
Overheat-— Red
Low Power -~ Red
Pawer ON -= Green

oD Di R PWE_FET_DRIVER_P 3
Dicde 7
D5

aND-| }—H—_P‘SW_SOLENOIDz 2
Diode | T

Do
| RO
GND -||| H i |sv
Dhode

Rev B! LED for when the system 1s on

Figure 101: Main Control Board Indicator LED Circuits

ICUP Schematics

—
[N d| PPl
Z S
= B EEH
[a B EE2E2E2 ¢ %
BEE S DD b oo B oy B o B
©) EEEES S5 5455865a4¢%5
= mEERE S PR R YOEOEM
ggegdadasg88B88EERE
k| E E E EEEEZ R 22232 2 32 2 2 8 DOFL
b - - an|— @o
Wl sy P g GND-||—2 @D %
b o — an o
oa |3 SDa r‘xz_rzu'.wf‘a\d_4 PWF,_FET_DRIVER 4 E
. 4| SCL ;) 5 3|
L ;—_“__‘e e el s‘m\:{:ﬁa&"a\d_ﬁ PWRFETDRIVER.S | r
WERE |3 MW 6 pwR FET DRIVER 2
| I | E . . HEATED 13 E s el |
wer s |6 _actsr | PANEL 1: Motor Driver And Linear Actuator i e i o 2 (SR I 5
S S Fev B: GND's need to be controlled by FWE_FET_DRIVER T EEATET 184 did =R = Z
. 7 | ACT#1_DiR .

ACTHLER. [~ m 3 _al_\ 1 100F I aioNETos || SOLENOID_# -
= ACT#2_STER N wmor X 4t et o B sorEwom g Ay
=] . | [FAIONETON
o ACT#2_DIR My Gup |18 PUR —10 1 AcTes_DIR o
o) AcTes_sTER [Ml By | M 4 — | AcTs_sTER S
O AcTw3 DR 11 coNstG Bl |12 ACTw3_DIR m
= AcTss_sTap | 12| ACTH4 STED o on|EA | o ACT#3_STEP Z,
/u\ ACT#4 DR |13 ACT#4.DIR SEEF A2 U L] gsp ACTS2_DIR, g:_'
i SOLENCID_#] | 14 SOLENCID# sTEp FAUCT 0. AW ACT#2_STEP
P SOLENOm, 42 |15 SOLENOID] DR Gup |8 PWE FET DRIVER 1 LN [v—

16| PWR_FET Nioor Drver
g PWE_FET_DRIVER_1 Fr L i LP #1 —=* | ACT=]_STEP
PWR_FET DRIVER 1 | L/ FWR FET DRIVER 1 s 1WRE
PWE_FET DRIVER 3 | 18 PWR FET DRIVER 3 ! e seL
PWR_FET DRIVER 4 |18 PWR_FET DRIVER 4 2 A
20 [T e) 1
@D |-GND : syl 2 | oy
a | PANEL 1: 5V-=2.5V MR
v -2 |-G R syl 2 | sy
GND 2 I’) NC Fane] ta Panel FLIPPED
PANEL 1: Temperature Sensors
us
TCE—TcUp n_ Wil oo ypp ¢ -l
GND jrevm i I
g |1 4 2 Ine Mo [T o Va
o [w e we []
0 > '
e G:o-l”—* @D N [
Mator Diriver 1 m’\
LY

05/04/20

Figure 102: ICUP Panel 1

90 of 117

University of Colorado Boulder

PFR

05/04/20

2 r PANEL 2
g BEA
2 2 &)

A 5 E 2 &

o EEE

&= gggEzs EEEEEE g, .

R i g EEE - 222582z

2 s F::‘.ﬁz‘ | _,‘, -
5\'#5\% .
20 SDA < = |5 3
SDA " o o i
SCLW’V'

PANEL 2: Motor Driver And Linear Actuator PANEL 2: Temperature Sensors

a
=
B ACTHDIR |1+
=] .\;*:m: Rev B GND's need to be controlled by PWR_FET_DRIVER pal Do oo | g
= sk U3 13y Ne Ne [
= acTw PR (12 e LIEw wmor '_C e e 4
d ACTM4 STEP M @D P, N: e
Z ACT™ DR |2 ML B! Totar an;l —
B3
E SOLENOID_#1 CONFIG Bl -] GRN LP #2
o SOLENOID.#2 vaer w22 e -
= | pwr rer pRvar 3 [T sy oan U 1| rep
=1 | FwE_FET_DRIVER, 2 |2 STEP FATLT (2 B
% ‘PWR_FET_DRIVER 3 R ap [
= | pwmFEr oRIvER 2 |2 hof Difer
[=9} 3 e J . 2o
@p 1 —ha PANEL 2: So]eno;_d Circuit
@D [(e .
o [jios
Pl 1o el FLIPPED
were flipped.
Soleanid Trame:
.
Figure 103: ICUP Panel 2
PANEL TO PANEL
93 Panel To Pl
HEE B
EEEE
y gBek
BEEE = I
o s e EEEEE
B88EEEE 55558
=

1

o
)
&
g
&
€ AEADIO L AN

FUEATIT L1 4

G

PANEL 3: Motor Driver And Linear Actuatol pANEL 3 Temperature Sensors e=i—1 ex

Rev B: GND's need to be controlled by FWR_FET_DRIVER

oo —2 e

w 5 e 100 .
ot wor 2 g Ji-oxm
5 I 3 PWR_FET_DRIVER 4
£ MO GND 13 M\'?\,FE]:Ti:):L\'E:{)
3 14 4 PWR_FET_DRIVER. 3
—m m oW !
3 3 ory e — & | pWR_FET_DRIVER 2
1 2 | gy Wi I'ng —{ PWR_FET_DRIVER_|
1 2Ne Nc SOLENOID 2
RED = '
b 2 Ne e SOLENOID#1
7 L .
| 9 PWRFET DRIVER G.D-\\l— @D NC ACTs4 DIR
Toror Diver 3 ACT TR

sy
L —

11 ICUP <= LPEB

PANEL 3: 5V->2.5V LP#3
D

PANEL TO PANEL FLIPPED

u — B acte_sTER
ACTs]_DIR
R I ACTs]_STEP
W HO
TWIRE
l
sCL

PANEL 3

el ta Pael FLIPPED.

Figure 104: ICUP Panel 3

91 of 117

University of Colorado Boulder

PFR

W
04
PANEL TO PANEL
plit info 4 separate Panels

o . PANEL 4: Motor Driver And Linea

Rev B: GNDY o be controlled

PWR_FET_DRIVER_§

PWE_FET_DRIVER

PANEL 4: Temperature Sensors

8
DQ VDD

w—lEw wmor fet]

2w anE 2]

IWIRE 2 B 2 ne we |2

ACTW]_STEP covre B2 3 Ine Ne

ACTHI DIR vREF Al @D Ne [
ActersTee [1 TEF A Nioiot Brver 4
ACT® DIR T | step ForT [
ACT#3_STEP L] @D

E £) Y
acTsom |12 LP#4 PANEL 4: 5V->2.5V
ACTw4_STEP ICTP =~

PANEL 4: Solenoid Circuit 7=

i

ACTH DR

SOLENOID 51

SOLENOID_#:

PWR_FET_DRIVER

PWR_FET_DRIVER
PWR_FET_DRIVER_3

FWR_FET_DRIVER, #

PANEL TO PANEL FLIPPED

@D

m
— T
G |2 0
oy T T
i3 piRy T
Tt BaraT FLTPORTS P T Mesre. TP SIS T

Figure 105: ICUP Panel 4

10.1.6. Budget Breakout

Parts/Misc Raw Materials Boards Unexpected Expenses

Electrical 295.66 0 71.29 93
Thrust Vectoring 470.86 630.72 0 0

Windmill Prevention 33.78 20 0 50
General, Test Stand 401.05 92 0 660

10.2. Appendix B: Main Control Board Software Reference Material
10.2.1. Code Examples

Listing 1: Subsystem Base Header File

/%

* SubsystemBase .h

ES

% Created on: Jan 15, 2020

* Author: Alexandra Paquin
#/

#ifndef SUBSYSTEMS_SUBSYSTEMBASE H_
#define SUBSYSTEMS_SUBSYSTEMBASE H_

class SubsystemBase {
public:
SubsystemBase (){ };
virtual ~SubsystemBase (){};

/+ No implimentations for this hierarchical level =/

05/04/20 92 of 117

University of Colorado Boulder

PFR

virtual void handleCommand (CommandStruct * cmd) = 0;
virtual void initialize () = 0;
virtual std::vector<uint8_t> getHealthandStatus () = O0;

+s

#endif /+ SUBSYSTEMS_SUBSYSTEMBASE H_ :/

Listing 2: WPM Class Definition

/%

+ WPM. h

*

% Created on: Jan 15, 2020

* Author: Alexandra Paquin
%/

#ifndef SUBSYSTEMS_WPM_H_
#define SUBSYSTEMS_-WPM_H_

#include “subsystems/SubsystemBase.h”
#include “utility /PacketDefinitions.h”
#include “interfaces/SolenoidInterface.h”
#include “interfaces/Temperaturelnterface.h”

enum Solenoid{
SOLENOID1 = 0,
SOLENOID2 = 1

+s

enum WPMCommandOpcode {
FAIRING_EJECT = 0x00

+s

class WPM: public SubsystemBase{
public:

WEM() ;

~WRM() ;

/[*

Inputs: Command Packet

Outputs: None

#* Functionality: Map opcode to correct command execution

Notes: This function will always be called regardless of
%

*/

void handleCommand (CommandStruct % cmd);

private:
Lock lock;
LogTags tags;

uint8_t state_solenoidl ;

05/04/20 93 of 117

University of Colorado Boulder

the

software mode

PFR

uint8_t state_solenoid?2;
float temp_solenoidl;
float temp_solenoid?2;

virtual void ejectFairing (CommandStruct * cmd) = 0;

+s

#endif /x SUBSYSTEMS_ WPM H_ :/

Listing 3: WPM Implementation

/[*

= WPM. cpp

*

% Created on: Feb 3, 2020

* Author: Alexandra Paquin
*/

#include ”subsystems/WPM.h”

WPM: :WPM() { }
WBM: : ~WPM() { }

void WPM:: handleCommand (CommandStruct = cmd){
uint8_t opcode = cmd->op_cmd;

switch (opcode){
case (FAIRING_EJECT) :
Logger :: Stream (LEVEL_INFO, tags) << ”"Received eject fairing command”;
ejectFairing (cmd);
break;
default:
cmd->error = ERR.OP.CMD;
Logger:: Stream (LEVEL_.ERROR, tags) << "Invalid Command Opcode”;
break;

Listing 4: WPM None Header

/

+ NoneWPM. h

k

%+ Created on: Jan 15, 2020

* Author: Alexandra Paquin
%/

#ifndef SUBSYSTEMS_NONEWPM_H_
#define SUBSYSTEMS_NONEWPM H_

05/04/20 94 of 117

University of Colorado Boulder

PFR

#include <subsystems/WPM.h>

class NoneWPM: public WPM{
public:

/%

#* Constructor

#* Inputs: None

#* Functionality: Set the log tag
*/

NoneWPM () ;

~NoneWPM () ;

/%

* Inputs: None

#* QOutputs: None

Functionality: None
#/

void initialize ();

/%

#* Inputs: None

Outputs: Health and Status Data Buffer

#* Functionality: Collect systems health and status data

* of zeros with size of WPM health and status data packet

* EdgeCases: Check size of buffer
#*/
std :: vector<uint8_t> getHealthandStatus ();

private:

+s

Lock lock;
LogTags tags;

uint8_t state_solenoidl ;
uint8_t state_solenoid?2;
float temp_solenoidl ;
float temp_solenoid?2;

/%

#* Inputs: None

* Outputs: Command Acknowledgment

#* Functionality: Return failure command acknowledgment
*/

void ejectFairing (CommandStruct * cmd);

#endif /+ SUBSYSTEMSNONEWPM H._ :/

Listing 5: WPM None Source File

05/04/20 95 of 117

University of Colorado Boulder

return buffer

full

PFR

/%

+ NoneWPM. cpp

*

% Created on: Feb 3, 2020

* Author: Alexandra Paquin
saf]

#include “subsystems/NoneWPM.h”

NoneWPM : : NoneWPM ()
:state_solenoidl (0), state_solenoid2(0), temp-solenoidl (0), temp-_solenoid2 (0)

{

tags += LogTag(”Name”, "WPM”);

NoneWPM : : ~NoneWPM () { }

void NoneWPM:: initialize (){

std :: vector<uint8_t> NoneWPM:: getHealthandStatus () {
Logger:: Stream (LEVEL_INFO, tags) << “Gathering WPM Health and Status”;
WPMHealthStatus wpm_hs(state_solenoidl ,state_solenoid2 ,temp_solenoidl ,temp_solenoid2);
return wpm_hs.getHS ();

void NoneWPM:: ejectFairing (CommandStruct * cmd){
Logger:: Stream (LEVEL_ERROR, tags) << "WPM in disconnected mode, unable to eject fairing”;
cmd->error = ERR_.SUB_MODE_NONE;

Listing 6: WPM Software Class

#include ”subsystems/WPM.h”

#include “interfaces/Temperaturelnterface.h”
#include “interfaces/SolenoidInterface.h”
#include <cstdint>

using namespace std;

class SoftwareWPM: public WPM{
public:

/%

#* Constructor

* Inputs: None

* Functionality: Set the log tag

®/

SoftwareWPM (std :: vector<Templnterface«> temp_devices,

05/04/20 96 of 117 PFR

University of Colorado Boulder

std :: vector<SolenoidInterfaces> sol_devices);

~SoftwareWPM () ;

/%

#* Inputs: None

* Outputs: None

* Functionality :
*/

void initialize ();

/%
* Inputs: None

None

Outputs: Health and Status Data Buffer

#* Functionality :
#/

Collects health and status data

std :: vector<uint8_t> getHealthandStatus ();

private :

Lock lock;
LogTags tags;

uint8_t state_solenoidl ; // Stores the current solenoid 1 state
uint8_t state_solenoid?2; // Stores the current solenoid 2 state

float temp_solenoidl ; // Stores the current solenoid 1 temperature
float temp_solenoid2; // Store the current solenoid 2 temperature

// Vector of temperature sensor interface objects, one object per temp sensor
std :: vector<Templnterfacex> temp-_devices;

// Vector of solenoid interface object, one object per solenoid

std :: vector<SolenoidInterfaces> sol_devices;

/[*
#* Inputs: None

¥ Outputs: Command Acknowledgment

#* Functionality :

Change solenoid states (the attributes), return

#* success command acknowledgment

#/

void ejectFairing (CommandStruct * cmd);

/[*
Inputs: None
Outputs: None
#* Functionality :

Gets solenoid states using the solenoid interface

#* objects , the states gathered from the object are from the mock
* GPIO hardware drivers

*/

void getSolenoidData(void);

/%
#* Inputs: None
Outputs: None

05/04/20

97 of 117 PFR

University of Colorado Boulder

* Functionality :

Gets solenoid temperatures using the temperature

interface objects, the temperature measurements gathered from the

* object are from

®/

the mock OneWire hardware drivers

void getTempData(void);

+s

T
% SoftwareWPM . cpp
%k

%+ Created on: Feb

%/

Listing 7: WPM Software Class Implementation

11, 2020
* Author: Alexandra Paquin

#include “subsystems/SoftwareWPM.h”

SoftwareWPM : : SoftwareWPM (std :: vector<TemplInterfacex> temp_devices ,
std :: vector<SolenoidInterfaces> sol_devices)

temp-devices (temp-devices),

sol_devices (sol_devices),
state_solenoidl (0),
state_solenoid2 (0),
temp-solenoidl (30.100),
temp_solenoid2 (30.100)

tags += LogTag(”Name”, "WPM”);

/! does nothing

SoftwareWPM : : ~SoftwareWPM () { }

void SoftwareWPM:: initialize (){

std :: vector<uint8_t > SoftwareWPM :: getHealthandStatus (){

Logger:: Stream (LEVEL_INFO, tags) << “Gathering WPM Health and Status”;

getSolenoidData ();

getTempData ();

WPMHealthStatus wpm_hs(state_solenoidl ,state_solenoid?2 ,
temp-solenoidl ,temp_solenoid2);

return wpm_hs. getHS ();

void SoftwareWPM :: getSolenoidData(void){

state_solenoidl
state_solenoid?2

05/04/20

sol_devices [SOLENOID1]->getState ();
sol_devices [SOLENOID2]-> getState ();

98 of 117

University of Colorado Boulder

PFR

void SoftwareWPM :: getTempData(void){

temp_devices [SOLENOIDI1]->beginSample ();
temp-solenoidl = temp_devices [SOLENOIDI1]->getSample ();

temp-devices [SOLENOID2]->beginSample ();
temp_solenoidl = temp_devices [SOLENOID2]->getSample ();

void SoftwareWPM:: ejectFairing (CommandStruct * cmd){
if (!sol_devices [SOLENOID1]->eject()) cmd->error=ERR_SOL1_EJECT_FAIL;

if (!sol_devices[SOLENOID2]->eject()) cmd->error=ERR_SOL2_EJECT_FAIL;

Listing 8: Temperature Interface Example

/%

+ Temperaturelnterface .cpp

k

% Created on: Feb 10, 2020

* Author: Alexandra Paquin
*/

#include “interfaces/Temperaturelnterface.h”
#include “utility/Logger.h”

#include <stdio.h>

#include <sstream >

#include <stdint.h>

#include <math.h>

/!

* Creates temperature interface with the provided device

% \param onewireman the OneWireManager to be used

x \param id the id of the device

%/

Templnterface :: Templnterface (OneWireManager& onewireman, int id)
:onewireman (onewireman), id(id)

{

tags += LogTag(”’Name”, ”“Temperaturelnterface”);

TemplInterface :: ~Templnterface (){}

05/04/20 99 of 117

University of Colorado Boulder

PFR

//'! Start the temperature sampling process. At least 750ms must pass before calling getSample
void TemplInterface :: beginSample (){
onewireman . writeToFile (id, 7start”, 717);

/%
Returns the sampled temperature from the sensor. Returns NAN on error
% \return the temperature in C
%/
float Templnterface :: getSample (){
std :: string data = onewireman.readFromFile(id, "wl_slave™);
std :: stringstream ss(data);
std :: string linel , line2;

if (!'std:: getline (ss, linel, '\n')){
Logger:: Stream (LEVEL WARN, tags) << “Invalid data string: \”7”7 << data << 7\"7;
return NAN;

}

std :: getline (ss, line2, '\n');

if (linel .c_str ()[36] != 'Y'){
Logger :: Stream (LEVEL WARN, tags) << "Data fails crc: \77 << linel << 7\77;
return NAN;

}

Logger :: Stream (LEVEL DEBUG, tags) << “"Read \”” << linel << ”\” from the sensor”;

int rawval;

if (sscanf(line2.c_str (), "%xs %xs %xs %xs %xs %xs %xs %xs %xs t=%d”, &rawval) != 1){
Logger:: Stream (LEVEL WARN, tags) << "Failed to parse \77 << line2 << "\”7;

Logger:: Stream (LEVEL_INFO, tags) << "Read 7 << rawval << "mC from the sensor”;
return (float) rawval / 1000.0;

Listing 9: Serial Bus Manager Example
template <typename device> class BusManager: public HardwareManager{
/%« Note: most of code has been omitted =/
public:
BusManager (): devices (){}
virtual ~BusManager(){}
protected :
void initializeDevices (){

for (typename std::vector<device >::iterator i = devices.begin(); i < devices.end();

initializeDevice (*1);

virtual void initializeDevice (device& dev){};

05/04/20 100 of 117 PFR

University of Colorado Boulder

i++){

class OneWireManager: public BusManager<OneWireDevice>{

/% Note:

public:
void

+s

Most of the internal

code has been omitted

initializeDevice (OneWireDevice& dev);

10.2.2. Subsystem Class Object Build Diagrams

%/

Build WPM

WPMBUuildMode
equals None
A 4

WPMBUuildMode
equals Software
y

WPMBUuildMode
equals Hardware
y

Build None WPM object

- No arguments passed into the
NeneWPM object instantiation

Build the WPM Temperature Vector
containing Temperaturelnterface
objects

- Pass singleton MockOneWireManager
object into each Temperatureinterface
object instantiation
- One object for each temperature sensor

Build the WPM Temperature Vector
containing Temperaturelnterface
objects

- Pass singlefon OneWireManager object
Into each Temperaturelnterface object
instantiation
- One object for each temperature sensor

v

v

Build WPM Solenoid Vector containing
Solenoidinterface objects

- Pass singleton MockGPIOManager
object into each Solenoidinterface object
instantiation
- One object for each solencid

Build WPM Solenoid Vector containing
Solenoidinterface objects

- Pass singleton GPIOManager object into|
each Templnterface object instantiation
- One object for each solenoid

v

v

Build SoftwareWPM object

- Pass in WPM Temperature Vector and
WPM Solenoid Vector into the
SoftwareWPM object instantiation

Build HardwareWPM object

- Pass in WPM Temperature Vector and
WPM Solenoid Vector into the
HardwareWPM object instantiation

Figure 106: Flow Chart for the creation of the Windmill Prevention Mechanism Subsystem Object

05/04/20

101 of 117

University of Colorado Boulder

PFR

Build TVM

TVMBuildMode
equals None

TVMBuildMode
equals Software

TVMBuildMode
equals Hardware
y

Y

Build None TVM object

- No arguments passed into the NoneTVM
object instantiation

Build the TVM Temperature Vector
containing Temperaturelnterface objects

- Pass singleton MockOneWireManager
object into each Temperatureinterface object|
instantiation

- One object for each temperature sensor

Build the TVM Temperature Vector
containing Temperaturelnterface objects

- Pass singleton OneWireManager object

Into each Temperaturelnterface object
instantiation

- One object for each temperature sensor

v

v

Build TVM Potentiometer Vector
containing Potentiometerinterface
objects

- Pass singleton Mocki2CManager object
into each Potentiometerinterface object
instantiation
- One object for each potentiometer

Build TVM Potentiometer Vector
containing Potentiometerinterface
objects

- Pass singleton 12CManager object into
each Potentiometerinterface object
instantiation
- One object for each potentiometer

v

v

Build TVM Actuator Vector containing
Actuatorinterface objects

- Pass singleton MockGPIOManager object
into each Actuatorinterface object
instantiation
- One object for each actuator

Build TVM Actuator Vector containing
Actuatorinterface objects

- Pass singleton GPIOManager object into
each Actuatorinterface object instantiation
- One object for each actuator

v

v

Build Software TVM object

= Pass in TVM Temperature Vector, TVM

Potentiometer Veector, and TVM Actuator

Vector into the SoftwareTVIM object
instantiation

Build Hardware TVM object

= Pass in TVM Temperature Vector, TVM

Potentiometer Vector, and TVM Actuator

Vector into the HardwareTVM object
instantiation

Figure 107: Flow Chart for the creation of the Thrust Vectoring Mechanism Subsystem Object

05/04/20

102 of 117

University of Colorado Boulder

PFR

Build ECU

h 4

ECUBuildMode
equals None

ECUBuildMode
equals Software

Y

ECUBuildMode
equals Hardware
Y

Build None ECU object

- No arguments passed info the NoneECU|
object instantiation

Build the ECUInterface Object

- Pass singleton MockRS232Manager
object info ECUInterface object
instantiation

Build the ECUInterface Object

- Pass singleton RS232Manager object
into ECUInterface object instantiation

v

Build SoftwareECU object

- Pass in ECUinterface object info the
SoftwareECU object instantiation

¥

Build HardwareECU object

- Pass in ECUlInterface object into the
HardwareECU object instantiation

Figure 108: Flow Chart for the creation of the Engine Control Unit Subsystem Object

10.2.3. Packet Definitions

Table 8: Command Packet Definition

Field Name Description Size Data Range Units l?yle Byt?
[bytes] Type Start | Location
Opcode
sorrespondi
OP_CMDPKT | “OTEPomane |y uint$_t 0x0C Nome | 0 0
to a command
packet
Subsystem 0x00: MCB
OP_SUB associated 1 uingy | CSOEWPM e |1 1
with the 0x02: TVM
command 0x03: ECU
Opcode fi
PL(h eor Depends
OP.CMD e 1 uint8_t an None | 2 2
subsystem’s
3 subsystem
command
Parameters
for the
TV_PARAM . 16 float (x4) | [-2.72 +2.72] mm 3 [3:18]
TV ADIUST
command
CHECKSUM .bi
32-hit
{without heck .1 4 uint3i2 t | [0,4294967295] | None 3 [3:6]
TV_PARAM) | ©EOIm
CHECKSUM bi
AZ=-Dt
(with ! 4 uint32t | [0,4294967295] | None 19 [19:22]
checksum
TV_PARAM)
05/04/20 103 of 117

University of Colorado Boulder

PFR

Table 9: Command Acknowledgment Packet Definition

Field Name Description Size (bytes) Type Range Units Byte Start Byte Location
Opcode
corresponding to a
OP_CMDACK command 1 uint8_t 0x0C None 0 0
acknowledgement
packet
TIME_LINUX Current fime 4 uint32_t [0,+4294967295] ms 1 [1:4]
TIME_ELAPSED | Time since power on 4 uint32_t [0.+4294967295] ms 5 58]
S Gatcs
OP_SUB asscoc?;‘ar:‘zt:'\;mh 1 uints_t 0x02 TVM None 9 9
0x03: ECU

Opcade for the

OP_CMD
— subsystem command

1 uint3_t Dependent on subsystem None 10 10

0x00: None
0x01: OP_CMDPKT
0x02: OP_SUB
0x03: OP_CMD
0x04: CHECKSUM
0x05: SIZE

0x06
SUB_MODE_NONE
Error code for the 0x07: SOLT_ERR

OP_ERROR :
recieved comand

1 uint8_t None " "

0x0B: SOL2_ERR
0x09: POT1_ERR
0x0A POT2_ERR
0x0B: POT3_ERR
0x0C: POT4_ERR
0x0D: REBOOT_ERR
0x0E: RQST_HS_ERR
0x0F: RQST _LOG_ERR
0x10: CRC_ERR

CHECKSUM Checksum 4 uint32_t 0-4294967295 None 12 [12:15]

Table 10: Health and Status Packet Definition

Size Data . Byte Byte
[bytes] Type Range Units Start | Location

Field Name Description Subsystem

Mone 1] a

(51 (51 (=1 ER2 G

STATE_EMGINE

Mo TS 7S

FUEL_FLOW
BATT_ENGINE
CHECKSUM

Mne

Total Size

10.2.4. Command Sequence for Testing with Simulated LabView

The WP1 build configuration was utilized when the commands shown in Table 11 are processed which
puts the Windmill Prevention Mechanism in software mode while the Main Control Board, Thrust vectoring
Mechanism, and Engine Control Unit are in None (disconnected) mode. Nine of the ten commands sent

05/04/20 104 of 117 PFR

University of Colorado Boulder

contain at least one error for the purpose of testing the command handlers validation sequence.

Table 11: Circular Sequence of Commands Sent from Simulated LabView for Verification of WPM Success Criteria
1 and 2

Command Packet Command
Command Subsystem Checksum Valid
. Opcode . Opcode
Number (OP_SUB) (CHECKSUM) | Command?
(OP_.CMD_PKT) (OP_.CMD)
Invalid
(first detects
i) <00): invali
1 0x00: . 0x00: 0x00: 000000000 invalid
Does not exist MCB REBOOT command
packet
opcode)
0x0C: 0x05: 0x00:
2 x e * 0x00000000 Invalid
OP.CMD_PKT Does not exist REBOOT
Invalid
0X0C: 0%00: 0%05: (first detects
3 g e e 0x00000000 invalid
OP_.CMD_PKT MCB Does not exist
command
opcode)
0x0C: 0x00: 0x00: el
4 X e X 0x00000000 | (subsystem is
OP.CMD_PKT MCB REBOOT . .
disconnected)
0x0C: 0x00: 0x01: el
5 g e X 0x00000000 | (subsystem is
OP_CMD_PKT MCB REQUEST_HS_FILE T
disconnected)
0x0C: 0x00: 0x02: el
6 g e e 0x00000000 | (subsystem is
OP_.CMD_PKT MCB REQUEST _LOG_FILE T
disconnected)
Invalid
: : X0S: inve
7 0x0C: 0x01: 0x0 . 0x00000000 (invalid
OP_CMD_PKT WPM Does not exist command
opcode)
0x0C: 0x01: Ox01: .
8 0x00000000 Walid
OP_CMD_PKT WPM FAIRING _EJECT
Invalid
OxOC Ox2 Ox03 (first detects
X N XULL XU
9 0x00000000 invalid
OP_CMD_PKT TVM Does not exist
command
opcode)
0x0C: 0x02: 0x00: fovalid
10 0x00000000 (subsystem is
OP_CMD_PKT TVM ADIJUST.TV o
disconnected)

10.3. Appendix C: Test Safety Plan and Test Plans
The following pages contain the WHiMPS engine testing safety plan and two test plans: one for the
dummy paddle test and one for the APOP replica test.

05/04/20 105 of 117 PFR

University of Colorado Boulder

WHiMPS Safety Procedures for Engine Testing

The WHIMPS team recognizes the potential danger in testing a live jet engine. To

mitigate these hazards, the WHIMPS team will follow the procedures in this document to both
prevent incidents from occurring, and to respond to them effectively should an incident occur. It
will be mandatory for all members present to review this document before each test to aid the
safety officer, as safe testing relies upon the whole team understanding preventative measures
and procedures in the case of an accident. To begin, the following preventative measures will
be taken during all tests in which the engine is ignited:

1.

Before the engine is mounted to the test cell, all flammable materials must be removed
from the test cell’s area. This includes materials that are not inherently flammable, but
have the potential for explosion (ex. inert gas cylinders) or any other item that is a
potential hazard. The safety lead and faculty advisor will conduct an inspection of the
room before the engine is mounted to identify any missed potential hazard.

Before any testing may begin, the CU test cell’s garage door must be opened to prevent
the buildup of dangerous gasses. To prevent any hazard to anyone in the vicinity of the
outside of the garage door, a perimeter will be formed and manned by sentinels. At the
discretion of Matt Rhode, caution tape may also be used to form a perimeter along with
sentinels. Sentinels must stand outside of the “danger zone” and prevent anyone from
entering into the “danger zone”. From an analysis of the worst case of all kinetic energy
of a turbine blade being sent out the rear of the engine, it was determined that the
maximum flight distance of a loose blade is 90m. The following diagram will demonstrate
the perimeter formed:

Danger Zone

\ A { e Test
L Cell

CU Aerospace 7
Building

3. Prior to any testing, Matt Rhode will be contacted at least 24 hours in advance. Matt

Rhode will communicate this information upstream to the CU emergency services. This

is done because the CU emergency services will be able to respond quicker to any
incident that occurs. Notifying the proper entities before the test is critical in mitigating
the hazard to human life.

4. To prevent an incident where the engine start-up sequence begins at an unexpected
time, connecting the engine battery to the ECU shall be the final step in the test
preparation. The party responsible for plugging in the battery will be the only person in
the test cell, and will immediately return to the test cell’'s observation area. Once the door
is securely closed behind them, the start-up sequence may begin.

5. The WHiIMPS team does not expect to be able to start the engine on the first try. If the
engine does not ignite during a test, the shut-down procedure will be started. Once the
shut-down procedure concludes, the safety lead may enter the test cell to disconnect the
battery. Once the battery is disconnected, the team may enter the test cell. The team
will not be in the test cell with the battery connected to the engine under any
circumstances.

6. All sentinels must wear hearing and eye protection. Hearing and eye protection will be
provided for all sentinels viewing the test at the time and location of the test.

7. All parties viewing the engine test must maintain a safe distance from the engine. This
will occur in two different scenarios:

a. The team is conducting a test within the CU test cell. This is the planned scenario
for all tests. In this case, all team members must remain inside of the test cell’s
observation room for the entirety of the engine’s operation. The engine shall not
begin its start-up sequence until all members are within the observation room
with the door securely closed. No member of the team will enter the test cell itself
until the engine shut-down procedure has completely concluded under any
circumstances.

b. The team is conducting a test in a location besides the CU test cell. This scenario
is not expected to occur. In this case, a blast-shield shall serve the same purpose
as the CU test cell’s observation room, with the same rules applying. The team
will also follow the manufacturer’'s minimum allowable distances requirements
during the operation of the engine. These distances are:

Location Minimum allowable distance
In front of engine inlet 15 ft
On side of engine 25 ft
Behind engine nozzle 15 ft

8. Until the team gains experience with the Jetcat P100-RX engine, the engine shall not
exceed 85% of its maximum thrust. This measure will aid in the prevention of accidental
engine damage.

9.

10.

During the operation of the engine, a CO2 fire extinguisher must be within arms reach of
the safety lead. There must be a clear path between the safety officer, the fire
extinguisher, and the door to the test cell. The faculty advisor is singularly responsible for
any use of the fire extinguisher. All other parties must stand out of the way and follow
any instructions from the faculty advisor.

The CU test cell observation room has an access port covered by foam to allow wires to
pass from the test cell into the observation room. This port creates potential for flames or
projectiles to enter into the observation room in the case of an extreme emergency. To
mitigate this, all viewing parties must stand to the side of this port at a minimum distance
of 1 ft. There must not be a direct line between the engine, the port, and any viewing
party whenever the battery is connected to the engine (e.g. don’t stand anywhere that
you could be hit by shrapnel if a catastrophic failure occurred).

Procedure in the case of an accident

The team is defining 3 separate cases in the case of a fire outside of the combustor occurring.
The safety officer and CU faculty supervising the test will be responsible for categorizing any fire
that occurs, and communicating the respective procedure from there.

1.

Minor Fire: This is a small fire that starts outside of the engine, possibly from the
expulsion of fuel from the rear of the engine. A minor fire will be put out via a CO2 fire
extinguisher. In the case of a small fire occurring, the engine’s shut-down procedure will
start immediately. Once this shut-down procedure has concluded, the faculty advisor will
enter the test cell and thoroughly extinguish the fire.

Moderate Fire: A moderate fire is a fire larger than a minor fire, including any fire on the
exterior of the engine itself. A moderate fire can be put out with a fire extinguisher if the
safety officer is given permission by the CU faculty present during the test. It is the CU
faculty member’s singular decision whether to extinguish the fire via CO2 fire
extinguisher, or calling the emergency services. In the case of a moderate fire, the
engine shut-down sequence will be started immediately. While the shut-down sequence
is happening, the faculty test advisor will make a decision whether to use a fire
extinguisher, or to call the emergency services.

Severe Fire: A severe fire is a large fire that possesses significant explosion risk or is
too large to put out with a fire extinguisher. A fire that has the potential to reach the fuel
tank or the potential to cause a lithium fire from the battery would also classify as a
severe fire. In the case of a severe fire, the emergency services will be called
immediately. The faculty advisor or safety lead can make the decision to evacuate the
test cell observation room immediately. A severe fire poses significant risk to human
safety.

Although a fire is the most likely incident to occur during these tests, other accidents are
possible. In the case of another incident (including damage to the engine or facility), the team
must follow directions from the CU faculty advisor present.

Windmill Prevention APOP Demonstration Replica

General Test Information

Date
Time
Location CU Aerospace Test Cell
Personnel
Position Name & Contact Phone Numbers

Test Supervisor

Safety Lead

Data recorder

Emergency Contacts
CUPD Non-Emergency: 303-492-6666

CU Service Desk: (303) 492-5522
Boulder Fire Department: (303) 441-3350
Matt Rhode: (720) 201-1029

Relevant Documentation
1. WHiIMPS Safety Plan

Test Roles and Responsibilities

Test Supervisor: Initiates and terminates testing procedure. Reads through each step and
verifies that the appropriate actions have been taken before proceeding. Verifies all steps have
been completed. Makes decision to terminate or proceed if unanticipated conditions (weather,
operational etc) occur. Verify testing objectives are being met.

Safety Officer: Responsible for issuing PPE, verifying that general safety is being observed by
all personnel in the vicinity. Responsible for the safe handling of combustibles and safety
equipment, such as fire extinguishers or fuel dry.

Data Recorder: Coordinates video and sensor data measurement and collection of all relevant
test data throughout the test. Collects all notes and observations from test. Will verify testing
materials are reserved and present for test.

Introduction

This test will use the windmill prevention mechanism, the 3D printed fairing. This test will
replicate how the Air Force Research Laboratory plans to test the windmill prevention
mechanism in Dayton, Ohio in May. The fairing is the current flight model, but modifications may
be made based upon the outcomes of this test. Pressure data will be collected manually during

the test in case of a failure.

Objectives
Confirm the windmill prevention mechanism (fairing) can withstand Mach 0.8 flow
2. Verify that the fairing can withstand the conditions that will be imposed at the APOP
demonstration
3. Visually determine the structural integrity of the fairing under a 3.5 psi pressure
differential

Test Overview

Scope: The purpose of this test is to confirm that the windmill prevention fairing can withstand

Mach 0.8 flow at 20k ft through simulation of a 3.5 psi pressure differential. This test will also
confirm that the fairing will be able to survive the APOP demonstration at AFRL in May. We will
visually inspect the fairing to determine the structural integrity, and will record a video to

determine at what pressure, if any, the fairing fails.

Test Setup Diagram:

Pressure Gauge
Measuring for 3.5
psi differential

4" Female NPTF

AERO Air at
~100 psi

D " Male NPTF

In-house

Pressure Escaping Air
Regulator set ﬂ
to minimum
5" PVC with
|) 3.5 psi pressure -

‘ differential U\]\
I Escaping Air

Air line from Air line from
machine shop test cell to
to test cell PVC Donut fitting to
close gap
between PVC

and Fairing

Pre-Test Checklists:

Required Hardware

Check

3D printed fairing, two sides

Air compressor

PVC pipe with attached pressure gauge and foam insulation donut fitting

Camera

Air lines and connectors

Pressure regulator

N|o|lo| | W

Test mount

Preliminary Checks

Check

Air line is disconnected from the PVC pipe and is connected to the pressure regulator

Ensure NPT connector and pressure gage are properly fitted to the PVC pipe and air line

Set pressure regulator to minimum pressure

Blast shield is set up behind the engine to block any possible projectiles

Fairing is attached properly to the fore retention ring on the engine

|l |l | W

Press-fit the PVC pipe over the engine’s fairing

PVC pipe is propped-up in front of the test stand so that it is parallel with the ground. Tape
may be wrapped around the exterior of the pipe to ensure it does not roll/slide during the
test

Engine ECU connections are made to relay RPM data to the computer in the test cell

Test Procedure

Note: The air compressor emergency stop button should be easily accessible, and a protective

plate shall be placed behind the fairing in case of failure or accidental ejection from the PVC

pipe.

Test Checklist:

Step

Test Procedure

Check

1

Plug the air line into the female NPT connector on the PVC pipe

Read pressure gage and relay pressure data over walkie-talkie to a team member
standing near the pressure regulator

If the pressure gage is reading less than 3.5 psi, increase the regulated pressure
accordingly

Once the pressure gage reads 3.5 psi, record the RPM data from the ECU for 1 minute

5

After RPM data is recorded, dial down the pressure regulator back to its minimum output

Disassembly and Cleanup Checklist:

Step

Disassembly and Cleanup Procedure

Check

1

Unplug the NPT connection between the air line and the PVC

2

Power down and unplug the ECU

Remove tape (if necessary) from the PVC and slide it away from the engine’s fairing
without tilting the PVC in any direction (reduce possibility of damaging fairing or fore
retention ring)

Remove fairing from the engine

Remove fore retention ring from the engine

Return all test materials to the senior projects locker and review data

Results/Notes

Stock Engine Test Firing with Surrogate Paddles
JetCat P100-RX

General Test Information

Date
Time
Location CU Aerospace Engine Test Cell
Personnel
Position Name & Contact Phone Numbers

Test Supervisor

Safety Lead

Data recorder

Operator

Sentries

Emergency Contacts
CUPD Non-Emergency: 303-492-6666

CU Service Desk: (303) 492-5522
Boulder Fire Department: (303) 441-3350
Matt Rhode: (720) 201-1029

Jet Cat Support: (661) 822-4162

Relevant Documentation

1. JetCat RX/RXi Turbines with V10 ECU Manual
2. Turbine Operating Instructions for JetCat RX Turbines
3. WHiIMPS Safety Plan

Test Roles and Responsibilities

Test Supervisor: Initiates and terminates testing procedure. Reads through each step and
verifies that the appropriate actions have been taken before proceeding. Verifies all steps have

been completed. Makes decision to terminate or proceed if unanticipated conditions (weather,
operational etc) occur. Verify testing objectives are being met.

Safety Officer: Responsible for issuing PPE, verifying that general safety is being observed by
all personnel in the vicinity. Responsible for the safe handling of combustibles and safety
equipment, such as fire extinguishers or fuel dry.

Data Recorder: Coordinates video and sensor data measurement and collection of all relevant
test data throughout the test. Collects all notes and observations from test. Will verify testing
materials are reserved and present for test.

Operator: Physically operates all devices as needed to adjust engine to desired operation. This
could include manual input devices, Labview, or other GUls as testing progresses.

Sentries: Stand outside of the test cell and prevent people from walking into the danger area
behind the engine (described in the WHIMPS Safety Plan).

Introduction

This test will use the stock JetCat P100-RX engine. Once the startup sequence is confirmed,
two surrogate paddles will be installed, which are already made to be deflected into the exhaust
jet. The paddles are not the actual paddles designed for the system, but will be similar in size
and shape to provide a preliminary understanding of how the engine reacts with the paddles in
the exhaust flow. Temperature data from the exterior of the engine casing will also be collected.

Objectives
Confirm the procedure for starting the P100-RX from the GSU.
2. Determine if the stock engine shuts down when the two paddles partially block the
exhaust jet.
3. Visually determine if the paddles deflect the exhaust flow by any amount.
Determine the temperature profile of the engine casing over time.

Test Overview

Scope: The purpose of this test is to learn how to start the engine from the GSU and to provide
qualitative data regarding the performance of the engine when paddles are deflected into the
exhaust. There will also be quantitative temperature data collected from the exterior of the
engine casing. Qualitative data collected will include video of the exhaust to determine if the

exhaust stream deflects in the presence of the paddles.

Test Setup Diagram: The following image shows the test setup.

)Thermocnuple
®

Exhaust

Engine | " | Camera

Paddle

Pre-Test Checklists:

Required Hardware

Check

Engine, associated tanks and lines

Test stand

Surrogate paddles and attachment mechanism

Camera (could be a phone)

Fuel and oil, in tank

Thermocouples

N|o|lo| | w

GSU and battery

Preliminary Checks

Check

Determine if weather allows testing

Verify no loose objects or FOD on or about test stand

Clear rear of engine of obstructions

Inspect fuel gaskets for signs of damage

Check the fuel lines and filter, make sure they are clean with no restrictions

Fill fuel tank(s) and ensure the tank(s) are full

Ensure there are no fuel leaks

Clean spills (as required) and repair leaks

Ensure camera is placed in correct position to collect data

Verify secure placement of thermocouple

11

Ensure all personnel are wearing PPE (Ear and Eye Protection, Gloves)

12

Verify safety equipment (fire extinguisher) is staged and manned

13|Ensure that all non-essential personnel are safely behind test cell door

Test Procedure

Note: the emergency stop switch/button should be easily accessible by the safety officer and the
operator so they can stop the test if any issues or concerns arise.

Test Checklist

Step Test Procedure Check

1|Plug battery into ECU

2|Turn on ECU using pen (hold button for 5 full seconds)

Within 60 seconds, hold down the Set button and press the Spool button on the GSU to
start turbine. Engine should start automatically

Once engine starts it will run through a series of states, ending in the green ‘OK’ LED
lighting

3 |If the above procedure works, unplug the battery and proceed to the next steps

6 |Install surrogate paddles (? or should this be done already and just go with it ?)

7 |Start engine using procedure in steps 1-4

Increase engine RPM by reasonable increment (currently unknown) by holding down the
Spool button and pressing the + button. Let engine stabilize for 30 seconds.

Continue increasing engine RPM by the same procedure in step 5 until max RPM is
reached

If fuel is available, decrease RPM by holding the Spool button and pressing the - button,

10a then letting the engine stabilize for 15 seconds at each decrement.

If fuel is not available, bring the engine to idle by holding down the Spool button, then

100 pressing Run

11|Return to idle for a minimum of 30 seconds before planned shutdown

Turn off engine. Allow engine to sit for approximately 5 minutes as the engine completes
12 |its cooldown procedure. Make sure to record timing and temperature recordings from
GSU during shutdown.

13|When cooldown is complete, begin tear down of test rig

14|END

Disassembly and Cleanup Checklist

Step

Disassembly and Cleanup Procedure

Check

1

Turn off remote control - maybe?

2

Turn off the receiver switch and unplug receiver battery - maybe?

Unplug ECU battery from ECU

Disconnect ECU Data cable from engine

S

Drain fuel lines and disconnect

Remove fuel lines from fuel tank, store in fuel container

Unplug ECU Data Cable from ECU

Unplug GSU from mini I/O board and store

Remove engine from test stand and store, will return to locker

10

Return fuel to fume hood, or into fire safe cabinet

11

Verify no fuel spilled, or it has been cleaned up

12

Verify all JetCat Components and load cell removed from Test Rig

13

Test rig and safety shields properly stowed in test cell

14

All PPE returned and stowed

15

No trash, debris or exploded engine parts remain on test site

16

Leave no man/woman behind

17

END

Results/Notes

	Project Purpose
	Project Objectives and Functional Requirements
	Levels of Success
	Proposed Mission CONOPs
	Testing CONOPs
	Project Deliverables
	Functional Block Diagram and Software Flow Diagram
	Functional Requirements

	Design Process and Outcome
	Requirements Flowdown
	Conceptual Designs
	Windmill Prevention Mechanism
	Thrust Vectoring Mechanism
	MCB Microcontroller

	Trade Study Process and Results
	Trade Study Methodology
	Windmill Prevention Mechanism and Thrust Vectoring Mechanism
	MCB Microcontroller

	Design Outcomes
	Windmill Prevention Mechanism
	Thrust Vectoring Mechanism

	Electronics
	Main Control Board
	Integrated Communication Unit Panel
	Linear Potentiometer Breakout Board

	Main Control Board Software
	Software Architecture
	Software Flow
	Packet Definitions

	Manufacturing
	Windmill Prevention Mechanism
	Scope of Manufacturing
	Fairing
	Fore Retention Ring
	Solenoid Pins
	Engine Integration

	Thrust Vectoring Mechanism
	Scope of Manufacturing
	Thrust Vectoring Mechanism Manufacturing Process
	Test Stand Modification

	Main Control Board Software
	Electronics
	Manufacturing Challenges
	Integration Plan

	Verification and Validation
	Electronics Verification
	Main Control Board Software Verification
	LabView Verification
	WHiMPS Engine Function Verification
	Windmill Prevention Mechanism Verification
	APOP Replica Test
	High Speed Airflow Tests

	Thrust Vectoring Mechanism Verification
	Levels of Success
	Windmill Prevention Mechanism First and Second Level of Success
	Remaining Levels of Success

	Risk Assessment and Mitigation
	Windmill Prevention Mechanism
	Risks
	Mitigation
	Results

	Thrust Vectoring Mechanism
	Risks
	Mitigation
	Results

	Electronics
	Risks
	Mitigation
	Results

	Project Planning
	Team Organization
	Management Team
	Software Team
	Electrical Team
	Manufacturing Team
	Testing Team

	Work Breakdown Structure
	Electrical
	Software
	Mechanical
	Testing

	Work Plan
	Schedule Margin
	Critical Path

	Cost Plan
	Budget for Major Items
	Budgetary Margin

	Test Plans

	Lessons Learned
	Individual Report Contributions
	Appendices
	Appendix A: Conceptual Designs
	Windmill Prevention
	Thrust Vectoring
	MCB Microcontroller
	Trade Study Liekert Scales
	Design Components
	Budget Breakout

	Appendix B: Main Control Board Software Reference Material
	Code Examples
	Subsystem Class Object Build Diagrams
	Packet Definitions
	Command Sequence for Testing with Simulated LabView

	Appendix C: Test Safety Plan and Test Plans

