

WASP Spring Final Review

April 27, 2021

ASEN 4028-011 Team 9

Company Customer: Sierra Nevada Corporation (SNC)

Faculty Advisor: Dr. Francisco Lopez Jimenez

Presenters: Samuel Felice, Ansh Jerath, Aidan Kirby, Emma Markovich, Bailey Roker, Parker Simmons

> Additional Team Members: Madison Dube, Adam Elsayed, Foster Greer, Matthew Zola

WASE G

2

Presentation Outline

- 1. Project Purpose & Objectives
- 2. Design Description
- 3. Test Overview
- 4. Test Results
- 5. Systems Engineering
- 6. Project Management

Project Purpose & Objectives

Project Overview

Background:

 Sierra Nevada Corporation's ISR, Aviation, and Security (SNC IAS) division needs a better way of measuring the weight and CG of their Intelligence, Surveillance, and Reconnaissance (ISR) pods.

Motivation:

- Effective: Current method of finding weight and CG is challenging.
- **Safety:** ISR Pods and Engineers are at risk with current method.

Primary Project Objectives

- Measure the weight and CG location of SNC ISR Pods to an accuracy of ±0.1% and ±0.1 inch, respectively.
- 2. Be able to use WASP for pods weighing up to 2000 lbs.
- 3. Be able to accomodate pods with **14-inch** and **30-inch** lug spacing configurations.
- 4. Develop a measurement procedure for WASP that is feasible for SNC test engineers (**30-minute** test duration, **2 engineers**)

Level of Success

Project Elements	Level 1	Level 2	Level 3
Structural Integrity	Support 1000 lbs with FOS of 2.0	Support 2000 lbs with FOS of 2.0	
Mounting and Interfacing	Connect to 14" and 30" pod lug configurations		Modular Capabilities to connect future pod lug configurations
Measurement Accuracy	Measure weight within $\pm 0.1\%$ and X CG and Z CG locations within ± 0.1 "	Measure weight within ±0.1% and X CG, Y CG, and Z CG locations within ±0.1"	
User Interface	Measurement tool will output data to be manually entered into the software tool to perform calculations	Measurement tool will autonomously input data to the software tool to perform calculations.	The measurement tool will autonomously collect and analyze data and export results to an Excel-compatible file.
User interface	The software tool will deliver the weight, X CG, and Z CG values averaged over at least 2 and up to 5 measurement sets	The software tool will deliver the weight, X CG, Y CG, and Z CG values averaged over at least 2 and up to 5 measurement sets	The software tool will deliver the weight, X CG, Y CG, and Z CG values averaged over more than 5 measurement sets
	Test completed by 3 engineers	Test completed by 2 engineers	
Test Operation	Test completed in 1 hour	Test completed in 0.5 hours	
	Test engineers will be able to successfully perform test with guide of engineer familiar to tool	Test engineers will be able to successfully perform test by following test procedure	
Transportation	Tool is maneuverable by 3 team members	Tool is maneuverable by 2 team members	

Concept of Operations

Design Description

Baseline Design

- Estimated to weigh **1532 pounds**
- Primarily A36 Carbon Steel for desired strength

Test Procedure

Timelapse of Test Procedure

Animation of Measurement Procedure

Project Purpose & Objectives Design Description

Functional Block Diagram

Electronics

User Interface

- 1. Test Details
- 2. Tare Load Cells
- 3. Take/Add Measurement
- 4. Enable/Disable Measurements
- 5. Export .csv files

Updates Since TRR

Ballast implemented to counteract jamming of sliding interface

Testbed **alignment method** leads to more repeatable CG measurements

Caster wheels added for maneuverability

Project Purpose & Objectives Design Description

Test Overview

Testing Scope - Overview

Level	Test	Model/Process Validated	Equipment/Facilities Used
	Lug Mount Tensile	FEM Model	Modified Lug Mount, EM MTS
Component	Load Cell Characterization	Monte Carlo Simulation	WASP Load Cells + DAQ System, EM MTS
	Component Checks	N/A	None
	E&S Functionality	Software Flowchart	WASP DAQ System
Sub-System	Structural Integrity	FEM Model	Weight, Strain Gauges, WASP DAQ System, AES Forklift
	Measurement Accuracy	Monte Carlo Simulation	SNC Test Article
System	System Accreditation	CONOPS	SNC Test Article, Volunteer Engineers

Testing Scope - Project Objectives

Project Objective	Highest Success Level Criteria	Test	
Structural Integrity	Support 2000 lbs with FOS of 2.0	Lug Mount Tensile Test, Structural Integrity Test	
Mounting and Interfacing	Modular Capabilities to connect future pod lug configurations	Lug Mount Tensile Test	
Measurement Accuracy	Measure weight within $\pm 0.1\%$ and X CG, Y CG, and Z CG locations within $\pm 0.1"$	Load Cell Characterization, Measurement Accuracy Test	
Lisor Interface	The measurement tool will autonomously collect and analyze data and export results to an Excel-compatible file.	Electronics and Software Functionality Test	
User Interface	The software tool will deliver the weight, X CG, Y CG, and Z CG values averaged over more than 5 measurement sets		
	Test completed by 2 engineers		
Test Operation	Test completed in 0.5 hours	Sustan Appreditation	
	Test engineers will be able to successfully perform test by following test procedure	System Accreditation	
Transportation	Tool is maneuverable by 2 team members		

Test Results

Load Cell Characterization - Modeling

DR 1.1.3/2.1.3: Sensors shall be calibrated such that measured values are accurate within ±0.1% of the pod's true total weight, and within ±0.1" of the pod's true total CG

Rationale/Motivation:

- Verify load cell accuracy and data processing methods
- Rule out load cells as problem source for full-system errors

Load Cell	Combined Error (Non-Linearity + Hysteresis)	Sensitivity
Omega LC103B	0.020% FSO	3.0 ± 0.008 mV/V

3 Parts:

- 1. Linearity & Sensitivity
 - Apply load using tensile testing machine
- 2. <u>Drift</u>
 - Apply constant load for 60 minutes
- 3. Measurement Accuracy Test

DR 1.1.3

DR 2.1.3

Load Cell Characterization - Results

DR 1.1.3/2.1.3: Sensors shall be calibrated such that measured values are accurate within ±0.1% of the pod's true total weight, and within ±0.1" of the pod's true total CG

Linearity: CONFIRMED

Load Cell	Y-Intercept	Slope	R-squared value
500-lb	16.259 [µV/V]	6.006 [V/V]/lbs	0.999999737
1000-lb	14.277 [µV/V]	3.006 [V/V]/lbs	0.999999904

Sensitivity: CONFIRMED

Load Cell	Sensitivity (mV/V)	Expected Slope ([µV/V]/lbf)	Measured Slope ([µV/V]/lbf)	Difference (% load)
500-lb	2.9980	5.9960	6.006	0.056 < 0.07*
1000-lb	3.0024	3.0024	3.006	0.040 < 0.07*

*expected combined accuracy of MTS Machine (0.05%) and Omega load cell (0.02%)

Applied Tensile Load vs. Sensor Output

0.5

0

200

400

y = 6.006e-06x + 1.6259e-05

R² = 0.999999737

300

Load [lbs]

400

500

200

0.5

100

DR 1.1.3

DR 2.1.3

Data

- - · Fit Line

1000lbs LC

y = 3.0056e - 06x + 1.4277e - 05

800

1000

1200

 $R^2 = 0.999999904$

600

Load [lbs]

Load Cell Characterization - Results

DR 1.1.3/2.1.3: Sensors shall be calibrated such that measured values are accurate within $\pm 0.1\%$ of the pod's true total weight, and within $\pm 0.1\%$ of the pod's true total CG

DR 1.1.3

DR 2.1.3

Drift: CONFIRMED

Load Cell	Initial Load	Final Load	Mean Load	Measured Slope
LC0 [500lb]	181.783 lbs	181.802 lbs	181.794 lbs	0.0092 lbs/hr
LC1 [500lb]	125.730 lbs	125.699 lbs	125.706 lbs	-0.0237 lbs/hr
LC2 [500lb]	107.291 lbs	107.292 lbs	107.292 lbs	0.0062 lbs/hr

Drift is at most 0.005% FSO in one hour of applied load.

Project Element	Level 1	Level 2	
Measurement Accuracy	Measure weight within $\pm 0.1\%$ and X CG and Z CG locations within $\pm 0.1"$	Measure weight within $\pm 0.1\%$ and X CG, Y CG, and Z CG locations within $\pm 0.1"$	
Test Operation	Test completed in 1 hour	Test completed in 0.5 hours	

Project Purpose & Objectives Design Description Test Overview Test Results

Electronics and Software Functionality - Results

DR 8.1: WASP shall have a computer based tool that interfaces with the sensors

Software: Fully Functional

Easy to use UI walks through procedure ٠

Hardware: Successfully Integrated

Communication between load cells and • UI for automated data processing

Tare menu from the User Interface

Project Element	Level 1		Le	evel 2	Level 3	
	Manual Data Er	ntry	Autonomous data	entry and calculations	Level 2, plus excel compatible results expo	rt
User Interface	Delivery of weight, X and Z CG f 5 data sets	rom between 2 and		, and Z CG from between 2 data sets	Delivery of weight, X, Y, and Z CG from 5- data sets	-
Project Purpose & Objecti	ives Design Description	Test Overview	Test Results			22

DR 8.1

Lug Mount Tensile Test - Modeling

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0

Lowest (~3) predicted safety factor in 2000 lb lug mounts

DR 3.1

Lug Mount Tensile Test - Results

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0

DR 3.1

- Model Prediction:
 - Top plate yield near bolt holes ≥3,400 lbf
- Observed Results:
 - Yielding ~13,000 lbf in top plate and threads
 - \circ 6.5 \leq FOS \leq 7.75 for mount itself
- Consequences:
 - Design: DR 3.1 Satisfied for this component
 - <u>Model:</u> Interpretation of the model is complicated
 - Fixed geometry increases stress in nearby material
 - Assembly treated as one part (fused) in model internal reactions between components increase stiffness, push back plastic deformation

Project Element	Level 1	Level 2	Level 3
Structural Integrity	Support 1000 lbs with FOS of 2.0	Support 2000 lbs with FOS of 2.0	
Mounting and Interfacing	Connect to 14" and 30" pod lug configurations		Modular capabilities to connect future pod lug configurations

Structural Integrity Test - Modeling

Project Purpose & Objectives Design Description Test Overview Test Results

Structural Integrity Test - Results

DR 3.1: Structural components must have a safety factor against yield of > 2.0 **DR 3.3:** WASP shall lift pods out of their cradles

DR 3.3

DR 3.1

Cannot validate FOS > 2.0 for the *whole structure* without a second structure

- Lowest Predicted FOS tested (LMTT)
- Tested in all possible configurations

Loading Case (2205 Ibs)	Expected Max Stress [psi]	Actual Max Stress [psi]
Flat, Pinned	~385	278
Flat, Transient	~971	1006
Tilted, Pinned	~223	80

Project Element	Level 1	Level 2	Level 3
Structural Integrity	Support 1000 lbs with FOS of 2.0	Support 2000 lbs with FOS of 2.0	
		-	

Structural Integrity Test - Results

Project Purpose & Objectives Design Description Test Overview Test Results

Measurement Accuracy Test - Modeling

DR 1.1: WASP shall measure the weight of the pod within a tolerance of $\pm 0.1\%$ of the pod weight **DR 2.1:** WASP shall measure the CG of the pod within a tolerance of $\pm 0.1\%$ of the pod CG

DR 2.1

DR 1.1

NI DAQ &

Measurement Accuracy Test - Results

Measurement Accuracy Test - Results

DR 1.1: WASP shall measure the weight of the pod within a tolerance of $\pm 0.1\%$ of the pod weight **DR 2.1:** WASP shall measure the CG of the pod within a tolerance of ± 0.1 " of the pod CG

DR 1.1

DR 2.1

Measurement Accuracy Test - Results

DR 1.1

DR 2.1

Accuracy				
Test Article \rightarrow	Unaltered (SNC)	Unaltered (WASP)	Altered (WASP)	
X CG [in]	4.61	4.98	4.27	
Y CG [in]	0.00	0.03	0.01	
Z CG [in]	7.39	7.96	8.44	
Weight [lbf]	231.7	230.55	271.87	

Repeatability/Success Rate (Unaltered)				
	Monte Carlo Simulation	Measurement Accuracy Test		
X CG	100.0%	100.0%		
Y CG	100.0%	100.0%		
Z CG	99.5%	100.0%		
Weight	96.2%	94.26%		

Project Element	Level 1	Level 2	Level 3
Measurement Accuracy	Measure weight within $\pm 0.1\%$ and X CG and Z CG locations within $\pm 0.1"$	Measure weight within ±0.1% and X CG, Y CG, and Z CG locations within ±0.1"	
Ducing (Dumana & Obiosti			-

DR 6.1: WASP shall complete a single weight and balance test in no more than 30 minutes DR 6.3: WASP shall require no more than two engineers to complete one test

System Accreditation - Modeling

• Rationale/Motivation:

• Verify procedural requirements

Procedure: Procedure Time Run multiple accuracy tests with non-WASP engineers Ο Tare Procedure 12 mins Record weight and CG measured by volunteers Ο **Note:** Only Measurements and Dismounting are included in the **Mounting Procedure** 7.5 mins 30 minute time constraint Measurements 25 mins Safety Protective Operational Visual Checks **Dismounting Procedure** 5 mins Guidelines Assurances Equipment Total 30 mins Hard Hats. **Specific Instructions** Color Coding Critical Implementation Safety Glasses, in User Manual and Items (pins, lug Gloves GUL mounts, load cells)

Project Purpose & Objectives Design Description Test Overview Test Results

32

DR 6.1

DR 6.3

WASE G

System Accreditation - Results

DR 6.1: WASP shall complete a single weight and balance test in no more than 30 minutes					DR 6.1
DR 6.3: WASP shall require no more than two engineers to complete one test					
Procedure (2 Engineers)	Group 1 Time	Group 2 Time	Group 3 Time		ojected Time
Tare Procedure	11.66 mins	18.30 mins	12.50 mins	1	2 mins
Mounting Procedure	9.37 mins	14.03 mins	7.50 mins	7.	5 mins
Measurements	21.82 min (3)	9.15 mins (1)	7.50 mins (1)	2	5 mins
Dismounting Procedure	3.00 mins	DNF	2.50mins	Ę	5 mins
Total (Measurement and Dismount)	24.82 mins	~27.45 mins	~25 mins	3	0 mins

Project Element	Level 1	Level 2	Level 3
Test Operation	Test completed by 3 engineers	Test completed by 2 engineers	
Test Operation	Test completed in 1 hour	Test completed in 0.5 hours	

Project Purpose & Objectives Design Description Test Overview Test Results

Testing Recap - Project Objectives

Project Objective	Success Criteria		Test	
Structural Integrity	Support 1000 lbs with FOS of 2.0 (Level 1)	Support 2000 lbs with FOS of 2.0 (Level 2)	Lug Mount Tensile Test, Structural Integrity Test	
Mounting and Interfacing	Modular Capabilities to connect future pod lug configurations (Highest Level)		Lug Mount Tensile Test	
Measurement Accuracy	Measure weight within $\pm 0.1\%$ and X CG, Y CG, and $\ Z$ CG locations within $\pm 0.1"$ (Highest Level)		Load Cell Characterization, Measurement Accuracy Test	
lloor interfece	The measurement tool will autonomously collect compat (Highes	ible file.	Electronics and Software Functionality Test	
User Interface -	The software will deliver the weight, X, Y, an measurer (Highes	ment sets		
	Test completed (Highes			
Test Operation	Test completed in 0.5 hours (Highest Level)			
	Test engineers will be able to successfully (Highes		 System Accreditation 	
Transportation	Tool is maneuverable by 2 team members			

Systems Engineering

Project Definition, Concept & Design Phase

Approach:

- Constructed CONOPS
- **Created Functional and Derived Requirements**
- Conducted Trade Studies
 - Hvbrid Test Bed 0
 - Omega Load Cells with Inclinometer
 - **Chain Hoist Lifting Mechanism** 0
 - Forklift Slots and Caster Wheels for Ο maneuverability
- Created plan for manufacturing and testing

Issues:

- Not having enough money to be able to create WASP with a significant margin
- Not having enough time to manufacture all of WASP along with possible COVID implications
- Making sure all parts would work together

Lessons Learned:

- Logistics are just as important as engineering analysis
- Trade Studies are extremely helpful in determining the best solution

Manufacturing

Approach:

• Followed manufacturing plan made in Critical Design Phase

Issues:

- Designed Parts/Structure were very different than the manufactured part or structure
 - Dimension mismatches causing non-predicted behavior/loads
 - Problems with functionality of Sliding Interface
- COVID/Extraneous Events caused delays in manufacturing as we expected

Lessons Learned:

- Discrepancies between the designed and manufactured part(s) will occur and will cause issues
- Unique and unpredicted problems will arise such as the tilted sliding interface

Verification & Validation

Approach:

- Followed testing plan created in Critical Design Phase
- Verify and Validate our requirements

Issues:

- Tests never worked as expected the first time
- Most tests took longer than the allotted time given
- Some scheduling issues
- Design dimensions of CG equations were not the same as physical dimensions

Lessons Learned:

- Never expect anything to work the first time around
- Prepare for a test as early as possible before the test start date

Project Management

Budget Review

Total Project Cost: \$4652.95

WASP Team Efforts Summary

Project Management Analysis

Approach:

- All team members
 distinct leads
- Mid-project restructure
- Standards for mutual respect
- Checks & Balances
- Prioritizing team social activities

Work Management

- Team-developed, PMenforced timeline
- Internal deadlines before course deadline
- Weekly team & subteam tag-ups

Customer Interfacing

- Bi-weekly or monthly status updates
- Tracked open action items

Successes:

<u>Functionality</u> Efficient brainstorming

- All FRs satisfied!
- All objectives satisfied!

Team Morale We are all best friends! High ambition from start to finish

Challenges:

Significant budget
 concerns during design

- Balancing remote and in-person work
- Sustained few personnel issues

Lessons Learned:

• Raw materials ≈ stocks

- Be creative with funding
 Customer offsetting
 - sensor costs

- Delays are unavoidable
- If margin is exhausted early on, have to build in more (R2R delay)
- Relying on **external services** can cause unexpected delays
- Prioritize function over classic organization for subteams
- Revision control is critical (CAD and UI)
- Setting expectations early for increases in weekly hours
- Benefits of frequent
 communication with customer
- Make your team your family

Project Management

Project Purpose & Objectives

Design Descript

W.A.S.P.

n Test Overvie

est Results — Systems Engineer

Acknowledgements

SNC Team:

Becky Vander Hoeven, Gary Hutton, Stephen McLaughlin, Jon Matula, AJ Olson

Advisory Board Members and AES Faculty:

Dr. Allison Anderson, Lara Buri, Dr. Donna Gerren, Camilla Hallin, Professor Bobby Hodgkinson, Dr. Jelliffe Jackson, Dr. Francisco Lopez Jimenez, Professor Matt Rhode + Machine Shop Staff, Professor Trudy Schwartz, Dr. Zachary Sunberg, KatieRae Williamson, Dr. Kathryn Wingate

Special Thanks to our Volunteer Operators:

Omar Ahram, Niko De Boucaud, Axel Haugland, Abby Hause, Sam Markovich, David Perkins

Thank you to everyone who helped WASP be a success!

Questions?

46

WASE C

47

References

[1] ASTM E74-13a, Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines, ASTM International, West Conshohocken, PA, 2013, <u>www.astm.org</u>

[2] Brown, Kevin H, et al. Sandia Corporation, 2008, pp. 28–30, Guideline for Bolted Joint Design and Analysis

[3] Dassault Systems, SolidWorks. 2020

[4] Hibbeler, R. C. Statics and Mechanics of Materials. 5th ed., Pearson Education South Asia, 2017.

[5] Markovich, Emma et. al. WASP Critical Design Review. Dec. 2020. PowerPoint Presentation.

[6] Maute, K. and Lopez Jimenez, F. "Chapter 10: Beam Deflections: Second Order Method." ASEN 3112 - Structures Lecture Notes.

[7] *MMPDS-13: Metallic Materials Properties Development and Standardization (MMPDS)*. Federal Aviation Administration, 2018.

[8] Omega, "500 lbf, ±0.02%, Linearity, 3 mV/V Output, Cable," LC103B-500. <u>https://www.omega.com/en-us/force-strain-measurement/load-cells/p/LC103B</u>

[9] "Properties of ASTM A36 Steel Bars." *ASTM A36 Steel, Bar*, www.matweb.com/search/DataSheet.aspx?MatGUID=d1844977c5c8440cb9a3a967f8909c3a.

[10] WYLER AG, "Operator's Manual Clinotronic Plus," clino_e.doc, 26 April 2016.

References cont.

[11] Vishay Precision Group, "Precision Strain Gauges and Sensors Databook", micro-measurements.com, 3, February 2016. [12] Vishay Precision Group, "Optimizing Strain Gauge Excitation Levels", micro-measurements.com, 1, November 2010. [13] Columbus McKinnon, "Factors to Consider When Selecting a Hoist", columbusmckinnon.com, 17, February 2020. [14] National Instruments, "NI 9237," NI 9237, November 2015. https://www.ni.com/pdf/manuals/374186a 02.pdf [15] National Instruments, "NI cDAQ-9171," July 2016. https://www.ni.com/pdf/manuals/374037b.pdf [16] MicroMeasurements, "CEA-06-250UW-350," 2021. https://micro-measurements.com/pca/detail/250uw [17] Digikey, "171-037-103L001," 2021. https://www.digikey.com/en/products/detail/norcomp-inc/171-037-103L001/858153 [18] Digikey, "40-9737H," 2021. https://www.digikey.com/en/products/detail/cinch-connectivity-solutions-aim-cambridge/40-9737H/3830312 [19] Digikey, "B4B-XH-A(LF)(SN)," 2021. https://www.digikey.com/en/products/detail/jst-sales-america-inc/B4B-XH-A(LF)(SN)/... [20] Digikey, "04JQ-BT," 2021. https://www.digikey.com/en/products/detail/jst-sales-america-inc/04JQ-BT/4918835 [21] McMaster Carr, "Threaded-Stem Leveling Caster," 2021. https://www.mcmaster.com/2445T24/

Back-Up Material

Manufacturing

Sliding Interface - Ballast to prevent tilting

The original design of the sliding plates was not sufficient in counterbalancing moments developed.

Main solution: use ballast on one side of sliding interface to counteract the moment developed.

Secondary solution: make the sliding plates larger to have 3x moment arm

Video shows the functionality of sliding with the ballast solution

Testbed - Multiple Equilibrium Positions

Noticed the testbed can hang in different static positions -- varying by ~0.75 inch at max

Using plumb bobs currently to note where the testbed should be positioned.

Will implement lasers for easier alignment procedure.

Caster Wheels - Improving Maneuverability

4 Caster Wheels used to allow for easy maneuverability on the floor of the hangar.

These were added later because they were a budget concern. (see slide 96)

Video shows 3 engineer maneuvering WASP with ease on the floor of machine shop. This was later tested with 2 engineers to ensure ability to meet project objective.

Project Purpose & Objectives Design Description Test Overview Test Results Systems Engineering Project

Load Cell Characterization

DR 1.1.3/2.1.3: Sensors shall be calibrated such that measured values are accurate within ±0.1% of the pod's true total weight, and within ±0.1" of the pod's true total CG **CPE 3:** WASP must satisfy the strict accuracy tolerances given in the requirements

• Rationale/Motivation:

- Improve fidelity of Monte Carlo
 Simulation of error in W & CG
- Demonstrate correct data acquisition/processing by WASP software

• Procedures:

- Tensile test MTS
- Drift test MTS/WASP
- Accuracy Test Bertha/WASP

0.1 0.2 0.3

0.4 0.5

Error (lbs)

0.6 0.7 0.8

55

Deadline: 2/22

Completed 2/24

and functionality test

Sensor Type 500 lb

- Ο
 - Test user interface for \bigcirc ease of use and bugs
- **Procedures:**
 - Hardware compatibility Ο
 - User interface \cap functionality test
 - System accreditation test Ο

Electronics & Software Functionality Test

DR 8.1: WASP shall have a computer based tool that interfaces with the sensors

- **Rationale/Motivation:**
 - Connect completed code and hardware, ensure functionality

WASP User Interface

Test Details

Lug Spacing

14 Inch

Deadline: 3/1

Completed 2/23

56

CG Location

Structural Integrity Test

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 DR 3.3: WASP shall lift pods out of their cradles
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators must be safe from harm.

Project Purpose & Objectives

st Overview Test

Test Results Systems E

ms Engineering Project Manage

Back-up

57

Planning/Setup

Deadline: 3/29

Structural Integrity Test

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 DR 3.3: WASP shall lift pods out of their cradles
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators must be safe from harm.

- Pass Criteria:
 - No yielding, cracks, or other forms of structural failure.
 - FOS > 2.0 in members measured by strain gauges (strain \rightarrow stress \rightarrow FOS)
- Test Date:
 - o 3/15 3/22
- Expected Results/Off-Ramps:
 - Pass: Expected move forward with MAT
 - Fail: Analyze failure mode, revisit analysis and design, redesign and attempt to rebuild

Deadline: 3/29

Planning/Setup

Measurement Accuracy Test

DR 1.1: WASP shall measure the weight of the pod within a tolerance of ± 0.1% of the pod weight
 DR 2.1: WASP shall measure the CG of the pod within a tolerance of ± 0.1" of the pod CG
 CPE 2: WASP shall rigidly interface with lugs for all pods types
 CPE 3: WASP must satisfy the strict accuracy tolerances given in the requirements

• Rationale/Motivation:

- Validate accuracy predictions of Monte Carlo Simulation (>95% success)
- Procedure:
 - Complete 5 standard measurement sets with the test article
 - Record measured weight and CG
- Expected Results/Off-Ramps:
 - Pass: All reported values within accuracy tolerances
 - Fail: Recalibrate the software and remeasure dimensions

Deadline: 4/12

Not Started

61

System Accreditation

- Rationale/Motivation:
 - Verify procedural requirements Ο
- **Procedure:**
 - Run multiple accuracy tests with non-Ο WASP engineers
 - Record weight and CG measured by 0 volunteers
- **Expected Results/Off-Ramps:**
 - **Pass:** Prepare for delivery to customer Ο
 - Fail: Modify the procedure and/or Ο downgrade to level 2 objectives

Avg. Test Time under 30 mins with 2 engineers (different for each test)

500 lb Omega

LC103B Load

Deadline: 5/3

Not Started

62

63

Additional Checks Completed

Check	Motivation
Quality Checks on components (manufactured and COTS)	Match specifications to model
Conductivity on wire harnesses	Ensure pins are connected ONLY to correct input/outputs
Communication with Load Cells using fabricated harnesses	Demonstrate ability to pull data from load cells using final harnessing
Test/debug Measurement Accuracy Test script with electronics	Demonstrate functionality of the script to obtain necessary data for MAT
Test/debug User Interface with electronics	Demonstrate UI's ability to correctly control data acquisition functions for WASP operation
Sliding Interface Fit Check	Ensure manufacturing imperfections allow smooth operation

Risk Assessment

Risk - Test Key

- LC-Misalignment Measurement Accuracy Test
- Misalignment Structural Integrity Test
- 3. Structural Failure Structural Integrity Test
- 4. Lug Interface Lug Mount Tensile Test
- 5. Human Error System Accreditation
- 6. COVID All
- 7. Budget All

Risk Matrix			Impact Lev	vel	
		Low	Mild	Medium	High
Likalihaad	High			Misalignment	LC-Misalignment
Likelihood Level	Medium		Misalignment	Budget COVID	Structural Failure Lug Interface Human Error Budget COVID
	Low		LC-Misalignment		Structural Failure Lug Interface Human Error

65

Testing Status

Level	Test	Procedure Finalized?	Test Conducted?	Analysis Complete?
Component	Lug Mount Tensile	Yes	Yes	Yes
Component	Load Cell Characterization	Yes	Yes	Finish by 3/8
Sub-System	E&S Functionality	Yes	Yes	Yes
Sub-System	Structural Integrity	Finish by 3/8	Scheduled 3/15	Scheduled 3/22
Quatam	Measurement Accuracy	Finish by 3/22	Scheduled 3/29	Scheduled 4/12
System	System Accreditation	Finish by 3/22	Scheduled 4/12	Scheduled 4/12

66

MTS Exceed Series 40 General Specifications

Accuracy Class	ISO 7500 Class 0.5 / Class 1 or ASTM E4
Force Range	0.4% - 100% of rated force capacity / 0.2-100% of rated force capacity
Rated Maximum Force at Max. Test Speed	100%
Rated Maximum Test Speed at Maximum Force	100%
Force Capacity	\pm 0.5% of the displaying / \pm 1% of the displaying
Speed Accuracy	Set speed < 0.01mm/min: speed accuracy is within \pm 1.0% of set speed Set speed \ge 0.01mm/min: speed accuracy is within \pm 0.2% of set speed
Position Accuracy	Within ± 0.5%
Strain Measuring Range	0.2% - 100% FS
Strain Accuracy	Class 0.5 and Class 1
Security Protection	Over-force, travel limits, over-voltage and others
Over Force Protection	10%
Data Acquisition Rate	1000 Hz
Control Loop Rate	1000 Hz
Environmental Requirements (For indoor use only) Operating Temperature Operating Humidity Storage Temperature Maximum Storage Humidity Maximum Attitude	5° C to 40° C (41° F to 104° F) 5% - 85% non-condensing -18° C to 49° C (0° to 120° F) 90% non-condensing 2000 meters
Motor & Drive System	AC Servo Motor
Ballscrews	Pre-Forced
Position Measurement	Encoder
Additional DC Conditioning Channels	2 channels (Examples: resistive extensometers and force cells)
Additional Digital Conditioning Channels	1 channel (Examples: long travel extensometer and quadrature encoders)

Project Purpose & Objectives Design Description Test Overview Test Results Systems Engineering Project Management Back-up

MTS Exceed Series 40 E45.105 Specifications

Model	E44.304	E45.105	E45.305
Maximum Rated Force Capacity	30 kN	100 kN	300 kN
Force Capacity Options	100 N, 250 N, 500 N, 1 kN, 2 kN, 5 kN, 10 kN, 20 kN, 30 kN	5 kN, 100 kN	200 kN, 300 kN
Frame Type	Floor-standing	Floor-standing	Floor-standing
Test Zones (single/dual)	Single/Dual	Single/Dual	Single/Dual
Maximum Test Speed	500 mm/min	500 mm/min	250 mm/min
Minimum Test Speed	0.001 mm/min	0.001 mm/min	0.001 mm/min
Position Resolution	0.000041 mm	0.000041 mm	0.000041 mm
Middle Crosshead Travel (without grips)	1150 mm	1050 mm	1100 mm
Middle Crosshead Travel (with grips)	850 mm (with XSD204B grips)	500 mm (with XSA105A grips)	540 mm (with XSA305A grips)
Test Width	340 mm	600 mm	580 mm
Frame Dimension (height x width x depth)	1862 x 845 x 716 mm	2133 x 1230 x 870 mm	2360 x 1215 x 960 mm
Weight	435 kg	1400 kg	1700 kg
Power Requirement	Single-phase 200-230V AC, 6 Amp 50/60 Hz, 1200W	Single-phase 200-230V AC, 10 Amp 50/60 Hz, 2000W	Three-phase 380-415V AC, or 440-480V AC, 6.8 Amp 50/60 Hz, 5000W

Project Purpose & Objectives

ign Description

est Overview

st Results 👘 Systems El

Back-up

67

MTS Machine - DBSL-XS-10T Load Cell (100 kN)

Specification	ns		
Rated Output	3.0mV/V ±0.25%	Safe Temp. Range	-10°C to + 70°C
Zero Balance	±1% of rated output	Temp. Compensated	-10°C to + 40°C
Creep after 30 minutes	±0.03% of rated output	Safe Overload	150%
Nonlinearity	±0.03% of rated output	Input Impedance	387 ohm ± 20 ohm
Hysteresis	±0.03% of rated output	Output Impedance	350 ohm ± 5 ohm
Repeatability	±0.03% of rated output	Insulation Resistance	≥5000 M ohm (50V DC)
Temp. effect on output	≤0.002% of applied output/°C	Rated Excitation	10V DC/AC
Temp. effect on zero	≤0.002% of rated output/°C	Maximum Excitation	15V DC/AC
Wire Length	6m	Wire Material	Red(+E) Black(-E) White(-S) Green(+S)

MTS Machine - BSS--XS-500kg Load Cell (5 kN)

System 5	dodel Nun Serial Num I Capacity		5000.0 N		Country	i Ginie	n f	UT Cell	Excitatio e Cell As idout Ast	sot#: S	0.0 N551508 N10458	
UUT Cel	Model : Serial :	: BSS-XS-50 7h3820500	000783	Ambien	Temper	Tator et a				-	Results	
Compre			_		Senes 2	Contract of		Series 3 UUT	Relative	UUT Load	Maximum . Relative	Maximum Repeatability
Compre	331011	Series 1	-	NUMBE	UKUT		Reference Load	Load	Entor	Mean	Entor	Errox
Applied	Reference	UUT Load	Relative First		Load	Error	LOBG	N	%	N 0.00	0.002 %	
Force	Lost	Load	*	N	N	0.002	-0.37	-0.35	0.0004	0.00	0.07 %	0.04 9
*	N 0.73	-0.20	0.001	-0.49	-0.40	-0.007	249.94	-249 76	-0.07	0.18	0.04 %	0.02
50	242.96	-249.87	-0.04	-249.94	-249 75	-0.04	.500.69	-500.50	-0.04	0.10	0.04 %	0.02
.10.0	-500.37	-500.24	-0.02	-500.74	-500 54	-0.02	.999.06	-998.68	-0.02	0.31	0.02 %	0.01
-20.0	.999.48	.0999.22	-0.03	-999.25	-1998 82	-0.02	-1999.17	-1998.78	-0.02	0.12	0.01 9	0.004
-40.0	-1998.79	-1998.54	0.01	-1999.12	-1990 64	-0.01	-2997.61	-2997.60	-0.004	-0.43		
-60.0	-2997.50	-2997.52	-0.002	-2097.11	-3997.39	0.01	-3996.77	-3997.07	0.03	-1.74		§ 0.03
-80.0	-3996.98	3997.46	0.04	-4994.76	4996.38	0.03	4995.30	-4996.67	-0.01	0.0	0 0.02	- 14
0.0	_4993.08 3.29	-4995.32	-0.02	2.80	2.35	-0.01	-0.20	2.63	-0.01		1	
Force	Reference Load	Series 1 UUT Load	Relative Entx	Provence Logic	UUT Lood N	Relative Error	Reference Load N	UUT Load N	Relative Error	Mean	Relative	Repeatat Error
. 0.0	1.10	1.03	-0.001	0.66	0.5					-		
50	249.68	240.61	.0.00	249 5	249.5					- 11-51		
10.0	499.44	400.15	0.00	498.8								
20.0	999.66	0/29.0K	-0.0								100	
40.0	1999.60	1998.61										_
60.0	2996.28	2896.2		and the second second				and the second second			_	
60.0							-	-			0.00	12.00
								12400				
	o o.s: writs: ation Tec	8.7 System I	-	2 04	4 0.		02 0	0 0	11 0.00	04 0	3-2019	
Signal			Vie	and a								

Project Purpose & Objectives Design Description Test Overview Test Results Systems Engineering Project Management Back-up

70

Lug Mount Tensile Test - FEA

• Reasons for Model Inaccuracy:

- <u>Fixed geometry</u>: Not physical for this situation as they are clearance holes. Fixing a face requires the material around it to provide reaction loading that can be orders of magnitude higher than if they are allowed to move slightly
 - e.g. when preparing for PDR we were originally fixing the ends of our beams. This would require other beams to not twist at all, leading to safety factors of 0.6 or less. In reality, those beams could twist (sometimes only by 0.064 degrees), increasing the safety factor by 100x or more.
- <u>Rigidity of assembly:</u> FEA was not taking increased rigidity due to interactions between individual members into account - this decreased deflection in more vulnerable members and pushed yielding back. For example, lug pin and bolts (not modeled here) would contribute reactions to prevent top plate from bending. The interface between the plate and flanges is treated like fused material (i.e. it's all one part) which would provide some
- internal reactions, but not as much as when the lug pin and bolts are factored in.

Lug Mount Tensile Test - FEA

- Reasons for Model Inaccuracy:
 - <u>Type of yielding:</u> Upon inspection, there was some an indentation on the top plate left behind by the washer. This is technically yielding, but does not affect the assembly or lead to catastrophic failure. This type of yielding is predicted by the model, but is not noticeable in MTS data. This could account for the lower-than-seen safety factors in our model.

Lug Mount Tensile Test - Additional Information

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators should be safe from harm.

• Equipment/Facilities:

- Pilot Lab Electromechanical MTS machine
- Modified 2000 lb lug mount assembly
 - 2 x ³/₈-16 hex bolt connectors
 - 3/8" clearance hole in pin
 - 2" x 4" x 3/4" block to simulate testbed centerbeam

• Procedure:

- Modified Tension (simplified) code in MTS TestSuite
- Pull lug mount at 0.03 in./min until failure,
- Record force [lbf], time [s], and extension [in.]

Lug Mount Tensile Test - Yielding Point Characterization

73

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators should be safe from harm.

- Yielding at 13000 lbs could have been due to threads in interface or top plate
 - In order to determine whether plate yielding began at that point:
 - Found the time at which yielding began in MTS data (607.858 seconds)
 - Found the video time associated with interface failure (555 seconds) and compared it to interface failure time in MTS data (778.858 seconds). Difference of 223.858 seconds
 - Used this to calculate time where yielding began in the video (607.858-223.858 = 384 seconds)
 - After careful inspection of the video, the plate began to visibly yield within 20 seconds of the 384s mark. So too, however, did the bolt threads.
 - Since the threads are small and moved little, they did not contribute to the majority of the yielding. It is safe to say that the safety factor of the mount is closer to 6.5 than 7.75, and that plastic deformation began closer to 13000 lbs than 15500 lbs when the interface failed.

Structural Integrity Test - Weld Table Weight

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 DR 3.3: WASP shall lift pods out of their cradles
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators must be safe from harm.

• Weld Table Weighing:

- Currently do not know the weight of the table precisely
- Options for weighing:
 - <u>Weigh station</u> Drive truck to a weigh station with and without the table, take weight difference
 - 500 lb compression load cells and moment balance calculations Assume CG is in the center of the table, measure force on load cells as a fulcrum is moved further from the center. Use these to determine the load on the fulcrum and sum with load cells to find weight
 - Custom load cell Block of steel/aluminum with strain gauge attached. Characterize strain in MTS machine, then hang the table from the forklift with lift straps, measure strain, and correlate to a load
 - Heavy-duty hanging scale Hang from forklift with lift straps (\$90)
 Heavy-duty hanging scale Hang from forklift with lift straps (\$90)

Factors in deciding:

- Time SIT must be conducted in mid-March
- Budget Avoid cutting into management reserves as much as possible given other constraints
- Complexity Increased complexity increases both error and time

Structural Integrity Test - Weld Table Weight

DR 3.1: Structural components must have a safety factor against yield of greater than 2.0
 DR 3.3: WASP shall lift pods out of their cradles
 CPE 1: Frame must statically support pods of up to 2000 lbs
 CPE 5: Pods and WASP operators must be safe from harm.

- Update:
 - After significant discussion, the team decided to weigh the plate <u>using</u> <u>WASP</u>
 - Will connect the weld table with the dummy load cells in place (after testing with smaller known weights)
 - Once structural integrity is guaranteed with the table, replace load cell replacement blocks with 1000 lb FSO load cells
 - Tare weight of testbed and measure the table
 - Once characterized, can replace the load cells with the dummy blocks and perform the actual structural integrity test with 2000 lbs.

Structural Integrity Test - Additional Information

• Equipment/Facilities:

• Machine shop welding table and scrap metal, lift straps, strain gauges, WASP DAQ system

• Procedure:

- Utilize ~1300 lb welding table, ~700 lbs of metal, and interfacing. Thread lifting straps through welding table holes and attach to WASP via lug mounts.
- Check for yielding or other signs of failure throughout the structure (especially in regions of complex geometry). Measure strain in critical (based on FEA) locations using strain gauges

Load Cell Characterization - Statistical Analysis (1)

pValue

0

0

Linear Model: 500lbs LC

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

(Intercept)

x1

Number of observations: 920, Error degrees of freedom: 918
Root Mean Squared Error: 3.46e-07
R-squared: 1, Adjusted R-Squared: 1
F-statistic vs. constant model: 3.49e+09, p-value = 0

SE

3.29e-08

1.0172e-10

tStat

494.19

59047

Estimate

1.6259e-05

6.006e-06

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	1.4277e-05	1.4385e-08	992.47	0
x1	3.0056e-06	2.2693e-11	1.3245e+05	0

Number of observations: 1694, Error degrees of freedom: 1692 Root Mean Squared Error: 2.27e-07 R-squared: 1, Adjusted R-Squared: 1 F-statistic vs. constant model: 1.75e+10, p-value = 0

Linear Model: 1000lbs LC

Load Cell Characterization - Statistical Analysis (2)

Normality of Error - 500lbs and 1000lbs Load Cells

 $\label{eq:hormality} \begin{array}{l} \underline{\text{Normality of Error: LC - MTS}} \\ \textbf{H}_{0} : E \sim N(\mu_{E} \,,\,\sigma_{E}); \ \textbf{H}_{a} : E \not\sim N(\mu_{E} \,,\,\sigma_{E}) \\ \text{K-S Test for Normality, } \alpha = 5\% \\ 500 \ \text{lbs LC: } p = 6.54 \, \times 10^{-4} < \alpha \\ 1000 \ \text{lbs LC: } p = 1.12 \, \times 10^{-6} < \alpha \\ \hline \textbf{REJECT THE NULL HYPOTHESIS} \end{array}$

Performed K-S test on both the unadjusted and standard normalized data sets - both were non-normal

Monte Carlo Simulation

DR 1.1: WASP shall measure the pod weight within a tolerance of ±0.1% of the total pod weight **DR 2.1:** WASP shall measure the pod X, Y, & Z CG of each pod with an accuracy of ±0.1 in.

Updates to model:

- Inclinometer accuracy = ±0.025°, Wyler Clinotronic Plus [10]
- Load Cells Error distribution model
 Mean = 0.0 % FSO
 - Std. Dev. = (1/2.4)*(0.02% FSO) [1]
- Worst-case scenario model evaluated at **maximum** expected error:

W: $0.18\% \rightarrow 6.7\sigma$ XCG: $0.05 \text{ in} \rightarrow 3.0\sigma$ YCG: $0.07 \text{ in} \rightarrow 10.4\sigma$ ZCG: $0.14 \text{ in} \rightarrow 3.3\sigma$

	Load Cell Sensor Full-Span		
Pod Weight [lbs]	500 lbs	1000 lbs	
200	> 95%	> 95%	
300	> 95%	> 95%	
350	> 95%	> 95%	
400	Х	> 95%	
500	Х	> 95%	
600	Х	> 95%	
700	Х	> 95%	
800	Х	> 95%	
850	Х	>95%	
900	Х	> 95%	
1000	Х	> 95%	

Expected Success Rate for Satisfying Accuracy Requirements for Weight and CG vs. Pod Weight

(From Monte Carlo Simulations with N = 10000)

Electronics Hardware

Omega LC103B Load Cells [8]

Specifications:

Accuracy (>25lb): class C3 Approvals(>25lb): OIML R60 Output sensitivity (mV/V): 3.0±0.008 (≤25/b 2.0±0.006) Maximum number of load cell intervals (nLC): 3000 Ratio of minimum LC verification interval (Y=Emax/vmin): 10000 Combined error (%FS): ±0.020 Minimum dead load: 0 Safe overload (%FS): 150% Ultimate overload (%FS): 300% Zero balance (%FS): ±1.0% Excitation, recommended voltage (V): 5 to 12(DC) Excitation maximum (V): 18(DC) Input resistance (Ω): 430 ± 50 Output resistance (Ω): 351 ± 2 Insulation resistance (M Ω): \geq 5000 (50VDC) Compensated temperature (°C): -10 to 40 Operating temperature (°C): -35 to 65 Storage temperature (°C): -40 to 70 Element material: Stainless steel Ingress protection (according to EN 60529): IP67 Recommended torgue on fixation (Thread:lbf.ft):1/4"UNF:18 1/2"UNF:55 3/4"UNF:330 1"UNF:550 1 1/8"UNF:1070 Recommended torgue on fixation (Thread:Nm):M8:25 M12:75 M20:450 M24:750 M30:1450

Wyler AG Clinotronic Plus [10]

Measuring range Messbereich		± 10 Arcdeg	± 30 Arcdeg	± 45 Arcdeg ± 60 Arcdeg	
Calibration / Kalibrierung	Last values at: / letzte Werte bei:	± 10 Arcdeg	± 30 Arcdeg	± 50 Arcdeg resp. ± 60 Arcdeg	
Limits of Error / Fehlergrenze		< 1 Arcmin + 1 Digit	< 1.5 Arcmin + 1 Digit	< 2 Arcmin + 1 Digit	
Settle time / Messzeit	Value available after / Anzeige nach:		< 2 Secs.		
Resolution / Auflösung	Dep. on units set / abhängig von Einstellung	> 5 Arcsec (0.025 mm/m)			
Temp. Coeff. / Temperatur-Koeff.	Zero and scale / Null und Skala	< 0.01 Arcdeg./°C			
Data connection / Anschluss		RS485 / asynchron / 7 Bit / 2 Stop Bit / no parity / 9600 Baud			
Battery / Batterie	/ Batterie 1 x Size AA 1.5V Alkaline		line		

NI 9237 Bridge Module [14]

DATASHEET

NI 9237

4 AI, ±25 mV/V, 24 Bit, 50 kS/s/ch Simultaneous, Bridge Completion

- 4 channels, 50 kS/s per channel simultaneous AI
- $\pm 25 \text{ mV/V}$ input range, 24-bit resolution
- Programmable half- and full-bridge completion with up to 10 V internal excitation
- 60 VDC, Category I bank isolation
- RJ50 or D-SUB connectivity options
- -40 °C to 70 °C operating range, 5 g vibration,
 50 g shock

http://www.ni.com/pdf/manuals/374186a_02.pdf

NI 9237 Pinout/ Signal Descriptions [14]

Signal Descriptions

Table 1. NI 9237 Signal Descriptions

Signal Name Description	
AI+ Positive analog input signal connection	
AI-	Negative analog input signal connection
RS+	Positive remote sensing connection
RS-	Negative remote sensing connection
EX+	Positive sensor excitation connection
EX-	Negative sensor excitation connection
T+	TEDS data connection
T-	TEDS return connection
SC	Shunt calibration connection

NI cDAQ-9171 Compact DAQ [15]

85

DEVICE SPECIFICATIONS

NI cDAQ[™]-9171

NI CompactDAQ One-Slot Bus-Powered USB Chassis

These specifications are for the NI cDAQ-9171 chassis only. These specifications are typical at 25 °C unless otherwise noted. For the C Series module specifications, refer to the documentation for the C Series module you are using.

Analog Input

Input FIFO size	127 samples
Maximum sample rate ¹	Determined by the C Series module
Timing accuracy ²	50 ppm of sample rate
Timing resolution ²	12.5 ns
Number of channels supported	Determined by the C Series module

Analog Output

Number of channels supported	
Hardware-timed task	
Onboard regeneration	16
Non-regeneration	Determined by the C Series module
Non-hardware-timed task	Determined by the C Series module
Maximum update rate	
Onboard regeneration	1.6 MS/s (multi-channel, aggregate)
Non-regeneration	Determined by the C Series module
Timing accuracy	50 ppm of sample rate
Timing resolution	12.5 ns
Output FIFO size	
Onboard regeneration	8,191 samples shared among channels used
Non-regeneration	127 samples
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard memory, periodic waveform regeneration from host buffer including dynamic update

https://www.ni.com/pdf/manuals/374037b.pdf

MicroMeasurements CEA-06-250UW-350 Strain Gauge [16]

CHARACTERISTICS

Gage Length: 250 Resistance (Ω): 120,175,350,1000,120,175,350 Series: <u>CEA</u>,W2A STC: 00,06,13,05,15,03,09 Options: P2,SP11 **Dimensions:**

Gage Length	Overall Length	Grid Width	Overall Width	Matrix Length	Matrix Width
0.25 in.	0.45 in.	0.18 in.	0.18 in.	0.55 in.	0.27 in.
6.35 mm	11.43 mm	4.57 mm	4.57 mm	14 mm	6.9 mm

https://micro-measurements.com/pca/detail/250uw

Strain Gauge Power Dissipation [12]

- 350Ω Resistance
 - Same as LC103B
- 10V Excitation
- Moderate Accuracy
 - Static conditions
 - 2 5 W/in^2
- Grid Area Range
 - 0.015 0.035 in^2
- 5 x EA-06-250UW-350-L
 - 2 half-bridges
 - 1 quarter-bridge

DSUB-37 Connectors and Backshell [17] [18]

Connector [17]

Backshell [18]

https://www.digikey.com/en/products/detail/norcompinc/171-037-103L001/858153 https://www.digikey.com/en/products/detail/cinchconnectivity-solutions-aim-cambridge/40-9737H/3830312

4-Pin Connectors [19] [20]

Male, B4B-XH-A(LF)(SN) [19]

https://www.digikey.com/en/products/detail/jst-sales-americainc/B4B-XH-

A(LF)(SN)/1651047?utm_adgroup=Rectangular%20Connectors%20-%20Headers%2C%20Male%20Pins&utm_source=google&utm_medi um=cpc&utm_campaign=Shopping_Product_Connectors%2C%20Int erconnects_NEW&utm_term=&utm_content=Rectangular%20Conne ctors%20-

%20Headers%2C%20Male%20Pins&gclid=CjwKCAiAo5qABhBdEiw AOtGmbhvw5bEfvam07AKWoDuHVHM6lvxHya19nDYdGUTEexmRweBrGN6khoCbqoQAvD_BwE

Female, 04JQ-BT [20]

https://www.digikey.com/en/products/d etail/jst-sales-america-inc/04JQ-BT/4918835

GUI Operation

User Interface

Safety Visual Checks

Pin Hooks

Test Bed Procedure Graphic

Do Not Push Decal

3D Printed Pin Caps

Color Coding (Pins/Load Cells/Lug Mounts)

Chain Hoist Slack Decal

Caster Wheels [21]

Mount Type	Stem
Wheel	
Diameter	2 1/2"
Width	1 1/8"
Number of	1
Mount Height	4 1/16"-4 5/8"
Capacity per Caster	1,100 lbs.
Hardness Rating	Hard
Hardness	Durometer 70D
Stem Type	Threaded
Stem Shape	Round
Stem Thread Size	1/2"-13
Stem Length	1 1/4"
Adjustment	
Style	Ratchet
Wheel/Tread Material	Nylon Plastic
Tread Shape	Flat
Nonmarking Wheels	Yes
Wheel Color	Black
Wheel Type	Solid
Wheel Bearing Type	Without Bearing

https://www.mcmaster.com/2445T24/